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CHARACTERS OF SUPERCUSPIDAL REPRESENTATIONS
OF SL(N)

FIONA MURNAGHAN

Let O, be the character of an irreducible supercuspidal rep-
resentation 7 of the special linear group SL,(F), where F is
a p-adic field of characteristic zero and residual characteristic
greater than n. In this paper, we investigate the existence of
a regular elliptic adjoint orbit O, such that, up to a nonzero
constant, ©, (composed with the exponential map) coincides
on a neighbourhood of zero with the Fourier transform of the
invariant measure on J,. When such an orbit O, exists, the
coefficients in the local expansion of O, as a linear combina-
tion of Fourier transforms of nilpotent adjoint orbits are given
as multiples of values of the correponding Shalika germs at O,.
Let g be the order of the residue class field of F'. If n and ¢—1
are relatively prime, we show that there is an elliptic orbit O,
as above attached to every irreducible supercuspidal 7. When
n and ¢ — 1 have a common divisor, necessary and sufficient
conditions for existence of an orbit O, are given in terms of
the number of representations in the Langlands L-packet of
.

1. Introduction.

Let d(m) be the formal degree of w. Our aim is to determine the conditions
under which there exists a regular elliptic element X, in the Lie algebra of
SL,(F) such that

(1.1) O, (exp X) = d(7) fo(x.)(X)

for all regular elements X in some neighbourhood of zero in the Lie algebra.
Here [ip(x,) denotes the Fourier transform of the orbital integral associated
to the Ad SL,(F)-orbit O, = O(X,) of X,. An Ad SL,(F)-orbit O is said
to be nilpotent if it consists of nilpotent elements. Harish-Chandra ([HC2])
proved that there exist constants co(7) such that

O (expX) = Z co(m) o(X),
O nilpotent
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for regular elements X in some neighbourhood of zero. If (1.1) holds, the
coefficients in Harish-Chandra’s expansion have the form

(1.2) co(m) = d(n) To(Xx), O nilpotent

where I'p is the Shalika germ associated to the orbit O.

In an earlier paper ([Mul]), under the assumption p > n, (1.1) and
(1.2) were proved for all irreducible supercuspidal representations of GL,,(F).
As shown by Howe ([H]) and Moy ([Mo]), the equivalence classes of irre-
ducible supercuspidal representations of GL,(F') correspond bijectively with
the conjugacy classes of admissible characters of multiplicative groups of de-
gree n extensions of F. If @ is such a character, my denotes an element of
the corresponding equivalence class of representations. An irreducible su-
percuspidal representation of SL,(F’) is a component of the restriction 7 of
some 7y to SL,(F). Moy and Sally ([MS]) studied the decompositions of
the representations .

Moy and Sally realized certain (not necessarily irreducible) components
of m, as representations induced from finite-dimensional representations of
open compact subgroups. The inducing data for one of these components 7
is the restriction of the inducing data for 7y to SL,(F). If X, is the element
of the Lie algebra of GL,(F) appearing in (1.1) for m = 7, set

tr(Xa,) I
n

Sp = X, —

where I, is the n x n identity matrix. §2 is devoted to proving (Proposi-
tion 2.6)

fo(1)™! /K folk~ exp Xk) dk = /K Woltr Sy Adk~(X)) dk,

where fy is a particular matrix coeffient of 7, 1, is a nontrivial character of
F, K is a certain open compact subgroup, and X is any nilpotent element
in the Lie algebra of SL,(F). Many results in §2 are proved by modifying
similar results in §3 of [Mu1l].

In Theorem 3.2, using Proposition 2.6 and results of Harish-Chandra, we
show that (1.1) holds for 7 = 7, g in GL,(F), with X, = Adg(Sy). It
then follows that (1.2) also holds (Corollary 3.5). Necessary and sufficient
conditions for the representations 7 to be irreducible are determined in
([MS]). When these conditions are satisfied, the irreducible components of 7
are all of the form 7? ([MS]), and thus (1.1) and (1.2) hold. These irreducible
components make up an L-packet of supercuspidal representations, and the
associated X,’s make up a set of representatives for the orbits within the
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stable orbit of Sy. These results are summarized in Corollary 3.6. If n and
g — 1 are relatively prime (recall that g is the order of the residue class field
of F), the representations 7 are irreducible for all admissible characters 0
([MS]), and therefore (1.1) and (1.2) hold for all irreducible supercuspidal
representations of SL,(F).

The case where 7 is reducible is considered in §4. The irreducible compo-
nents of 7y still form an L-packet of supercuspidal representations, and we
can associate the stable orbit of Sy to this L-packet. However, as proved in
Theorem 4.5, if 7 is an element of the L-packet, (1.1) does not hold for any
X,. As shown in §3, appropriate direct sums of elements in the L-packet
(that is, the representations 79) satisfy (1.1) and (1.2) with X, in the stable
orbit of S,.

Suppose n is prime. Although (1.1) may not hold, modulo determination
of the values of the Shalika germs on the regular elliptic set, the coefficients
co(m) appearing in the local character expansion of an irreducible supercus-
pidal representation are known for all nilpotent orbits 0. For details, see
remarks at the end of §4. In this case, Assem([As]) has obtained explicit
formulas for the functions fie.

Results of type (1.1) and (1.2) have also been proved for supercuspidal
representations of the unramified 3 x 3 unitary group ([Mu2]) and other
classical groups ([Mu3)).

2. Preliminary results.

Let n > 2 be an integer which is prime to the residual characteristic p of F.
Let G = GL,(F) and G' = SL,(F). To each admissible character § of a
degree n extension of F', Howe ([H]) associated a finite-dimensional represen-
tation k4 of an open, compact mod centre subgroup Ky of G. The induced
representation my = Indg, , Ko is irreducible and supercuspidal. In this way,
Howe defined an injection from the set of conjugacy classes of admissible
characters of degree n extensions of F' into the set of equivalence classes of
irreducible supercuspidal representations of G. Moy ([Mo]) showed that this
map is a bijection. That is, every irreducible supercuspidal representation
of G is equivalent to some .

From this point onward, we assume that p is greater than n. The main
result of this section, Proposition 2.6, is the analogue of Proposition 3.10 of
[Mu1] for a certain (not necessarily irreducible) component of the restriction
of my to G

Let E be a finite extension of F' such that the degree of E over F' is prime
to p. We shall write O for the ring of integers in E, pg for the maximal
prime ideal in Og, and wg for a prime element in Og. Let Ng/r and trg/r
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be the norm and trace maps from FE to F.

Fix an additive character 5 of F having conductor pr, that is, ¥r |pr = 1
and Y | Or # 1. In later sections, Fourier transforms will be taken relative
to the additive character 1 of F defined by vo(z) = Yr(wz). Set yp =
Yr otrg/p.

If 6 : E*X — C* is a continuous quasi-character of E* , the conductoral
exponent fg(6) of 6 is the smallest non-negative integer i such that 1 + p;
is contained in the kernel of 6.

Let 6 be an admissible character ([H] or [Mo]) of the multiplicative group
of a degree n extension E of F. In §3 of [Mul], an element of E was
associated to each such 6. In this paper, we call that element X,. For
completeness, we restate the definition here.

Lemma 2.1 ([H]). There ezists a unique tower of fields
F=FE,CE,C---CE,=F

and quasi-characters x, ¢1,...,¢, of F*, EX,...,EX respectively, with ¢,
generic over E,_; and such that

6 = (xo Ngyr)(¢1 0 Ng/g,) - br-

The conductoral exponents are unique and satisfy

fe(¢10 Ngyg,) > - > fe(dr).

For the definition of generic, see [Mo], [MS] or [Mul]. Set

€(3)=[fE’(¢5)n+n—1], 1<s<r-1.

Because p > n, the function z — ¢, (EOSmSn—l ™ /m!) is a character of

pgf), s=1,...,r — 1. Thus there exists ¢, € E, such that

b5 (712_: :z:’"/m!) = g, (c,x), T € pg.’).
m=0

If fe(4,) > 1, ¢, is defined as are ¢y, ..., c.—1. If fg(¢,) =1, ¢, is taken to be
a root of unity in O such that ¢, + pg generates Og/pg over Og,_, /PE,_,-
¢s is not defined the same way as the element ¢, of [MS], though it does
satisfy the definition in [MS]. X, is given by

Xo=wp'(ci + -+ ).



SUPERCUSPIDAL CHARACTERS OF SL(N) 221

Lemma 2.2 ([Mul], Lemma 3.4). E = F[X,].

Thus X, is a regular elliptic element of g.
Let M, = Endg,E*. For i > 0, set

Ai:{XeMalngch‘L"Vj}.

This definition is extended to all integers via A% = wg, AL, where e, is
the ramification degree of E, over F. p% is understood to mean Og.

Let js = fE(¢s ONE/E,)° Ifjs > 1, set 1, = js/2] and m, = [(js + 1)/2] If
jr =1, set i, = m, = 1. Define

= 14+ A )A+ A - (L+ AP, if §. > 1

(A )*A+AZ) - (L+ AT i G =1
K, is defined similarly, except with i, replacing m,. In [Mul], the notation
K} was used instead of K,. However, in this paper, A’ denotes AN G',
where A is a subset of G. The inducing subgroup for m, is Ky = E*K,.

Kg = (A3)* is an open compact subgroup of G. If C is an open subset of
K}, and g’ is the Lie algebra of G', set

I(X,Y;C) = / boltr(X AdK™1(Y)))dk, XY €g.
C
Here, tr denotes trace. As in [Mul], given X in g define
Hy = {keKE|1+Adk-1(X) €K}
H ={k€Kp|l+Adk(X) €K, }.

It is easily seen from our description of A} in §3 of [Mul] that det(1 +
A}) C 1+ pp. Because p does not divide n (p > n), given z € 1 + pp, there
exists a unique y € 1+pp such that y» = z ([Hal, p. 217). Given h € 1+ A},
let d(h) be the scalar matrix y times the identity matrix, where y € 1 + pr
is such that y™ = det h™!. Thus detd(h)det h = 1. Viewing AT, m > 1, as
a subset of Aj, define

B™ = {d(h)h|h € 1+ A" }.

Let N be the nilpotent subset of g. Since a nilpotent matrix has trace
zero, N is also the nilpotent subset of g'.

Lemma 2.3. Assume X € N.
(1) If , > 1, then T(Xo, X; Klp) = T(Xo, X; HY).
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(2) If j» =1 and X € A}, then Z(Xy, X; K) = (X, X; HY).
(3) If j, = 1 and X ¢ AL, then T(Xy, X; KL) = I(Xg, X; HY).

Proof. The proofs of Lemmas 3.7-9 of [Mul] can be modified slightly to
obtain a proof of this lemma. .

First, assume that r = 1. In this case Ky = 1 + A"'. X € A — A5
for some integer i. If ¢ > m;, then Hy = Kg. If j; =1 and ¢ = 0, then
HY = K}. Therefore, we assume that ¢ < m; if j; > 1, and 7 < 0 if
j1 = 1. Since Hy =0 if j; > 1, and HY = 0 if j, = 1, we must show that
Z(Xp, X;Ky) =0. Let £ =[(j; —i+1)/2]. At this point, in [Mul], an extra
integration over 1+ A§ was introduced. Since 1 + Af is not a subset of K,
we introduce an integration over the subgroup Bf of K},. Z(X,, X; K};) is a
nonzero multiple of

/ [ o (br (X, Ad(kb) ™ (X)) dbdk.

It suffices to show that the inner integral vanishes for all £ € K. Given
b € B¢, write b = d(h)h, h € 1 + Af. Since d(h) is a scalar matrix,
Ad(kb)~Y(X) = Ad(kh)™'(X) for all k € Kj. Therefore, the inner inte-
gral equals

/ o (tr (Xo Ad(kh) ™ (X)) dh,
1+.A§

which, as shown in the proofs of Lemmas 3.7-9 of [Mu1l], equals zero.
Assume r > 2. When ¢ > 1, this case is argued as in the proof of
Lemma 3.7 of [Mul], except that the integrals over Kg and 1 + A7, for
appropriately chosen m, are replaced by integrals over K and B]*. Since
b € B has the form d(h)h for some h € 1 + AT and d(h) is scalar, the
integral over B equals the integral over 1+ A7, and thus has the vanishing
properties required to prove the lemma. The proof for 7 < 0 is obtained the
same way as Lemmas 3.8 and 3.9 of [Mul]. (]

The next lemma will be used in the case j, = 1.

Lemma 2.4. Let 1 be a nontrivial character of a finite field F. Let G =
GLn(F) and G' = SL,(F), m > 2. Suppose that | - | denotes cardinality,
and tr is the trace map on the Lie algebra of G. Let S, resp. X, be a regular
elliptic, resp. arbitrary, element of the Lie algebra of G. Then

G171 D p(tr(S Ade ™} (X)) = |G'|71 D_ 4 (tr (SAdz7H (X))

zeG zeG’
Proof. 1t suffices to show that

> % (b (S Ad(zy) (X))

ze@
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is independent of the choice of y € G. E = F[5] is a degree m extension of F.
Since the norm map Ng,r from E* to F* is onto, there exists a € EX such
that Ng/p(a) = dety. Identifying a with an element of G which commutes
with S,

% (br (S Ad(zy) (X)) = ¢ (tr (Ad o(S) Ad (ay~'z7") (X))
= (tr (S Ad(ey™'z7")(X))) -

Because det(ay™') = Ng/r(e)dety™ =1, ay™' can be absorbed into the
sum over z € G'. O

Suppose 7y = Indﬁo Kg. Let py be the character of ky. Define fp: G —» C

by
po(z) if z € Ky,
fo(z) =
0 otherwise.

The representation
7 = Indg, (ko| K;)

is a supercuspidal representation of G’ and is a component of the restricton
of my to G' ([MS]). The restriction of fp to G' is a matrix coefficient of 7.
Define

_ (treyr Xo) I
n

n)

(25) Sg = Xg

where I, is the n X n identity matrix.

Proposition 2.6. Let X € N. Then

£ [ falk™ exp XK) dk = Z(S0, X; Kp)

Proof. Because tr X = 0, and X, and S, differ by a scalar matrix,
I(Xo, X; K) = I(Sp, X; KE)-

Thus in the statement of the proposition Sy can be replaced by Xj.

The proof of this proposition is a slight modification of the proof of Propo-
sition 3.10 of [Mul].

The representation k, is a tensor product (x odet) @ kK, ® -+ - ® K,. s,
1 < s < r, denotes the character of k.

As observed in [Mul], if X € N, then

expX € Ky <> expX € Ky
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Thus
fo)™ [ folk" exp Xk) dk = po(1)™" / po (k™" exp Xk) dk.
K;E‘ H?\"
Case 1: As shown in [Mul], if X € N, then
po(expX) [ %o(tr(XeX)), if expX € Ko,
ps(1) 0 if expXeKy— Eo.
Therefore
o7 [ fob exp Xk)dk = [ 4poltr(Xo AdKTH(X))) db
Ky Hy

The last equality is Lemma 2.3(1).
Case 2: j, = 1. The representations ks, 1 < s.<r—1 and «, are considered
separately.

A certain cuspidal representation of the finite general linear group

(calA(T’_l) " /1+ AL,

is used to produce the representation K,. Lemma 2.4 shows that the Green
functions attached to elliptic Cartan subgroups are the same the finite gen-
eral linear and special linear groups. As shown in Proposition 3.10 of [Mul],
if £ € N is such that exp X € K, then

prlexp X) _ / Up (tr(c, Adh~(X))) dh.
pr(l) (calAg_l)*
By Lemma 2.4, we may replace (calAg_l) " with (calAE_l) "NG" in the above

integral.
For 1 <i <r —1, define

Ko=(1+A7,) 1+ A;") and L, =(1+A%,) - (1+ A7)
Set Lo = {1}. As was shown in [Mul], if X € A is such that exp X € K,,

Jow s r(tr(c, Adh™(X))) dh

_Ps(e_’?;))fl _ if expX € Ky(1+A™) Lo UKy — K,Ly),
Ps
0 otherwise.
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Arguing as in the proof of Lemma 2.3,
/ g (b (cs AdRTN(X))) dh = / e (br (e, AdBTN(X))) db.
H+AL, B,

Let X e N. f X € A} and expX € Ky — K, then expX € K,L, —
K,(1+ A}*)L,_; for some s, so p,(expX) = 0. Thus ps(exp X) = 0. All
remaining X € N such that exp X € K, satisfy one of the following:

(i) X € Aj andexp X € K,

(ii) X € A — A} and exp X € K,.

For these X,

o) ff%’-%;{‘—)=(/((Ao oy e e A7) )

r—1

H/ . Wr (tr (c; AdbTI(X))) db

s=1 Ba—

= [ o (tr (X, AdR™'(X))) dh.

Ly

To obtain the second equality argue as in [Mul] (following equation (3.14)).
Here

r—1
Ly = ((A_)*nG") [] Bi,
s=1
is a subgroup of K},. It follows from (2.7) that for X € N’ N Ay,

fo(1)7? /K/ fo(k™  exp Xk) dk = pp(1)™! /H' po (k™" exp Xk) dk

- / o (tr (Xo Ad(kR)1(X))) dhdk
t Jra

The last equality holds because HY is invariant under translation by Ly. A
similar equality holds for X € N N (A3 — A}), except with Hy replaced by
HY. If X € N and X ¢ AY, then fy(k~'exp Xk) = 0 for all k € Kj, and
HY' = 0. Apply Lemma 2.3(2) and (3) to complete the proof. U
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3. The character of 7 as a Fourier transform.

Let @ be an admissible character of the multiplicative group of a degree n
extension E of F. Define

Gg=E*G'={z € G| detx € Ng/r(E™)}.
As in §2, T denotes the supercuspidal representation of G’ defined by
7 = Ind, (ko | K;).
Then ([MS])
(3.1) |G = @ 7,

9€G/Gg

where 7 (z) = T(¢g'zg), ¢ € G', g € G. Two of the main results, Theo-
rem 3.2 and Corollary 3.5, are proved for the representations 79, g € G/Gg.
As a consequence (Corollary 3.6), (1.1) and (1.2) hold for the irreducible
components of s | G’ whenever there are exactly |[F*/Ng/p(E*)| such com-
ponents.

Given f in C(g'), the space of locally constant, compactly supported,
complex-valued functions on g’, let f be the function in C°(g') defined by

ﬂm=L%mmnmnﬂi

The Haar measure dY on g’ is assumed to be self-dual with respect to ™.
Given X in g', O(X) denotes the Ad G'-orbit of X. If puo(x) is the distribu-
tion given by integration over the orbit O(X), the Fourier transform fip(x) is
given by fio(x)(f) = ,Uo(X)(f), fin C*(g'). Let g;,, be the regular subset of
g'. Recall ((HC2]) that fip(x) can be realized as a locally integrable function
(also called fip(x)) on g’ which is locally constant on g, . If a representative
of an orbit O is not specified, the notation pp and fip will be used for the
corresponding orbital integral and its Fourier transform.

Fix a Haar measure dz on G'. If X is a regular elliptic element in g', the
measure on O(X) is normalized to equal dz. Formal degrees of supercuspidal
representations are computed relative to dz. Haar measure on any compact
group is normalized so that the total volume of the group equals one.

Let g’* be an open Ad G-invariant subset of g’ containing zero such that
exp : g'* = G' is defined and exp(Adz(X)) = zexp Xz~! for z in G and X
in g'*. Fix an integer £ > 1 such that g(p’) C A%'. Choose an integer i large
enough that, if V; = g(p*)’,

(i) V=Cg'™,
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(ii) ¢ > max {£, n(f+ e(F/Q,))/(p—n+1) }.
Theorem 3.2. Let Sy be as in (2.5). Then, if g € G and X € Adg(V,) N

Bregr
Oz (exp X) = d(T) fio(aa g(56))(X)-

Proof. By definition of 7,
Oms(z) = Ox(97'zg) z€G,
and d(7?) = d(7). Also
Bopagyy(X) = Bor)(Adg™'(X)), X €g,,, YeEg.

Therefore, it is sufficient to prove the theorem for g = 1.

Let K, be any open compact subgroup of G'. As shown in Lemma 4.1(1) of
[Mul], Harish-Chandra’s integral formula for fio(s,)(X) ([HC2], Lemma 19)
can be rewritten as:

(3.3)
Bosa (X) =//K [/K o (tr (Sy Ad(kzh) (X)) dh} Ik di
= [ [ T(SuAdke) (X)iKp) dhds, X €,

Since fy |Kj is a matrix coefficient of 7, Harish-Chandra’s integral formula
for O3, ([HC1, p. 60]), can be rewritten as ((Mul], Lemma 4.1(2)):

fa(l / , /K [ /  fo ((kzh) ™ (exp X)kzh) dh] dk dz,
Xeg™nNg.,-

(34) Ox(expX) =

Fix z € G' and k € K}. Then there exist Y € A and Z € V, such that
Ad(kz)"'(X) =Y + Z. This follows from (see Lemma 4.2 of [Mul])

Adz7'(g(p")) CN +(v"), z€G,t>1
As shown in the proof of Theorem 4.3 of [Mul],
fo(h texp(Y + Z)h) = fo(h™ ' (exp Y)h), h € Kg.

It follows from tr Aj C pr and wr Ay = A", e = e(E/F), that tr A7 C
p[("‘"l)/e]“. As a consequence of wrXy € A;"*" and Z € A}, we have
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XoZ € wr' Ay, trpyr Xo = tr X, € p[F_MeHl and tr Z € p[1~(111~1)/e]+1. There-
fore,
Po(tr(SnZ)) = o (tr(XpZ))tho(tre r XptrZ) ™" = 1.

Thus
Yo(tr(Ss (Y + Z))) = vo(tr(SeY)).

We can now apply Proposition 2.6 to the inner integrals in (3.3) and (3.4),
completing the proof. O

Let (N)' be the set of nilpotent AdG'-orbits in g'. Suppose 7 is an
admissible representation of G’ of finite length. If O € (N)', co(w) denotes
the coefficient of fip in Harish-Chandra’s local character expansion of 7 at
the identity ([HC2]):

Or(exp X) = Z co(m)io(X),
Oe(NY

for X € g,,, sufficiently close to zero. For O € (N)', let I'o : g, — R be
the Shalika germ corresponding to O ([HC2]).

Corollary 3.5. Let g € G. Then

co(®) =d(T)To(Adg(Ss)), O € N)"

Proof. As follows from Lemma 21 of [HCZ2], there exists an open neighbour-
hood V of zero in g’ such that:

Boadg(se)(X) = Z T'o(Ad g(Ss))bo(X), X eVng,.,,.
Oe(N)

The corollary is now a consequence of Theorem 3.2 and the linear indepen-
dence of the functions fip, O € (N)' ([HC2]). O

An irreducible supercuspidal representation of G' is a component of my | G',
for some admissible character @ of E*, where E is a degree n extension
of F (IMS]). Each mp decomposes with multiplicity one upon restriction
to G’ ([T]). An L-packet of supercuspidal representations of G’ consists of
the irreducible components of the restriction of an irreducible supercuspidal
representation of G to G’ ([GK]).

Suppose 6 is such that j, = 1. Since ¢, is a character of E* which is
trivial on 1 + pg, ¢, may be viewed as a character ¢, of EX, where E is the
residue class field of E. Let N; be the kernel of the norm map from E* to
EX ;. As in [MS], we define ¢, | N; to be regular if the number of distinct
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conjugates of ¢, | N; under the action of the Galois group of E over E,_; is
equal to [E: E,_,].

Corollary 3.6. Let 7 be an irreducible supercuspidal representation of G'.
Choose 0 such that  is a component of wg | G'. Suppose one of the following
conditions holds:

@) j- > 1,

(i) j» = 1 and ¢, | N; is regular.
Then there ezists a regular elliptic X, € g’ such that

(1) ©r0exp = d(m)fio(x,) on some open neighbourhood of zero intersected
with g'* N g,

(2) co(m) = d(m)To(Xx), O € (N,

(3) The L-packet of w is {n9|g € G/Gg}. (1) and (2) hold for w9 with
X = Adg(X,).

Proof. As proved in [MS], conditions (i) and (ii) are necessary and sufficient
for each of the representations 7, g € G/GEg, to be irreducible. In that case
(see (3.1)), the representations 7 are the members of the L-packet of 7, and
(1), (2), and (3) are restatements of Theorem 3.2 and Corollary 3.5. O

Remark 3.7. Moy and Sally showed that if n and g—1 are relatively prime,
then, whenever j, = 1, @, | N, is regular ([MS],Cor. 3.15). Therefore, (1)
and (2) hold for all irreducible supercuspidal representations of G' when n
and q — 1 are relatively prime.

Two elements X; and X, of g’ are stably conjugate if there exists g in G
such that X, = Ad g(X,). The stable orbit O,(X) of X in g’ consists of the
set of stable conjugates of X. Given 6, since E = F|[Sy] and S € g,.,,

Ost(Sﬂ) = UgEG/GEO(Adg(S9))

To the L-packet of supercuspidal representations of G’ consisting of the com-
ponents of w5 | G', we associate the stable orbit O, (S,). Of course, the choice
of 0 is not unique. However, as discussed in §4 of [MS], any two choices for
theta must satisfy certain conjugacy conditions. Corollary 3.6 deals with
those L-packets which contain |F*/Ng,;r(E*)| = |G/GE| representations.
In this case, the representations in the L-packet correspond to the Ad G'-
orbits in the associated stable orbit via Corollary 3.6(3). If an L-packet
contains more than |F*/Ng,/r(E*)| representations, we do not have such
a correspondence. The elements if the L-packet are the irreducible compo-
nents of the representations 7, g in G/Gg. This case is discussed in more
detail in the next section.



230 FIONA MURNAGHAN

4. The case 7 reducible.

Let m be an irreducible supercuspidal representation of G’. Choose an ad-
missible character 6 such that « is a component of 7y |G’'. Let E be the
associated degree n extension of F. Define

G(r)={geG|n? ~7}.
Here, ~ denotes equivalence of representations. Set 7 = 7y | G'. By [T
= P =
9€G/G()
In this section, we assume that the L-packet of m contains more than
|F*/Ng/r(E*)| representations. That is,
(4.1) |G/G(x)| > |F*[Ng/r(EX)|.

This is equivalent to the representation 7 being reducible ([MS]). The pur-
pose of this section is to prove that ©, o exp is not a multiple of the Fourier
transform of a semisimple orbit on any neighbourhood of zero (Theorem 4.5).
In order for (4.1) to hold, it is necessary that n and ¢ — 1 have a nontrivial
common divisor (see Remark 3.7).

Let X € g’. We assume that the measures on the orbits in the stable orbit
O4:(X) of X are normalized so that

pox)(f?) = paag-rox)(f),  fFECI(H), g€G.
Here f5(X) = f(Adg~'(X)), X € g
Lemma 4.2. Co(ﬂg) = cAdg—1~O(7r); Oe (N)', gEq.

Proof. The above compatibility conditions on the measureson O and Adg - O,
O € (N)', imply that

Baago(X) =fo(Adg™ (X)), X €g,

The lemma follows from a comparision of the local character expansions of
7w and 79 and the linear independence of the functions fip, @ € (N)', on

neighbourhoods of zero intersected with g;., - O

Given O € (N)', let O, be the stable orbit containing 0. O, is an
Ad G-orbit in g'. Define a measure pep,, on Oy by:

/J’Osez Z IJ’E‘

6C05t
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Lemma 4.2 holds for any smooth admissible representation of G' of finite
length. Therefore, since ()¢ ~ mp for all g in G, the coefficients co (7))
coincide for all orbits O contained in a stable orbit O,;. Let co,, (7}) denote
their common value. Then

07"8 (exp X) = Z coat (Wé) ﬁoat (X)7
oat CN

for X in g,,, sufficiently close to zero.

Lemma 4.3. Choose g € G such that  is a component of @. Let O € (N)'.
(1) If Adg- O = O for all g € G, then

co(m) = d(m) ['o(Ad g(Sp))-
(2) If Adg- O = O for all g € G, that is, O = Oy, then

co(m) = d(m)d(my) " co,, (mp)-

Proof. (1) Since m;, decomposes with multiplicity one, 7 also decomposes
with multiplicity one. Thus ([T])

79 = EB *.

z€EGE /G(w)

Applying Corollary 3.5 and Lemma 4.2,

co(™) = d(®)To(Adg(Se)) = D co(n®)
2€Gp/G()

= Z Cad z~l.o(7T) = ‘GE/G(F)I Co(ﬂ')
z€GE/G(r)
= d(m) " d(7?) co(m),
to obtain (1).

(2) Assume O = Q. By linear independence of the Fourier transforms
of nilpotent orbits, and Lemma, 4.2,

co,.(mp) = Z co(n?) = Z Cadg-1-0(T)
9EG/G(r) 9€G/G(w)

|G/G(m)| co(m) = d(mp)d(m) " co(r).

O

Remark. As (4.1) was not used in the proof, Lemma 4.3 holds for all
irreducible supercuspidal representations of G'. In general there exist O €
(NV)' which are stable under Ad G, but not under Ad G.
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Let (MV;,)" denote the set of regular (maximal dimension) nilpotent Ad G'-
orbits in g'. Define w(w) to be the number of orbits O in (N,.,)' such that
co(m) is nonzero.

Lemma 4.4. The L-packet of © contains w(m) |F*/(F*)"| representa-
tions.

Proof. Up to a positive constant depending on the normalization of the mea-
sure on O € (N,¢)', co(m) equals the multiplicity with which some Whit-
taker model occurs in 7 ([Ro]). As shown in Remark 2.9 of [T}, for each O €
(Nreg)', there exists exactly one g € G/G(m) such that co(n?) # 0. The de-
terminant map factors to an isomorphism between G/F*G" and F* /(F*)"
and (MN,y)' is the disjoint union of the orbits Adg- O, g € G/F*G' ([Re]).
Thus
S w(r) = [F*/(F),
9eG/G(m)

By Lemma 4.2, w(n?) = w(n). Therefore
w(m)|G/G(m)| = [F™/(F*)"].
U

Theorem 4.5. Assume that (4.1) holds. d(7)~'©, o0exp |V Ng,,, is not
of the form fiox)|V N g,.,, for any X € g.., and open neighbourhood V' of
zero in g'.

Proof. Suppose that ©, o exp and Afip(x) coincide on V N g  for some
constant A and neighbourhood V', where X € g;,,. Then

co(m) = AT (X), O e (N)".

(To see this, argue as in the proof of Corollary 3.5.) Since cioy(m) =
d(m)T1(X) # 0, ((HC2]), A = d(w). Also, X is elliptic, because I'(o}
vanishes off the regular elliptic set ([HC2]). Let L be the degree n extension
of F such that L* is isomorphic to the stabilizer of X in G.

By Theorem 6.3(i) of [Re], if O € (N,.,)" and g € G,

F@(X), if detg € NL/F(LX),

Tagoo(X) =
rago(X) { 0 otherwise.

Suppose det g € Ny ,r(L*). By Lemma 4.2,

caag-o(m) = d(m°) Taag0(X) =d(m)Fo(X) = co(r), O € (N)"
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Since there exists an O € (MN,e)' such that co(n) # 0 ([T)), w(n) =
|Np/p(L*)/(F*)"|. Thus, given the relation between w(7), |G/G(r)| and
|F* /(F*)™| described in the proof of Lemma 4.4,

|G/G(m)| = |F* [Np/p(L*)].
For g such that detg € Ny,r(L*), the relation

co(m?) = cagg-1.0(m) = d(7?) Tagg-1.0(X) = d(7) Fo(X)
= Co(ﬂ'), 0 € (Nrgg)l,

together with the fact that there is exactly one g € G/G(w) such that co(79)
is nonzero ([T)]), implies that g € G(7). We can now conclude that

G(r)={g€G | detge Ny r(L*)}

Choose O € (MN,.,)' such that co(n) # 0. Fix £ € G such that 7 is a
component of 7. Then
T = EB .

9€GE/G(m)
co(T®) = Z co(n?) = Z d(m?) Tagg-1.0(X) = d(m)T'o(X),
9€GE/G(m) 9€GE/G(m)

the final equality resulting from I'sg4-1.0(X) = 0 whenever g € Gg — G(r)
(because det g ¢ Np,r(L*)). By Corollary 3.5,

co(T) = d(T")'o(Ad 2(Ss)).
Since d(7°) = |Gg/G(m)| d(n),
Fo(X) = |NE/F(EX)/NL/F(LX)I Fo(Ad.’B(Sg))

Repka ([Re]) computed I'p on the regular set in G'. Lifting the Shalika
germs from the group to the Lie algebra, and substituting the values of
I'o(X) and I'p(Ad z(Sy)), we obtain

(4.6)  |No/p(0))/(OF)"] (g — 1)g™ @) [n(X)| 7/
= |Ng/r(E*)/Nr/r(L*)||Ng,r(O5)/(0F)"]
(g"eE — 1)g™<®) |n(Ad z(S))| .

Here 7 : g,¢, — C is the discriminant function ([HC2]), and e, and eg are
the ramification degrees of L and E over F, respectively.
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Np/p(L*) is a subset of Ng/r(E*) (G(7) C Gg). Since Ny p(L*) con-
tains an element of valuation n/e; and the valuation of any element of
Ng/p(E*) is a multiple of n/eg, e, is a divisor of eg. As a consequence,

Ng/r(Og) = (OF)*® C (Of)* = Np/r(Of) C Ng/r(Of),
so (Of)®* = (Og)¢=. Thus
|Ng/p(EX)/Np/p(L7)| = ex/er.
Therefore (4.6) becomes
er (g™ — 1)g™ @) |n(X)|'/? = eg (¢*/°% — 1)g™ =) [n(Ad z(Sy))|"/*.

g™/ ?e1)|n(X)|'/? and ¢q™/?°=|n(Ad z(Ss))|'/? are powers of q. Because ¢ is a
power of p, p > n, and e; and eg divide n, e; and eg are relatively prime
to g. Therefore (4.6) implies

er (gVer — 1) = eg (¢™/°® —1).
That is,
es/er = (qn/ea —_ 1)~1(qn/ez. -1)=1+ qn/ea 4o+ qn(eE—eL)/(eEeL) > n,
which is impossible. O

Remarks. Suppose n = £ is prime (not necessarily dividing ¢ — 1). Let «
be any irreducible supercuspidal representation of G'.

(1) IfO € (N) —(MNeg)', then Ad g - O = O for every g € G ([Re]). Thus,
by Lemma, 4.3,

co(m) = d(m) To(Sp) = d(m)d(m) " co,, (p)-

Lemma 4.3(2) was first observed by Assem([As]) in the case where 7 has £
irreducible components.

(2) The elements of an L-packet containing £ representations correspond
to G/GE (Corollary 3.6), and, if = belongs to the L-packet,

CO(W) = d(ﬂ) FO(Adg(SO)) ’ Oe (Nreg)l’

where g is a representative of the corresponding coset. If £ divides g—1, there
exist L-packets containing £? representations ([MS]). As noted in ([As]), the
elements of such an L-packet correspond to the orbits in (NV,)’, each w being
identified with the unique O € (N,,)’ such that co(7) is nonzero (up to a
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constant depending on normalization of pe this nonzero coefficient equals
one ([Ro])).

(3) Modulo determination of the values of Shalika germs, (1) and (2) com-
bine to give the values of the coefficients co(7), O € (N, for supercuspidal
representations of SL,(F).

(4) The functions fip, O € (N)', were computed by Assem ([As]). Thus,
whenever the coefficients co(m) are known, substitution of Assem’s formulas
into the local character expansion of 7 yields a formula for the character ©,
on a neighbourhood of the identity element.
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