THE CORESTRICTION OF VALUED DIVISION ALGEBRAS OVER HENSELIAN FIELDS I

Yoon Sung Hwang

Abstract

When L / F is an unramified extension of Henselian fields, we analyze the underlying division algebra ${ }^{c} D$ of the corestriction $\operatorname{cor}_{L / F}(D)$ of a tame division algebra D over L with respect to the unique valuations on ${ }^{c} D$ and D extending the valuations on F and L. We show that the value group of ${ }^{c} D$ lies in the value group of D and for the center of residue division algebra, $Z(\bar{c} \bar{D}) \subseteq \mathcal{N}(Z(\bar{D}) / \bar{F})^{1 / k}$, where $\mathcal{N}(Z(\bar{D}) / \bar{F})$ is the normal closure of $Z(\bar{D})$ over \bar{F} and k is an integer depending on which roots of unity lie in F and L.

Introduction.

For any finite separable extension L / F of fields and any central simple algebra A over L, the corestriction of A is a central simple F-algebra obtained as the fixed point algebra under a Galois group action (cf. [Ri]). This induces the map from the Brauer group $\mathrm{Br}(L)$ to $\mathrm{Br}(F)$ corresponding to the homological corestriction. Though this algebraic corestriction is an important tool in the theory of division algebras, it is actually very hard to work with. To gain a better insight into the behavior of the corestriction, we analyze here the corestriction for valued division algebras over Henselian valued fields, for which there is a well-developed structure theory. We will here concentrate on the case when L is inertial (unramified) over F. In a subsequent paper [H2], we will consider the more general case when L is tame over F, i.e. $\operatorname{char}(\bar{F}) \nmid[L: F]$, where \bar{F} is the residue field of the valuation on F.

For any ring R we write $Z(R)$ and R^{*} for the center of R and the group of units of R, respectively. We will consider only central simple algebras A finite-dimensional over a field F. By Wedderburn's theorem, $A \cong M_{n}(D)$, a matrix ring over a division algebra D, which is called the underlying division algebra of A.

A valued field (F, v) is called Henselian if v extends uniquely to each field algebraic over F. For a nice account for several other characterizations of Henselian valuations, see Ribenboim's paper [Rb]. Recall (e.g. from [W1]) that if D is a central division algebra over a Henselian valued field (F, v), there exists one and only one valuation on D extending v on F.

Let $(L, v) \supseteq(F, v)$ be a finite separable inertial extension of Henselian fields. This means that $[\bar{L}: \bar{F}]=[L: F]$ and \bar{L} is separable over \bar{F}. Let D be a central division algebra over L. We denote by ${ }^{c} D$ the underlying division algebra of the corestriction $\operatorname{cor}_{L / F}(D)$ of D. If D is inertially split over L, i.e., split by the maximal unramified extension of L, we have good information obtained homologically using [JW2, Sec. 5]. Also, we can analyze a tame and totally ramified division algebra since it is isomorphic to a tensor product of symbol algebras (cf. Prop. 1.6). Furthermore, since a tame division algebra over L decomposes in the Brauer group to $S \otimes_{L} T$ with S inertially split and T tame and totally ramified (cf. Prop. 1.7), we obtain information about a tame division algebra by combining the results about S and T. Our basic results are summarized in the following table. Here Γ_{D} is the value group of the valuation on D and \bar{D} is the residue division ring of the valuation ring of D. Also $\mathcal{N}(Z(\bar{D}) / \bar{F})$ denotes the normal closure of $Z(\bar{D})$ over $\bar{F}, N_{\bar{L} / \bar{F}}$ denotes the norm map from \bar{L} to \bar{F}, and θ_{D} is the map of (1.5) below, so $\operatorname{ker}\left(\theta_{D}\right)$ is a subgroup of Γ_{D} / Γ_{L}.

D	$\Gamma_{c_{D}}$	$Z\left(\overline{{ }^{\bar{D}}}\right)$
inertially split (Th. 2.4)	$\Gamma_{c_{D}} \subseteq \Gamma_{D}$	$Z\left(\overline{\left.{ }^{\bar{D}}\right)} \subseteq \subseteq \mathcal{N}(Z(\bar{D}) / \bar{F})\right.$
tame, totally ramified (Prop. 3.2, Th. 3.9)	$\Gamma_{c_{D}} \subseteq \Gamma_{D}$	$\begin{gathered} Z\left(\overline{{ }^{\bar{C}} D}\right) \subseteq \bar{F}\left(N_{\bar{L} / \bar{F}}(\bar{L})^{1 / t}\right) \\ t=\exp \left(\Gamma_{D} / \Gamma_{L}\right) \\ \left(\text { if } \mu_{t} \subseteq F\right) \\ \hline \end{gathered}$
$\begin{gathered} \text { tame } \\ \text { (Th. } 4.5,4.6) \end{gathered}$	$\Gamma_{c_{D}} \subseteq \Gamma_{D}$	$\begin{gathered} Z\left(\overline{{ }^{\bar{c}} \bar{D}}\right) \subseteq \mathcal{N}(Z(\bar{D}) / \bar{F})^{1 / k} \\ k \mid \exp \left(\operatorname{ker} \theta_{D}\right) \end{gathered}$

The integer k in the table above depends not only on Γ_{D} / Γ_{L} and $[L: F]$ but also on which roots of unity lie in F. One of the interesting results of the investigation is to see how heavily the corestriction depends on the roots of unity in F and L.

Here is an overview of the paper: After giving some preliminary results in Section 1, we will analyze the corestriction of inertially split division algebras in Section 2. In Section 3, we will consider the corestriction of tame and totally ramified division algebras T over L (i.e. $\left|\Gamma_{T}: \Gamma_{L}\right|=[T: L]$ and $\operatorname{char}(\bar{L}) \nmid[T: L])$ when $\mu_{t} \subseteq F$ with $t=\exp \left(\Gamma_{T} / \Gamma_{L}\right)$ (i.e. F has a t-th primitive root of unity). Finally, in Section 4 we will analyze the corestriction of tame division algebras. (In the Appendix, we will give an explicit formula of the homological corestriction.)

This paper constitutes part of the author's doctoral dissertation. The author thanks his thesis advisor Adrian Wadsworth for his great and kind advice.

1. Preliminaries.

Let $F \subseteq K$ be fields with K algebraic over F. We write $\operatorname{Gal}(K / F)$ for the profinite group of all F-automorphisms of K. If H is any subset of $\operatorname{Gal}(K / F)$, we write $\mathcal{F}(H)$ for the fixed field of H. We say K is normal over F if K is the splitting field of some family of polynomials over $F ; K$ is Galois over F if K is both normal and separable (if and only if $F=\mathcal{F}(\operatorname{Gal}(K / F))$). We write $\mathcal{N}(K / F)$ for the normal closure of K over F. Also, if $[K: F]<\infty$, $N_{K / F}$ denotes the norm map from K to F. We write $F_{\text {sep }}$ for the separable closure of F.

For a central simple F-algebra $A,[A]$ denotes the class of A in the Brauer group $\operatorname{Br}(F)$ of F. If B is another central simple F-algebra with $[B]=[A]$, we write $A \sim B$. For any field $K \supseteq F$, let $\operatorname{Br}(K / F)$ denote the relative Brauer group of K / F, which is the kernel of the canonical "restriction" homomorphism $\mathrm{Br}(F) \rightarrow \mathrm{Br}(K)$ given by $[A] \rightarrow\left[A \otimes_{F} K\right]$.

Here is our notation for certain central simple F-algebras: $(K / F, G, f)$ is the crossed product algebra determined by a 2-cocycle $f: G \times G \rightarrow K^{*}$, where K is a finite dimensional Galois extension field of F with Galois group G;
$(K / F, \sigma, a)_{n}$ is the cyclic F-algebra generated over K by a single element x with defining relations $x c x^{-1}=\sigma(c)$ for all $c \in K$ and $x^{n}=a \in F^{*}$, where K is a Galois extension of F with cyclic Galois group generated by σ and $n=[K: F]$;
$(a, b ; F)_{n}$ is the symbol algebra generated over F by i and j with defining relations: $i^{n}=a, j^{n}=b, i j=\omega j i$, where $\omega \in F^{*}$ is a primitive n-th root of unity and $a, b \in F^{*}$. Since a symbol algebra depends on a choice of a primitive n-th root of unity ω, we will sometimes write $(a, b, \omega ; F)_{n}$ for $(a, b ; F)_{n}$. In writing symbol algebra $(a, b ; F)_{n}$ there is an implicit choice made of which primitive n-th root of unity ω to use. When this has been done, then for an integer n^{\prime} dividing $n,(a, b ; F)_{n^{\prime}}$ denotes the symbol algebra built using the primitive n^{\prime}-th root of unity $\omega^{n / n^{\prime}}$.

Recall that the cyclic algebra $(K / F, \sigma, a)_{n}$ corresponds to the cohomology class of the cup product

$$
\begin{equation*}
\left[\delta\left(\inf _{G_{0}}^{G}(f)\right)\right] \cup(a) \tag{1.1}
\end{equation*}
$$

in the continuous cohomology group $H_{c}^{2}\left(G, F_{s e p}^{*}\right)$,
where $G=\operatorname{Gal}\left(F_{\text {sep }} / F\right)$ is the absolute Galois group of $F, \quad G_{0}=\operatorname{Gal}(K / F)$
$=\langle\sigma\rangle, f \in H^{1}\left(G_{0}, \mathbb{Q} / \mathbb{Z}\right)=\operatorname{Hom}\left(G_{0}, \mathbb{Q} / \mathbb{Z}\right)$ is defined by $f(\sigma)=\frac{1}{n}+\mathbb{Z}$, $\delta: H^{1}(G, \mathbb{Q} / \mathbb{Z}) \rightarrow H^{2}(G, \mathbb{Q} / \mathbb{Z})$ is the connecting homomorphism, and $a \in$ $F^{*}=H^{0}\left(G, F_{\text {sep }}^{*}\right)$.

In fact, the corestriction (or transfer) homomorphism arose from the cohomology of groups, and the algebraic corestriction is compatible with the homological corestriction via the crossed product construction. Let G be a group and let A be a left G module. Let H be a subgroup of G of finite index n. For $m \geq 0$ an integer, $H^{m}(G, A)$ (resp. $H^{m}(H, A)$) denotes the m-th cohomology group of G (resp. H) with coefficients in A.

For each m, there is the corestriction (or transfer) $\operatorname{cor}_{H}^{G}: H^{m}(H, A) \rightarrow$ $H^{m}(G, A)$. (See [B, III, Sec. 9].) We give an explicit formula describing this homological corestriction for $m \geq 0$. Let $\mathcal{R}=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ be a set of representatives of the left cosets of H in G. For $m=0, H^{0}(H, A)=A^{H}:=$ $\{a \in A \mid \sigma a=a$ for all $\sigma \in H\}$ and $H^{0}(G, A)=A^{G}$, and $\operatorname{cor}_{H}^{G}: H^{0}(H, A) \rightarrow$ $H^{0}(G, A)$ is given by $a \mapsto \sum_{i=1}^{n} \rho_{i} a$ for $a \in H^{0}(H, A)=A^{H}$. Given $\rho_{i} \in \mathcal{R}$ and $\sigma \in G$, there are uniquely determined elements $\rho_{\sigma_{*}(i)} \in \mathcal{R}$ and $\delta\left(\sigma, \rho_{i}\right) \in H$ such that

$$
\begin{equation*}
\sigma \rho_{i}=\rho_{\sigma_{*}(i)} \delta\left(\sigma, \rho_{i}\right) \tag{1.2}
\end{equation*}
$$

where the $\operatorname{map} \sigma \mapsto \sigma_{*}$ is a homomorphism from G to the symmetric group S_{n}. Now take any $f \in Z^{m}(H, A)$, the group of m cocycles of H with values in A; define a function $\operatorname{cor}_{H}^{G}(f) \in Z^{m}(G, A)$ as follows: for $\sigma_{1}, \ldots, \sigma_{m} \in G$

$$
\begin{align*}
& \operatorname{cor}_{H}^{G}(f)\left(\sigma_{1}, \ldots, \sigma_{m}\right) \tag{1.3}\\
& =\sum_{i=1}^{n} \rho_{\left(\sigma_{1} \cdots \sigma_{m}\right) *(i)}\left[f \left(\delta\left(\sigma_{1}, \rho_{\left(\sigma_{2} \cdots \sigma_{m}\right) *(i)}\right)\right.\right. \\
& \left.\left.\quad \ldots, \delta\left(\sigma_{j}, \rho_{\left(\sigma_{j+1} \cdots \sigma_{m}\right) *(i)}\right), \ldots, \delta\left(\sigma_{m}, \rho_{i}\right)\right)\right]
\end{align*}
$$

(We will deduce this formula from [Ta, p. 259] in the Appendix.) For $m \geq 1$, the homological corestriction $\operatorname{cor}_{H}^{G}: H^{m}(H, A) \rightarrow H^{m}(G, A)$ is induced by the map $f \mapsto \operatorname{cor}_{H}^{G}(f)$ given in (1.3) above. Recall that the (homological) corestriction map commutes with inflation and connecting homomorphisms (cf. [We, Prop 2.4.5 and Prop. 2.4.7]).

Recall the following case of the projection formula which will be used often in this paper (cf. [$\mathbf{T i}, \mathrm{Th} .3 .1]$).

Proposition 1.4 (Projection Formula). Let L / F be finite dimensional and separable. Assume F contains a primitive n-th root of unity. If $\alpha \in L^{*}$ and $b \in F^{*}$, then $\operatorname{cor}_{L / F}\left((\alpha, b ; L)_{n}\right) \sim\left(N_{L / F}(\alpha), b ; F\right)_{n}$ in $\operatorname{Br}(F)$.

The valued division algebra (D, v) is a division ring D with valuation v, that is, a function $v: D^{*} \rightarrow \Gamma$ (a totally ordered abelian group written
additively) such that for all a, b in $D^{*}, v(a b)=v(a)+v(b)$ and $v(a+$ b) $\geq \min (v(a), v(b))$ if $a \neq-b$. Associated to v, we have its value group $\Gamma_{D}=v\left(D^{*}\right)$; the valuation ring $V_{D}=\left\{d \in D^{*} \mid v(d) \geq 0\right\} \cup\{0\}$; the unique maximal left ideal M_{D} of $V_{D}, M_{D}=\left\{d \in D^{*} \mid v(d)>0\right\} \cup\{0\}$; the group of v-units of $D^{*}, U_{D}=V_{D}-M_{D}=V_{D}^{*}$; the residue division ring $\bar{D}=V_{D} / M_{D}$. If F is the center $Z(D)$ of D, there is a well-defined epimorphism

$$
\begin{equation*}
\theta_{D}: \Gamma_{D} / \Gamma_{F} \rightarrow \operatorname{Gal}(Z(\bar{D}) / \bar{F}) \tag{1.5}
\end{equation*}
$$

induced by $\alpha: D^{*} \rightarrow \operatorname{Gal}(Z(\bar{D}) / \bar{F})$ which is given by $d \mapsto \overline{c_{d}}$ where $\overline{c_{d}}$ is the map induced by conjugation by d (cf. [JW2, 1.6]).

Let (F, v) be a Henselian valued field. Let D be a central division F algebra (with a unique valuation extending v on F). We say D is tame and totally ramified over F if char $(\bar{F}) \nmid[D: F]$ and $\left|\Gamma_{D}: \Gamma_{F}\right|=[D: F]$. D is said to be inertially split over F if D is split by $F_{n r}$ where $F_{n r}$ is the maximal unramified extension in some algebraic closure of F. Also, D is said to be tame if $\operatorname{char}(\bar{F})=0$ or $\operatorname{char}(\bar{F})=q \neq 0$ and the q-primary component of D is split by $F_{n r}$. (See [JW2, Lemma 5.1] and [JW2, Lemma 6.1] for other characterizations of inertially split and tame division algebras.) Recall also that D is said to be inertial over F if $[\bar{D}: \bar{F}]=[D: F]$ and $Z(\bar{D})=\bar{F}$. Let

$$
\begin{aligned}
\mathcal{D}(F) & =\{D \mid D \text { is a central division F-algebra with }[D: F]<\infty\} \\
\mathcal{D}_{t t r} & =\{D \in \mathcal{D}(F) \mid D \text { is tame and totally ramified over } F\} \\
\mathcal{D}_{i}(F) & =\{D \in \mathcal{D}(F) \mid D \text { is inertial over } F\} \\
\mathcal{D}_{i s}(F) & =\{D \in \mathcal{D}(F) \mid D \text { is inertially split over } F\} \text { and } \\
\mathcal{D}_{t}(F) & =\{D \in \mathcal{D}(F) \mid D \text { is tame over } F\}
\end{aligned}
$$

It is clear that $\mathcal{D}_{i}(F) \subseteq \mathcal{D}_{i s}(F) \subseteq \mathcal{D}_{t}(F)$ and $\mathcal{D}_{t t r}(F) \subseteq \mathcal{D}_{t}(F)$.
Given (D, v) a valued central division F-algebra, one has the "fundamental inequality" $[D: F] \geq[\bar{D}: \bar{F}] \cdot\left|\Gamma_{D}: \Gamma_{F}\right|$ (cf. $[\mathbf{S}$, p. 21]). We say D is defectless over F if equality holds.

Throughout this paper, we will assume that L / F is a finite separable inertial (unramified) extension of Henselian valued fields. We now recall some facts about inertial extensions as summarized in [JW2, Sec. 1]. Let $F_{n r}$ denote the maximal unramified extension of F in some algebraic closure $F_{a l g}$ of F. Recall that $\Gamma_{F_{n r}}=\Gamma_{F}, \quad \overline{F_{n r}}$ is the separable closure $\bar{F}_{\text {sep }}$ of \bar{F}, and $F_{n r}$ is Galois over F. Also, for any field E with $F \subseteq E \subseteq F_{a l g}$ and $[E: F]<\infty, E$ is inertial over F if and only if $E \subseteq F_{n r}$. Further, the map $L \mapsto \bar{L}$ gives a $1-1$ correspondence between fields L with $F \subseteq L \subseteq F_{n r}$ and fields \widetilde{L} with $\bar{F} \subseteq \widetilde{L} \subseteq \overline{F_{n r}}$. Given a field \widetilde{L} with $\bar{F} \subseteq \widetilde{L} \subseteq \bar{F}_{s e p}$ and
$[\widetilde{L}: \bar{F}]<\infty$, the corresponding L (inertial over F with $\bar{L}=\widetilde{L}$) will be called the inertial lift of \tilde{L} over F.

We now finish this section by recalling two propositions which will be very useful for this paper. See [D2, Th. 1] and [JW2, Lemma 6.2, Th. 6.3] for proofs of Props. 1.6 and 1.7, respectively.

Proposition 1.6 (Draxl's decomposition theorem). If $D \in \mathcal{D}(F)$ is tame and totally ramified over a Henselian field F, D is isomorphic to a tensor product of symbol algebras.

Proposition 1.7. If $D \in \mathcal{D}(F)$ is tame over a Henselian field F, then there exist $S \in \mathcal{D}_{i s}(F)$ and $T \in \mathcal{D}_{\text {ttr }}(F)$ such that $D \sim S \otimes_{F} T$ in $\operatorname{Br}(F)$. (Such S and T are not unique.) Furthermore, if $D \sim S \otimes_{F} T$ is such a decomposition,

$$
\begin{aligned}
Z(\bar{D}) & =\mathcal{F}\left(\theta_{S}\left(\left(\Gamma_{S} \cap \Gamma_{T}\right) / \Gamma_{F}\right)\right) \subseteq Z(\bar{S}) \\
\Gamma_{D} & =\Gamma_{S}+\Gamma_{T} \text { and } \operatorname{ker}\left(\theta_{D}\right)=\Gamma_{T} / \Gamma_{F}
\end{aligned}
$$

2. Inertially split division algebras.

If $D \in \mathcal{D}_{i s(F)}$, we have good information about D homologically, which is obtained in [JW2, Sec. 5]. We will give a brief summary on this. (See [JW2, Th. 5.6]).

We fix a Henselian valued field (F, v). Let Δ be the divisible hull of Γ_{F}, so $\Delta \simeq \Gamma_{F} \otimes_{\mathbb{Z}} \mathbb{Q}$. Let $G=\operatorname{Gal}\left(F_{n r} / F\right) \cong \operatorname{Gal}\left(\bar{F}_{\text {sep }} / \bar{F}\right)$, a profinite group. Let $U=U_{F_{n r}}$ the group of v-units of $F_{n r}$. Since $\Gamma_{F_{n r}}=\Gamma_{F}$ (on which G acts trivially), we have a short exact sequence of discrete G-modules:

$$
1 \rightarrow U \rightarrow F_{n r}^{*} \xrightarrow{v} \Gamma_{F} \rightarrow 0 .
$$

From this short exact sequence, we have the following exact sequence, which will be the basic focus of our attention:

$$
\begin{equation*}
0 \rightarrow H_{c}^{2}(G, U) \rightarrow H_{c}^{2}\left(G, F_{n r}^{*}\right) \xrightarrow{\gamma} \operatorname{Hom}_{c}\left(G, \Delta / \Gamma_{F}\right) \tag{2.1}
\end{equation*}
$$

where H_{c}^{2} and Hom_{c} denote the second (continuous) cohomology group and the continuous homomorphism group, respectively.

In this exact sequence, $H_{c}^{2}\left(G, F_{n r}^{*}\right) \cong B r\left(F_{n r} / F\right)$ and $H_{c}^{2}(G, U) \cong \operatorname{IBr}(F)$, where $\operatorname{IBr}(F)=\left\{[D] \in \operatorname{Br}(F) \mid D \in D_{i}(F)\right.$ i.e., D is inertial over $\left.F\right\}$. (See [JW2, Th. 5.6].) Also, $\operatorname{IBr}(F)$ is isomorphic to $\operatorname{Br}(\bar{F})$ via the isomorphism β given by $[D] \rightarrow[\bar{D}]$. (See [JW2, Th. 2.8].) Further, if $\alpha: H_{c}^{2}(G, U) \rightarrow$ $H_{c}^{2}\left(G,{\overline{F_{n r}}}^{*}\right)=H_{c}^{2}\left(G, \bar{F}_{\text {sep }}^{*}\right)$ is the map induced by a map $U \rightarrow \bar{F}_{\text {sep }}^{*}$ given
by $u \mapsto \bar{u}$, the following diagram commutes: (See [JW2, Examples 2.4, Prop. 2.5].)

where the vertical isomorphisms are given by crossed product construction. We now identify $H_{c}^{2}\left(G, F_{n r}^{*}\right)$ with $\operatorname{Br}\left(F_{n r} / F\right)$. For any $D \in \mathcal{D}_{i s}(F)$, as $[D] \in \operatorname{Br}\left(F_{n r} / F\right)$, set $h_{D}=\gamma[D] \in \operatorname{Hom}_{c}\left(G, \Delta / \Gamma_{F}\right)$, where γ is the map in (2.1); further, let $\widetilde{h}_{D}: G / \operatorname{ker}\left(h_{D}\right) \rightarrow \operatorname{im}\left(h_{D}\right)$ be the isomorphism induced by h_{D}. Then

where $\theta_{D}: \Gamma_{D} / \Gamma_{F} \rightarrow \operatorname{Gal}(Z(\bar{D}) / \bar{F})$ is the map of (1.5) induced by conjugation. See [JW2, Th. 5.6] for the proof.

Now let $(L, v) \supseteq(F, v)$ be a finite (separable) inertial extension of Henselian fields. Since L is inertial over $F, L \subseteq F_{n r}$ so $L_{n r}=F_{n r}$. Let

$$
\begin{aligned}
& G=\operatorname{Gal}\left(F_{n r} / F\right) \cong \operatorname{Gal}\left(\bar{F}_{\text {sep }} / \bar{F}\right) \quad \text { and } \\
& H=\operatorname{Gal}\left(F_{n r} / L\right)=\operatorname{Gal}\left(L_{n r} / L\right) \cong \operatorname{Gal}\left(\bar{L}_{\text {sep }} / \bar{L}\right)
\end{aligned}
$$

Then H is a subgroup of finite index $|G: H|=[L: F]=[\bar{L}: \bar{F}]$.
Note that, for $i \geq 0$ the corestriction map $\operatorname{cor}_{H}^{G}$ from $H^{i}\left(H, F_{n r}^{*}\right)$ to $H^{i}\left(G, F_{n r}^{*}\right)$ sends the continuous cohomology group $H_{c}^{i}\left(H, F_{n r}^{*}\right)$ into the continuous cohomology group $H_{c}^{i}\left(G, F_{n r}^{*}\right)$.

Theorem 2.4. Let $(L, v) \supseteq(F, v)$ be a finite inertial extension of Henselian fields. Suppose $D \in \mathcal{D}_{i s}(L)$. Then,
(a) ${ }^{c} D \in \mathcal{D}_{i s}(F)$
(b) $\Gamma_{c_{D}} \subseteq \Gamma_{D}$
(c) $Z(\bar{c} \bar{D}) \subseteq \mathcal{N}(Z(\bar{D}) / \bar{F})$, the normal closure of $Z(\bar{D})$ over \bar{F}.
(d) If $D \in \mathcal{D}_{i}(L)$, then ${ }^{c} D \in \mathcal{D}_{i}(F)$ and ${ }^{\bar{c} D} \sim \operatorname{cor}_{\bar{L} / \bar{F}}(\bar{D})$ in $\operatorname{Br}(\bar{F})$.
(So, if $D \in \mathcal{D}_{t}(L)$, then ${ }^{c} D \in \mathcal{D}_{t}(F)$.)
Proof. (a) Let $N=\mathcal{N}(L / F)$. As $F_{n r}$ is normal over $F, N \subseteq F_{n r}$, so $N_{n r}=$ $F_{n r}$. Let \mathcal{R} be a set of representatives of the left cosets of $\operatorname{Gal}(N / L)$ in $\operatorname{Gal}(N / F)$. Then, by [D2, p. 52, Cor. 1], ${ }^{c} D \otimes_{F} N \sim \operatorname{cor}_{L / F}(D) \otimes_{F} N \cong$ $\underset{\rho \in \mathcal{R}}{ }{ }^{\rho}\left(D \otimes_{L} N\right) \in \operatorname{Br}\left(N_{n r} / N\right)$ since $D \in \mathcal{D}_{i s}(L)$, where ${ }^{\rho}\left(D \otimes_{L} N\right)$ means $D \otimes_{L} N$ made into an N-algebra by $(d \otimes n) \cdot n^{\prime}=d \otimes n \rho^{-1}\left(n^{\prime}\right)$. So, ${ }^{c} D$ is split by $N_{n r}=F_{n r}$, hence ${ }^{c} D \in \mathcal{D}_{i s}(F)$.

From this and definition of tame division algebras, it is clear that if $D \in$ $\mathcal{D}_{t}(L)$, then ${ }^{c} D \in \mathcal{D}_{t}(F)$.
(b) Let $H=\operatorname{Gal}\left(L_{n r} / L\right)=\operatorname{Gal}\left(F_{n r} / L\right), G=\operatorname{Gal}\left(F_{n r} / F\right), \Delta=$ the divisible hull of $\Gamma_{F}=\Gamma_{L}$, and $U=U_{F_{n r}}=U_{L_{n r}}$. Then since the corestriction map is functorial and commutes with the connecting homomorphism, the following diagram is commutative,

where the row exact sequences are those of (2.1). As done in (2.3), we identify $H_{c}^{2}\left(H, F_{n r}^{*}\right)$ and $H_{c}^{2}\left(G, F_{n r}^{*}\right)$ with $\operatorname{Br}\left(L_{n r} / L\right)$ and $\operatorname{Br}\left(F_{n r} / F\right)$, respectively. As $D \in \mathcal{D}_{i s}(L)$ and by (a), ${ }^{c} D \in \mathcal{D}_{i s}(F)$. Set $h_{D}=\gamma[D] \in$ $\operatorname{Hom}_{c}\left(H, \Delta / \Gamma_{F}\right)$ and $h_{c_{D}}=\gamma\left[{ }^{c} D\right] \in \operatorname{Hom}_{c}\left(G, \Delta / \Gamma_{F}\right)$. Since the diagram above is commutative, $h_{c_{D}}=\gamma\left(\operatorname{cor}_{H}^{G}([D])\right)=\operatorname{cor}_{H}^{G}(\gamma([D]))=\operatorname{cor}_{H}^{G}\left(h_{D}\right)$. Now, by (2.3), $\Gamma_{D} / \Gamma_{F}=\operatorname{im}\left(h_{D}\right)$ and $\Gamma_{c_{D}} / \Gamma_{F}=\operatorname{im}\left(h_{c_{D}}\right)$. But im $\left(h_{c_{D}}\right)=$ $\operatorname{im}\left(\operatorname{cor}_{H}^{G}\left(h_{D}\right)\right) \subseteq \operatorname{im}\left(h_{D}\right)$ by (1.3), as G acts trivially on Δ / Γ_{F}. Hence $\Gamma_{c_{D}} \subseteq \Gamma_{D}$.
(c) As $[D] \in \operatorname{Br}\left(L_{n r} / L\right)=\operatorname{Br}\left(F_{n r} / L\right)=H_{c}^{2}\left(H, F_{n r}^{*}\right)$, and $\left[{ }^{c} D\right] \in$ $\operatorname{Br}\left(F_{n r} / F\right)=H_{c}^{2}\left(G, F_{n r}^{*}\right)$ by $(2.3), \mathcal{F}\left(\operatorname{ker}\left(h_{D}\right)\right)$ and $\mathcal{F}\left(\operatorname{ker}\left(h_{c_{D}}\right)\right)$ are the inertial lift of $Z(\bar{D})$ and $Z\left(\overline{{ }^{c}} \bar{D}\right)$ respectively. Let $Z=\mathcal{F}\left(\operatorname{ker}\left(h_{D}\right)\right)$ and $M=\mathcal{N}(Z / F)$. Since $Z \subseteq F_{n r}$ and $F_{n r}$ is normal over $F, M \subseteq F_{n r}$. Let $I=\operatorname{Gal}\left(F_{n r} / M\right)$ and $K=\operatorname{Gal}\left(F_{n r} / Z\right)=\operatorname{ker}\left(h_{D}\right)$. Then I is normal in $G=\operatorname{Gal}\left(F_{n r} / F\right)$, and $I \subseteq K \subseteq H=\operatorname{Gal}\left(F_{n r} / L\right) \subseteq G$. Note that $\operatorname{res}_{K}^{H}\left(h_{D}\right)=0$ as $K=\operatorname{ker}\left(h_{D}\right)$. Let E be a set of representatives of the double cosets $I g H$. Then, by [B, p. 82, III, Prop. 3.5], $\operatorname{res}_{I}^{G}\left(\operatorname{cor}_{H}^{G}\left(h_{D}\right)\right)=$ $\sum_{g \in E} \operatorname{cor}_{I \cap g H^{-1}}^{I} \circ \operatorname{res}_{I \cap g H_{g^{-1}}}^{H}\left(h_{D}\right)$, where the "restriction map" on the right is with respect to the conjugation map ($i \mapsto g^{-1} i g, a \mapsto g^{-1} a$), regarded as a $\operatorname{map}\left(I \cap g H^{-1}, F_{n r}^{*}\right) \xrightarrow{\cong}\left(g^{-1} I g \cap H, F_{n r}^{*}\right) \rightarrow\left(H, F_{n r}^{*}\right)$. But as I is normal in $G, g^{-1} I z g \cap H=I \cap H \subseteq K$, so $\operatorname{res}_{I \cap g H_{g-1}}^{H}\left(h_{D}\right)=0$ for each $g \in E$. Hence, $\operatorname{res}_{I}^{G}\left(\operatorname{cor}_{H}^{G}\left(h_{D}\right)\right)=0$, so $\operatorname{ker}\left(h_{c_{D}}\right) \supseteq I$. Therefore $\left.Z\left(\overline{{ }^{c} D}\right)=\overline{\mathcal{F}\left(\operatorname{ker}\left(h_{c_{D}}\right)\right.}\right) \subseteq \overline{\mathcal{F}(I)}=\bar{M}=\mathcal{N}(Z(\bar{D}) / \bar{F})$.
(d) Since $D \in \mathcal{D}_{i}(L),[D] \in I \operatorname{Br}(L)=H_{c}^{2}(H, U)=\operatorname{ker}(\gamma)$, where γ is the map of (2.1). Since the diagram above in the proof of (b) is commutative, $\left[{ }^{c} D\right]=\operatorname{cor}_{H}^{G}([D]) \in \operatorname{ker}(\gamma)=H_{c}^{2}(G, U)=I \operatorname{Br}(F)$. Hence ${ }^{c} D \in$ $\mathcal{D}_{i}(F)$. As the corestriction map is functorial, the map α in (2.2) is compatible with corestriction. So, since the algebraic corestriction corresponds to the homological corestriction, and by (2.2), we have $\overline{{ }^{c} D} \sim \operatorname{cor}_{\bar{L} / \bar{F}}(\bar{D})$ in $\operatorname{Br}(\bar{F})$.

3. Tame and totally ramified division algebras.

We begin this section by giving a proposition we will use a number of times.
Proposition 3.1. Let (F, v) be a Henselian valued field. For $1 \leq i \leq k$, let $n_{i} \geq 1$ be integers with (char $\left.\bar{F}, n_{i}\right)=1$, and $a_{i}, b_{i} \in F^{*}$. Assume F has primitive n_{i}-th roots of unity ω_{i}. Let $n=n_{1} \cdots n_{k}$ and $\ell=\ell \mathrm{cm}\left(n_{1}, \ldots, n_{k}\right)$. Then
 and totally ramified division algebra over F if and only if

$$
\left\{\left(\ell / n_{i}\right) v\left(a_{i}\right),\left(\ell / n_{i}\right) v\left(b_{i}\right) \mid 1 \leq i \leq k\right\}
$$

generates a subgroup of order n^{2} in $\Gamma_{F} / \ell \Gamma_{F}$; when this occurs,

$$
\Gamma_{T}=\left\langle\left(1 / n_{i}\right) v\left(a_{i}\right),\left(1 / n_{i}\right) v\left(b_{i}\right)\right\rangle_{i=1}^{k}+\Gamma_{F}
$$

(2) If $D \in \mathcal{D}_{\text {ttr }}(F)$ and D^{m} is the underlying division algebra of $D^{\otimes m}$, the m-fold tensor product of D with itself over F, then $D^{m} \in \mathcal{D}_{\text {ttr }}(F)$, and

$$
\Gamma_{D^{m}} / \Gamma_{F}=m\left(\Gamma_{D} / \Gamma_{F}\right), \quad \text { so } \quad \Gamma_{D^{m}}=m \Gamma_{D}+\Gamma_{F}
$$

Proof. (1) Suppose $\left\{\left(\ell / n_{i}\right) v\left(a_{i}\right)\left(\ell / n_{i}\right) v\left(b_{i}\right)\right\}_{i=1}^{k}$ generates a subgroup of or$\operatorname{der} n^{2}$ in $\Gamma_{F} / \ell \Gamma_{F}$. Then by [JW1, Cor. 2.6], $T \in \mathcal{D}_{t t r}(F)$ and $\Gamma_{T}=$
 Let α_{i}, β_{i} be the generators of T over F with relations: $\alpha_{i}^{n_{i}}=a_{i}, \beta_{i .}^{n_{i}}=b_{i}$, and $\alpha_{i} \beta_{i}=\omega_{i} \beta_{i} \alpha_{i}$. Then $\mathcal{A}=\left\langle\alpha_{i} F^{*}, \beta_{i} F^{*}\right\rangle_{i=1}^{k}$ is an armature of T, that is, an abelian subgroup of T^{*} / F^{*} of order $\operatorname{dim}_{F} T$ such that $\left\{\alpha_{i}, \beta_{i}\right\}_{i=1}^{k}$ generates T as an F-algebra. Since $T \in \mathcal{D}_{\text {ttr }}(F)$, by [TW, Prop. 3.3], the $\operatorname{map} \bar{v}: \mathcal{A} \rightarrow \Gamma_{T} / \Gamma_{F}$ induced by v (i.e., the map $x F^{*} \mapsto v(x)+$ $\left.\Gamma_{F}\right)$ is an isomorphism. So, $\Gamma_{T} / \Gamma_{F}=\left\langle\frac{1}{n_{i}} v\left(a_{i}\right)+\Gamma_{F}, \frac{1}{n_{i}} v\left(b_{i}\right)+\Gamma_{F}\right\rangle_{i=1}^{k}$ and
$\left\{\left(\ell / n_{i}\right) v\left(a_{i}\right),\left(\ell / n_{i}\right) v\left(b_{i}\right)\right\}_{i=1}^{k}$ generates a subgroup of order n^{2} in $\Gamma_{F} / \ell \Gamma_{F}$ (namely $\ell \Gamma_{T} / \ell \Gamma_{F}$), as $\left|\Gamma_{T} / \Gamma_{F}\right|=[T: F]=n^{2}$. Also,

$$
\Gamma_{T}=\left\langle\frac{1}{n_{i}} v\left(a_{i}\right), \frac{1}{n_{i}} v\left(b_{i}\right)\right\rangle_{i=1}^{k}+\Gamma_{F}
$$

as $\Gamma_{T} / \Gamma_{F}=\left\langle\frac{1}{n_{i}} v\left(a_{i}\right)+\Gamma_{F}, \frac{1}{n_{i}} v\left(b_{i}\right)+\Gamma_{F}\right\rangle_{i=1}^{k}$.
(2) As $D \in \mathcal{D}_{t t r}(F)$ and F is Henselian, by Prop. $1.6 D=\stackrel{\otimes}{i=1} \underset{\otimes_{i}}{ }\left(a_{i}, b_{i} ; F\right)_{n_{i}}$ for some $a_{i}, b_{i} \in F^{*}$.

Let $d_{i}=\operatorname{gcd}\left(n_{i}, m\right)$ and $n_{i}=d_{i} n_{i}^{\prime}, m=d_{i} m_{i}^{\prime}$ so that $\operatorname{gcd}\left(n_{i}^{\prime}, m_{i}^{\prime}\right)=1$. Since $D=\stackrel{{ }_{i=1}^{*}}{\otimes}\left(a_{i}, b_{i} ; F\right)_{n_{i}} \in \mathcal{D}_{t t r}(F)$, by (1),

$$
\left\{\left(\ell / n_{i}\right) v\left(a_{i}\right),\left(\ell / n_{i}\right) v\left(b_{i}\right) \mid 1 \leq i \leq k\right\}
$$

generates a subgroup of order n^{2} in $\Gamma_{F} / \ell \Gamma_{F}$. Also, since the map

$$
\Gamma_{F} / \ell \Gamma_{F} \rightarrow \frac{1}{\ell} \Gamma_{F} / \Gamma_{F}
$$

induced by multiplication of $\frac{1}{\ell}$, is an isomorphism,

$$
\left\{\frac{1}{n_{i}} v\left(a_{i}\right), \left.\frac{1}{n_{i}} v\left(b_{i}\right) \right\rvert\, 1 \leq i \leq k\right\}
$$

generates a subgroup $\left\langle\frac{1}{n_{i}} v\left(a_{i}\right)+\Gamma_{F}, \left.\frac{1}{n_{i}} v\left(b_{i}\right)+\Gamma_{F} \right\rvert\, 1 \leq i \leq k\right\rangle$ of order n^{2} in $\frac{1}{\ell} \Gamma_{F} / \Gamma_{F}$. We want to show $\stackrel{{ }_{i=1}^{\otimes}}{\otimes}\left(a_{i}, b_{i}^{m_{i}^{\prime}} ; F\right)_{n_{i}^{\prime}} \in \mathcal{D}_{t t r}(F)$. Since $n_{i}^{\prime} \mid n_{i}, 1 \leq i \leq$ $k,\left\langle\frac{1}{n_{i}^{\prime}} v\left(a_{i}\right)+\Gamma_{F}, \frac{1}{n_{i}^{\prime}} v\left(b_{i}\right)+\Gamma_{F}\right\rangle_{i=1}^{k}$ is a subgroup of

$$
\left\langle\frac{1}{n_{i}} v\left(a_{i}\right)+\Gamma_{F}, \frac{1}{n_{i}} v\left(b_{i}\right)+\Gamma_{F}\right\rangle_{i=1}^{k} .
$$

Since $\left|\left\langle\frac{1}{n_{i}} v\left(a_{i}\right)+\Gamma_{F}, \left.\frac{1}{n_{i}} v\left(b_{i}\right)+\Gamma_{F} \right\rvert\, 1 \leq i \leq k\right\rangle\right|=n^{2}$,

$$
\left|\left\langle\frac{1}{n_{i}^{\prime}} v\left(a_{i}\right)+\Gamma_{F}, \frac{1}{n_{i}^{\prime}} v\left(b_{i}\right)+\Gamma\right\rangle_{i=1}^{k}\right|=n^{\prime 2}
$$

where $n^{\prime}=n_{1}^{\prime} \cdots n_{k}^{\prime}$. Let $\ell^{\prime}=\ell \mathrm{cm}\left(n_{1}^{\prime}, \ldots, n_{k}^{\prime}\right)$. Then

$$
\left\langle\frac{1}{n_{i}^{\prime}} v\left(a_{i}\right)+\Gamma_{F}, \frac{1}{n_{i}^{\prime}} v\left(b_{i}\right)+\Gamma_{F}\right\rangle_{i=1}^{k} \subseteq \frac{1}{\ell^{\prime}} \Gamma_{F} / \Gamma_{F}
$$

Since the map $\frac{1}{\ell^{\prime}} \Gamma_{F} / \Gamma_{F} \rightarrow \Gamma_{F} / \ell^{\prime} \Gamma_{F}$ induced by multiplication of ℓ^{\prime}, is an isomorphism, $\left|\left\langle\frac{\ell^{\prime}}{n_{i}^{v}} v\left(a_{i}\right)+\ell^{\prime} \Gamma_{F}, \frac{\ell^{\prime}}{n_{i}^{\prime}} v\left(b_{i}\right)+\ell^{\prime} \Gamma_{F}\right\rangle_{i=1}^{k}\right|=n^{\prime 2}$. Also, since $\operatorname{gcd}\left(n_{i}^{\prime}, m_{i}^{\prime}\right)=1$,

$$
\left\{\left(\ell^{\prime} / n_{i}^{\prime}\right) v\left(a_{i}\right),\left(\ell^{\prime} / n_{i}^{\prime}\right) v\left(b_{i}^{m_{i}^{\prime}}\right) \mid 1 \leq i \leq k\right\}
$$

and

$$
\left\{\left(\ell^{\prime} / n_{i}^{\prime}\right) v\left(a_{i}\right),\left(\ell^{\prime} / n_{i}^{\prime}\right) v\left(b_{i}\right) \mid 1 \leq i \leq k\right\}
$$

generate the same subgroup of $\Gamma_{F} / \ell^{\prime} \Gamma_{F}$. So,

$$
\left\{\left(\ell^{\prime} / n_{i}^{\prime}\right) v\left(a_{i}\right),\left(\ell^{\prime} / n_{i}^{\prime}\right) v\left(b_{i}^{m_{i}^{\prime}}\right) \mid 1 \leq i \leq k\right\}
$$

generates a subgroup of order $n^{\prime 2}$ in $\Gamma_{F} / \ell^{\prime} \Gamma_{F}$. By applying (1) we have $\underset{i=1}{\stackrel{\otimes}{\otimes}}\left(a_{i}, b_{i}^{m_{i}^{\prime}} ; F\right)_{n_{i}^{\prime}} \in \mathcal{D}_{\text {ttr }}(F)$ with value group

$$
\left\langle\left(1 / n_{i}^{\prime}\right) v\left(a_{i}\right),\left(1 / n_{i}^{\prime}\right) v\left(b_{i}^{m_{i}^{\prime}}\right)\right\rangle_{i=1}^{k}+\Gamma_{F}
$$

Since $D^{m} \sim \underset{i=1}{k}\left(a_{i}, b_{i}^{m} ; F\right)_{n_{i}} \sim \stackrel{\underset{i}{*}}{\stackrel{k}{\otimes}}\left(a_{i}, b_{i}^{m_{i}^{\prime}} ; F\right)_{n_{i}^{\prime}}$, we have

$$
D^{m} \cong{\underset{i=1}{k}\left(a_{i}, b_{i}^{m_{i}^{\prime}} ; F\right)_{n_{i}^{\prime}} \in \mathcal{D}_{t t r}(F) .} .
$$

Because $\operatorname{gcd}\left(n_{i}^{\prime}, m_{i}^{\prime}\right)=1$, we have

$$
\begin{aligned}
& \left\langle\left(1 / n_{i}^{\prime}\right) v\left(b_{i}\right)+\Gamma_{F}\right\rangle=\left\langle\left(m_{i}^{\prime} / n_{i}^{\prime}\right) v\left(b_{i}\right)+\Gamma_{F}\right\rangle= \\
& =\left\langle\left(m / n_{i}\right) v\left(b_{i}\right)+\Gamma_{F}\right\rangle \text {, so } \Gamma_{D^{m}} / \Gamma_{F}= \\
& =\left\langle\left(1 / n_{i}^{\prime}\right) v\left(a_{i}\right)+\Gamma_{F},\left(1 / n_{i}^{\prime}\right) v\left(b_{i}^{m_{i}^{\prime}}\right)+\Gamma_{F}\right\rangle_{i=1}^{k}= \\
& =\left\langle\left(1 / n_{i}^{\prime}\right) v\left(a_{i}\right)+\Gamma_{F},\left(1 / n_{i}^{\prime}\right) v\left(b_{i}\right)+\Gamma_{F}\right)_{i=1}^{k}=m\left(\Gamma_{D} / \Gamma_{F}\right) .
\end{aligned}
$$

(In fact, the equality $\Gamma_{D^{m}}=m \Gamma_{D}+\Gamma_{F}$ is a special case of [JW2, Prop. 6.9].)

Recall that we assume that $(L, v) \supseteq(F, v)$ is a finite (separable) inertial extension of Henselian fields. Given any positive integer n and a field F, we write $\mu_{n} \subseteq F$ to say that F contains n distinct n-th roots of unity.

Proposition 3.2. Let $T \in \mathcal{D}_{\text {ttr }}(L)$ and $n=\exp \left(\Gamma_{T} / \Gamma_{L}\right)$. If $\mu_{n} \subseteq F$, then $\Gamma_{c_{T}} \subseteq \Gamma_{T}$.

Remark. Without the assumption $\mu_{n} \subseteq F$, it is still true $\Gamma_{c_{T}} \subseteq \Gamma_{T}$. We will prove this in Theorem 4.6 below.

Proof. First we will show that if $T=(\alpha, \beta ; L)_{n}$ is a symbol algebra in $\mathcal{D}_{t t r}(L)$, then $[L: F] \Gamma_{T}+\Gamma_{F} \subseteq \Gamma_{c_{T}} \subseteq \Gamma_{T}$: Since $\Gamma_{L}=\Gamma_{F}, \alpha=a u$ and $\beta=b w$ for some $a, b \in F^{*}$ and v-units $u, w \in L^{*}$. Let $T_{0}=(a, b ; L)_{n}, A=(a, b ; F)_{n}$, and let S be the underlying division algebra of $(a, w ; L)_{n} \otimes_{L}(u, \beta ; L)_{n}$. Since $T=(\alpha, \beta ; L)_{n} \in \mathcal{D}_{t t r}(L)$, by Prop. $3.1\{v(\alpha), v(\beta)\}$ generates a subgroup of order n^{2} in $\Gamma_{L} / n \Gamma_{L}$, and $\Gamma_{T}=\langle(1 / n) v(\alpha),(1 / n) v(\beta)\rangle+\Gamma_{L}$. As $v(a)=v(\alpha)$, $v(b)=v(\beta)$ and $\Gamma_{F}=\Gamma_{L}$, by Prop. 3.1, again, $T_{0} \in \mathcal{D}_{t t r}(L)$ and $A \in \mathcal{D}_{t t r}(F)$ with

$$
\Gamma_{A}=\langle(1 / n) v(a),(1 / n) v(b)\rangle+\Gamma_{F}=\Gamma_{T_{0}}=\Gamma_{T}
$$

Clearly $S \in \mathcal{D}_{i s}(L)$. So $T \sim T_{0} \otimes_{L} S$ in $\operatorname{Br}(L)$ with $T_{0} \in \mathcal{D}_{t t r}(L), S \in$ $\mathcal{D}_{i s}(L)$. Then by Prop. 1.7, $\Gamma_{T}=\Gamma_{T_{0}}+\Gamma_{S}$. Note that as $T_{0}=A \otimes_{F}$ $L,{ }^{c} T_{0} \sim A^{\otimes[L: F]}$ in $\operatorname{Br}(F)$, so ${ }^{c} T_{0}$ is the underlying division algebra of $A^{\otimes[L: F]}$, where $A \in \mathcal{D}_{t t r}(F)$. Then by Prop. 3.1 (2), ${ }^{c} T_{0} \in \mathcal{D}_{t t r}(F)$, and $\Gamma_{c T_{0}}=[L: F] \Gamma_{A}+\Gamma_{F}=[L: F] \Gamma_{T}+\Gamma_{F}$ as $\Gamma_{T}=\Gamma_{A}$. Also, by Theorem $2.4,{ }^{c} S \in \mathcal{D}_{i s}(F)$ and $\Gamma_{c S} \subseteq \Gamma_{S}$. Since ${ }^{c} T \sim{ }^{c} T_{0} \otimes_{F}{ }^{c} S$ in $\operatorname{Br}(F)$ where ${ }^{c} T_{0} \in \mathcal{D}_{t t r}(F)$ and ${ }^{c} S \in \mathcal{D}_{i s}(F)$, by Prop. 1.7, $\Gamma_{c_{T}}=\Gamma_{{ }^{c} T_{0}}+\Gamma_{{ }^{c} S}$. Hence $[L: F] \Gamma_{T}+\Gamma_{F} \subseteq \Gamma_{c_{T_{0}}}+\Gamma_{c_{S}}=\Gamma_{c_{T}} \subseteq \Gamma_{T_{0}}+\Gamma_{S}=\Gamma_{T}$, as desired.
 symbol algebra in $\mathcal{D}_{t t r}(L)$ of index n_{i} with $n_{i} \mid n$. Also, $\Gamma_{T}=\sum_{i=1}^{k} \Gamma_{T_{i}}$.
 $\Gamma_{c_{T}} \subseteq \sum_{i=1}^{k} \Gamma_{{ }_{c} T_{i}}$ by [JW2, Cor. 6.7]. Since $\Gamma_{{ }_{c} T_{i}} \subseteq \Gamma_{T_{i}}$ by what we have shown above, $\Gamma_{c_{T}} \subseteq \sum_{i=1}^{k} \Gamma_{c_{T_{i}}} \subseteq \sum_{i=1}^{k} \Gamma_{T_{i}}=\Gamma_{T}$.

We will shortly give Proposition 3.4, which will be very useful for this paper. The following purely group-theoretic lemma will be used in the proof of that proposition.

Lemma 3.3. Let $A_{1} \times A_{2}$ be the direct product of cyclic groups A_{i} of order $r_{i}, i=1,2$. Let π_{i} be the projection map of $A_{1} \times A_{2}$ onto A_{i} for $i=1,2$. Let H be a subgroup of $A_{1} \times A_{2}$ such that $\pi_{i}(H)=A_{i}, i=1,2$. Let $B_{1}=H \cap A_{2}$ and $B_{2}=H \cap A_{1}$. If t is any positive integer and T is the t-torsion subgroup of H, then $T=C_{1} \cap C_{2}$, where $C_{i}, i=1,2$, are the unique subgroups of H such that $C_{i} \supseteq B_{i}$ and $\left|C_{i}: B_{i}\right|=\operatorname{gcd}\left(r_{i}, t\right)$.

Proof. Since $\left|C_{i}: B_{i}\right|$ divides $t, t\left(C_{i} / B_{i}\right)=(0)$, so $t C_{i} \subseteq B_{i}$. Hence $t\left(C_{1} \cap\right.$ $\left.C_{2}\right) \subseteq B_{1} \cap B_{2}=(0)$, and $C_{1} \cap C_{2} \subseteq T$. Take $h \in H$ with $t h=0$ (i.e., $h \in T$). Then $0=\pi_{i}(t h)=t \pi_{i}(h)$. But $r_{i} \pi_{i}(h)=0$ as $\left|A_{i}\right|=r_{i}$. So $\operatorname{gcd}\left(r_{i}, t\right) \cdot \pi_{i}(h)=0$. Let D_{i} be the subgroup of A_{i} of order $\operatorname{gcd}\left(r_{i}, t\right)$. Then
$\pi_{i}(h) \in D_{i}$ as A_{i} is cyclic. Since $B_{i}=\operatorname{ker}\left(\left.\pi_{i}\right|_{H}\right)$ and $\left.\pi_{i}\right|_{H}$ is onto, the map $\tilde{\pi}_{i}: H / B_{i} \rightarrow A_{i}$ induced by $\left.\pi_{i}\right|_{H}$ is an isomorphism. Since $\tilde{\pi}_{i}\left(h+B_{i}\right)=$ $\pi_{i}(h) \in D_{i}, h+B_{i} \in \tilde{\pi}_{i}^{-1}\left(D_{i}\right)$. But $\tilde{\pi}_{i}^{-1}\left(D_{i}\right)=C_{i} / B_{i}$, for $i=1,2$. Hence $h \in C_{1} \cap C_{2}$. Therefore, $T \subseteq C_{1} \cap C_{2}$.

Proposition 3.4. Let (F, v) be a Henselian field. Let r_{1}, r_{2} and t be positive integers, and let $M_{i} / F, i=1,2$, be cyclic inertial extensions of degree r_{i} with $\operatorname{Gal}\left(M_{i} / F\right)=\left\langle\tau_{i}\right\rangle$. Let $x_{1}, x_{2} \in F^{*}$ such that, for any prime p dividing r_{1}, r_{2} or $t, v\left(x_{1}\right)+p \Gamma_{F}, v\left(x_{2}\right)+p \Gamma_{F}$ are \mathbb{Z}_{p}-linearly independent in $\Gamma_{F} / p \Gamma_{F}$. Suppose D is the underlying division algebra of $\left(M_{1} / F, \tau_{1}, x_{1}\right)_{r_{1}} \otimes_{F}\left(M_{2} / F, \tau_{2}, x_{2}\right)_{r_{2}} \otimes_{F}\left(x_{1}, x_{2} ; F\right)_{t}$. Then $Z(\bar{D})=\widetilde{E}_{1} \widetilde{E}_{2}$, where $\overline{M_{i}} \supseteq \widetilde{E}_{i} \supseteq \bar{F}$, and $\left[\overline{M_{i}}: \widetilde{E}_{i}\right]=\operatorname{gcd}\left(r_{i}, t\right)$ for $i=1,2$.

Proof. Let Δ be the divisible hull of Γ_{F} and let $r_{1}=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}, r_{2}=$ $p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}$ and $t=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{k}^{t_{k}}$, where the p_{i} are distinct primes and e_{i}, $f_{i}, t_{i} \geq 0$ such that at least one of e_{i}, f_{i} and t_{i} is larger than 0 for all i, $1 \leq i \leq k$. Since $v\left(x_{1}\right)+p_{i} \Gamma_{F}, v\left(x_{2}\right)+p_{i} \Gamma_{F}$ are $\mathbb{Z}_{p_{i}}$-linearly independent in $\Gamma_{F} / p_{i} \Gamma_{F}$ by assumption, in Δ / Γ_{F},

$$
\left|\left\langle\frac{1}{p_{i}^{e_{i}}} v\left(x_{1}\right)+\Gamma_{F}, \frac{1}{p_{i}^{f_{i}}} v\left(x_{2}\right)+\Gamma_{F}\right\rangle\right|=p_{i}^{e_{i}+f_{i}}
$$

and

$$
\left|\left\langle\frac{1}{p_{i}^{t_{i}}} v\left(x_{1}\right)+\Gamma_{F}, \frac{1}{p_{i}^{t_{i}}} v\left(x_{2}\right)+\Gamma_{F}\right\rangle\right|=p_{i}^{2 t_{i}}
$$

Then in Δ / Γ_{F},

$$
\left|\left\langle\frac{1}{r_{1}} v\left(x_{1}\right)+\Gamma_{F}, \frac{1}{r_{2}} v\left(x_{2}\right)+\Gamma_{F}\right\rangle\right|=r_{1} r_{2}
$$

and

$$
\left|\left\langle\frac{1}{t} v\left(x_{1}\right)+\Gamma_{F}, \frac{1}{t} v\left(x_{2}\right)+\Gamma_{F}\right\rangle\right|=t^{2}
$$

Let $T=\left(x_{1}, x_{2} ; F\right)_{t}$ and $S_{i}=\left(M_{i} / F, \tau_{i}, x_{i}\right)_{r_{i}}$ for $i=1,2$. Then by Prop. 3.1, $T \in \mathcal{D}_{t t r}(F)$. Also, by [JW1, Cor.2.9], $S_{i} \in \mathcal{D}(F)$ with $\overline{S_{i}}=\overline{M_{i}}$ and $\Gamma_{S_{i}}=\left\langle\frac{1}{r_{i}} v\left(x_{i}\right)\right\rangle+\Gamma_{F}$ for $i=1,2$. Also, S_{i} is inertially split over F as M_{i} is a splitting field of S_{i}. Let S be the underlying division algebra of $S_{1} \otimes_{F} S_{2}$. Then $D \sim S \otimes_{F} T$ in $\operatorname{Br}(F)$ where $S \in \mathcal{D}_{i s}(F)$ and $T \in \mathcal{D}_{t t r}(F)$. Let h_{S}, $h_{S_{1}}, h_{S_{2}} \in \operatorname{Hom}_{c}\left(G_{F}, \Delta / \Gamma_{F}\right)$ as in (2.3). Since $h_{S}=h_{S_{1}}+h_{S_{2}}, \operatorname{im}\left(h_{S_{i}}\right)=$ $\Gamma_{S_{i}} / \Gamma_{F}=\left\langle\frac{1}{r_{i}} v\left(x_{i}\right)+\Gamma_{F}\right\rangle, i=1,2$, and $\left\langle\frac{1}{r_{1}} v\left(x_{1}\right)+\Gamma_{F}\right\rangle \cap\left\langle\frac{1}{r_{2}} v\left(x_{2}\right)+\Gamma_{F}\right\rangle=$ (0) as $\left|\left\langle\frac{1}{r_{1}} v\left(x_{1}\right)+\Gamma_{F}, \frac{1}{r_{2}} v\left(x_{2}\right)+\Gamma_{F}\right\rangle\right|=r_{1} r_{2}$, we have $\operatorname{ker}\left(h_{S}\right)=\operatorname{ker}\left(h_{S_{1}}\right) \cap$
$\operatorname{ker}\left(h_{S_{2}}\right)$. So by (2.3),

$$
\begin{aligned}
Z(\bar{S}) & \left.\left.\left.=\overline{\mathcal{F}\left(\operatorname{ker} h_{S}\right.}\right)=\overline{\mathcal{F}\left(\text { ker } h_{S_{1}}\right.}\right) \cdot \overline{\mathcal{F}\left(\operatorname{ker} h_{S_{2}}\right.}\right) \\
& =Z\left(\overline{S_{1}}\right) Z\left(\overline{S_{2}}\right)=\overline{M_{1}} \cdot \overline{M_{2}} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\Gamma_{S} / \Gamma_{F}=\operatorname{im}\left(h_{S}\right) & \subseteq \operatorname{im}\left(h_{S_{1}}\right)+\operatorname{im}\left(h_{S_{2}}\right)= \\
& =\left\langle\frac{1}{r_{1}} v\left(x_{1}\right)+\Gamma_{F}\right\rangle \times\left\langle\frac{1}{r_{2}} v\left(x_{2}\right)+\Gamma_{F}\right\rangle \cong \mathbb{Z}_{r_{1}} \times \mathbb{Z}_{r_{2}} .
\end{aligned}
$$

Since $S \in \mathcal{D}_{i s}(F)$, by [JW2, Lemma 5.1], $\theta_{S}: \Gamma_{S} / \Gamma_{F} \rightarrow \operatorname{Gal}(Z(\bar{S}) / \bar{F})$ is an isomorphism. Let $H=\Gamma_{S} / \Gamma_{F}$ and $A_{i}=\Gamma_{S_{i}} / \Gamma_{F}$ for $i=1,2$. Then $H \subseteq A_{1} \times A_{2}$. Let $B_{1}=H \cap A_{2}$ and $B_{2}=H \cap A_{1}$. Since $H=\operatorname{im}\left(h_{S}\right)=$ $\operatorname{im}\left(h_{S_{1}}+h_{S_{2}}\right)$, and im $\left(h_{S_{1}}\right) \cap \operatorname{im}\left(h_{S_{2}}\right)=(0), \pi_{i}(H)=A_{i}$ where $\pi_{i}: A_{1} \times A_{2} \rightarrow$ A_{i} is the i-th projection map. Note that

$$
\begin{aligned}
& \quad\left(\Gamma_{S} \cap \Gamma_{T}\right) / \Gamma_{F}=\left(\Gamma_{S} / \Gamma_{F}\right) \cap\left\langle\frac{1}{t} v\left(x_{1}\right)+\Gamma_{F}, \frac{1}{t} v\left(x_{2}\right)+\Gamma_{F}\right\rangle= \\
& =\left\{\alpha \in \Gamma_{S} / \Gamma_{F} \mid t \alpha=0\right\} \text { as } \Gamma_{S} / \Gamma_{F} \subseteq\left\langle\frac{1}{r_{1}} v\left(x_{1}\right)+\Gamma_{F}\right\rangle \times\left\langle\frac{1}{r_{2}} v\left(x_{2}\right)+\Gamma_{F}\right\rangle .
\end{aligned}
$$

So $\left(\Gamma_{S} \cap \Gamma_{T}\right) / \Gamma_{F}$ is the t-torsion subgroup of H. Then by Lemma 3.3, $\left(\Gamma_{S} \cap \Gamma_{T}\right) / \Gamma_{F}=C_{1} \cap C_{2}$, where $C_{i} \supseteq B_{i}$ and $\left|C_{i}: B_{i}\right|=\operatorname{gcd}\left(r_{i}, t\right)$ for $i=1,2$.

We have the map $h_{S}: \operatorname{Gal}\left(F_{n r} / F\right) \rightarrow \Gamma_{S} / \Gamma_{F}=H \subseteq A_{1} \times A_{2}$, where $A_{i}=\operatorname{im}\left(h_{S_{\mathrm{i}}}\right)$ for $i=1,2$. Since $A_{1} \cap A_{2}=(0)$, for $g \in \operatorname{Gal}\left(F_{n r} / F\right)$, $A_{2}\left(=\operatorname{im}\left(h_{S_{2}}\right)\right)$ contains $h_{S}(g)=h_{S_{1}}(g)+h_{S_{2}}(g)$ if and only if $h_{S_{1}}(g)=$ 0 . So, $h_{S}^{-1}\left(B_{1}\right)=h_{S}^{-1}\left(G \cap A_{2}\right)=\operatorname{ker}\left(h_{S_{1}}\right)=\operatorname{Gal}\left(F_{n r} / M_{1}\right)$. Likewise, $h_{S}^{-1}\left(B_{2}\right)=\operatorname{ker}\left(h_{S_{2}}\right)=\operatorname{Gal}\left(F_{n r} / M_{2}\right)$. Hence, in the isomorphism $\theta_{S}=$ $\tilde{h}_{S}^{-1}: \Gamma_{S} / \Gamma_{F} \longrightarrow \operatorname{Gal}\left(\overline{M_{1} M_{2}} / \bar{F}\right), \theta_{S}\left(B_{i}\right)=\operatorname{Gal}\left(\overline{M_{1} M_{2}} / \overline{M_{i}}\right)$ for $i=1,2$. Therefore $\theta_{S}\left(C_{i}\right)=\operatorname{Gal}\left(\overline{M_{1} M_{2}} / \tilde{E}_{i}\right)$ where $\overline{M_{i}} \supseteq \widetilde{E}_{i} \supseteq \bar{F}$ and $\left[\overline{M_{i}}: \tilde{E}_{i}\right]=$ $\operatorname{gcd}\left(r_{i}, t\right)$ for $i=1,2$. Then by Prop. 1.7, $Z(\bar{D})=\mathcal{F}\left(\theta_{S}\left(\left(\Gamma_{S} \cap \Gamma_{T}\right) / \Gamma_{F}\right)\right)=$ $\mathcal{F}\left(C_{1} \cap C_{2}\right)=\widetilde{E}_{1} \widetilde{E}_{2}$.

Corollary 3.5. Let (F, v) be a Henselian field. Let r_{1}, r_{2}, and t be positive integers and assume $\mu_{t}, \mu_{r_{1}}, \mu_{r_{2}} \subseteq F$. Let u_{1}, u_{2} be v-units in F, and let $x_{1}, x_{2} \in F^{*}$ such that for any prime p dividing r_{1}, r_{2} or $t, v\left(x_{1}\right)+p \Gamma_{F}$, $v\left(x_{2}\right)+p \Gamma_{F}$ are \mathbb{Z}_{p}-linearly independent in $\Gamma_{F} / p \Gamma_{F}$. Let ω_{t} (resp. $\omega_{r_{i}}$) be an arbitrary primitive t-th (resp. r_{i}-th) root of unity in F. Suppose D is the underlying division algebra of $\left(x_{1}, u_{1}, \omega_{r_{1}} ; F\right)_{r_{1}} \otimes_{F}\left(x_{2}, u_{2}, \omega_{r_{2}} ; F\right)_{r_{2}} \otimes_{F}$ $\left(x_{1}, x_{2}, \omega_{t} ; F\right)_{t}$. Then $Z(\bar{D})=\bar{F}\left(\bar{u}_{1}^{t / r_{1}}, \bar{u}_{2}^{t / r_{2}}\right)$.
Proof. Let $s_{i}=o\left(u_{i} F^{* r_{i}}\right)$ in $F^{*} / F^{* r_{i}}$ for $i=1,2$. Then $s_{i} \mid r_{i}, u_{i}^{s_{i}}=$ $w_{i}^{\prime r_{i}}$ for some $w_{i}^{\prime} \in F^{*}$, so $u_{i}=\omega_{s_{i}}^{k} w_{i}^{\prime r_{i} / s_{i}}=\left(\omega_{r_{i}}^{k} w_{i}^{\prime}\right)^{r_{i} / s_{i}}$ for some $k \in \mathbb{Z}$,
where $\omega_{r_{i}}$ is the given primitive r_{i}-th root of unity, and $\omega_{s_{i}}=\omega_{r_{i}}^{r_{i} / s_{i}}$. Let $w_{i}=\omega_{r_{i}}^{k} w_{i}^{\prime}$. Then $u_{i}=w_{i}^{r_{i} / s_{i}}$ and $F\left(u_{i}^{1 / r_{i}}\right)=F\left(w_{i}^{1 / s_{i}}\right)$ is a cyclic inertial extension of F of degree s_{i} for each $i=1,2$. Also, $D \sim\left(x_{1}, w_{1}^{r_{1} / s_{1}} ; F\right)_{r_{1}} \otimes_{F}$ $\left(x_{2}, w_{2}^{r_{2} / s_{2}} ; F\right)_{r_{2}} \otimes_{F}\left(x_{1}, x_{2} ; F\right)_{t} \sim\left(x_{1}, w_{1} ; F\right)_{s_{1}} \otimes_{F}\left(x_{2}, w_{2} ; F\right)_{s_{2}} \otimes_{F}\left(x_{1}, x_{2} ; F\right)_{t}$. But $\left(x_{i}, w_{i} ; F\right)_{s_{i}}=\left(M_{i} / F, \tau_{i}, x_{i}\right)_{s_{i}}$ where $M_{i}=F\left(w_{i}^{1 / s_{i}}\right)$ are cyclic inertial over F of degree s_{i}, and τ_{i} are some generators of Gal $\left(M_{i} / F\right)$. So, by Prop. 3.4, $Z(\bar{D})=\widetilde{E}_{1} \widetilde{E}_{2}$ where $\overline{M_{i}} \supseteq \widetilde{E}_{i} \supseteq \bar{F}$, and $\left[\overline{M_{i}}: \widetilde{E}_{i}\right]=\operatorname{gcd}\left(s_{i}, t\right)$, so $\widetilde{E}_{i}=\bar{F}\left(\bar{w}_{i}^{t / s_{i}}\right)=\bar{F}\left(\bar{u}_{i}^{t / r_{i}}\right)$. Hence $Z(\bar{D})=\bar{F}\left(\bar{u}_{1}^{t / r_{1}}, \bar{u}_{2}^{t / r_{2}}\right)$.

We will consider $Z\left(\overline{{ }^{c} T}\right)$ for $T \in \mathcal{D}_{t t r}(L)$ in Theorem 3.9. We first introduce an equivalence relation in $\mathcal{D}_{t}(F)$ for a Henselian field (F, v). For any $D_{1}, D_{2} \in \mathcal{D}_{t}(F)$, we write $D_{1} \approx D_{2}$ if $\left[D_{2}\right] \equiv\left[D_{1}\right] \bmod I \operatorname{Br}(F)$ in $\operatorname{Br}(F)$. This is an equivalence relation since $I \mathrm{Br}(F)$ is a subgroup of $\operatorname{Br}(F)$ (cf. [JW2, Prop. 2.5]).
Remark 3.6. Let (F, v) be Henselian.
(i) If $D_{1}, D_{2} \in \mathcal{D}_{t}(F)$ and $D_{1} \approx D_{2}$, then $Z\left(\overline{D_{1}}\right)=Z\left(\overline{D_{2}}\right)$ by [JW2, Cor. 6.8].
(ii) If L / F is inertial, $D_{1}, D_{2} \in \mathcal{D}_{t}(L)$ and $D_{1} \approx D_{2}$, then ${ }^{c} D_{1} \approx{ }^{c} D_{2}$ since ${ }^{c} I \in \mathcal{D}_{i}(F)$ for any $I \in \mathcal{D}_{i}(L)$ by Theorem 2.4 (d).

The following lemma will be used in proof of Prop. 3.8.
Lemma 3.7. Let K / F be a finite extension of Henselian fields. If α is a v unit in K, then $N_{K / F}(\alpha)$ is a v-unit in F, and $\overline{N_{K / F}(\alpha)}=N_{\bar{K} / \bar{F}}(\bar{\alpha})^{e}$ where $e=[K: F] /[\bar{K}: \bar{F}]$.

Proof. Recall that the integral closure of V_{F} in K is the intersection of all the valuation rings of K extending V_{F} (cf. [Bo, Ch. VI, Sec. 1, Th. 3, p. 378]). As F is Henselian, V_{K} is the unique valuation ring of K extending V_{F}. So V_{K} is the integral closure of V_{F} in K. Hence α is integral over V_{F}. Let f be the minimal polynomial of α over F. Then $f \in V_{F}[x]$ since V_{F} is integrally closed.

Note that $\bar{f}=\varphi^{i}$ where $\varphi \in \bar{F}[X]$ is a monic irreducible polynomial, $i \geq 1$ and $i \operatorname{deg}(\varphi)=\operatorname{deg}(f)$ since $f \in V_{F}[X]$ is a monic irreducible polynomial and F is Henselian (cf. [Rb, Th. 3]). Since $\varphi(\bar{\alpha})^{i}=\bar{f}(\bar{\alpha})=\overline{f(\alpha)}=0$, i.e., $\varphi(\bar{\alpha})=0, \varphi$ is the minimal polynomial of $\bar{\alpha}$ over \bar{F}. So $N_{\bar{K} / \bar{F}}(\bar{\alpha})=$ $(-1)^{[\bar{K}: \bar{F}]}(\varphi(0))^{[\bar{K}: \bar{F}] \operatorname{deg}}(\varphi)$ (cf. [L, Ch. VIII, Sec. 5, Th. 5.1]). On the other hand, $N_{K /}(\alpha)=(-1)^{[K: F]}(f(0))^{[K: F] \operatorname{deg}}(f)$. But since $\overline{f(0)}=\varphi(0)^{i}$ and $\operatorname{deg}(f)=i \operatorname{deg}(\varphi), \overline{N_{K / F}(\alpha)}=(-1)^{[K: F]}(\varphi(0))^{i[K: F] / i \operatorname{deg}}(\varphi)=N_{\bar{K} / \bar{F}}(\bar{\alpha})^{e}$ where $e=[K: F] /[\bar{K}: \bar{F}]$.

Proposition 3.8. Let the symbol algebra $T=\left(\alpha_{1}, \alpha_{2} ; L\right)_{n} \in \mathcal{D}_{\text {ttr }}(L)$ where $n>1$ is any integer, (so $\mu_{n} \subseteq L$) and $\alpha_{1}, \alpha_{2} \in L^{*}$. If $\mu_{n} \subseteq F$, then $Z(\bar{c} \bar{T}) \subseteq \bar{F}\left(N_{\bar{L} / \bar{F}}(\bar{L})^{1 / d}\right)$, where $d=\operatorname{gcd}(n,[L: F])$.
Proof. Since $\Gamma_{L}=\Gamma_{F}, \alpha_{i}=a_{i} u_{i}$ for some $a_{i} \in F^{*}, u_{i} \in U_{L}$. Note that since $\left(\alpha_{1}, \alpha_{2} ; L\right)_{n} \in \mathcal{D}_{t t r}(L)$, by Prop. 3.1, in $\Gamma_{L} / n \Gamma_{L}$

$$
\left|\left\langle v\left(\alpha_{1}\right)+n \Gamma_{L}, v\left(\alpha_{2}\right)+n \Gamma_{L}\right\rangle\right|=n^{2}
$$

But as $v\left(a_{i}\right)=v\left(\alpha_{i}\right), i=1,2$, and $\Gamma_{L} / n \Gamma_{L}=\Gamma_{F} / n \Gamma_{F} \cong \frac{1}{n} \Gamma_{F} / \Gamma_{F}$, we have in $\frac{1}{n} \Gamma_{F} / \Gamma_{F},\left|\left\langle\frac{1}{n} v\left(a_{1}\right)+\Gamma_{F}, \frac{1}{n} v\left(a_{2}\right)+\Gamma_{F}\right\rangle\right|=n^{2}$. So for any prime p dividing n, in $\frac{1}{p} \Gamma_{F} / \Gamma_{F},\left|\left\langle\frac{1}{p} v\left(a_{1}\right)+\Gamma_{F} \frac{1}{p} v\left(a_{1}\right)+\Gamma_{F}\right\rangle\right|=p^{2}$, or equivalently in $\Gamma_{F} / p \Gamma_{F}, v\left(a_{1}\right)+p \Gamma_{F}, v\left(a_{2}\right)+p \Gamma_{F}$ are \mathbb{Z}_{p}-linearly independent.

Note that $\left[\left(u_{1}, u_{2} ; L\right)_{n}\right] \in I \operatorname{Br}(L)$ by [JW2, Prop. 2.5], since the "symbol algebra" $\left(u_{1}, u_{2} ; V_{L}\right)_{n}$ over the valuation ring V_{L} is an Azumaya algebra over V_{L} and an order in $\left(u_{1}, u_{2} ; L\right)_{n}$ (cf. [JW2, Ex. 2.4 (i)]). Then since $T \sim$ $\left(u_{1}, u_{2} ; L\right)_{n} \otimes\left(a_{1}, u_{2} ; L\right)_{n} \otimes\left(u_{1}, a_{2} ; L\right)_{n} \otimes\left(a_{1}, a_{2} ; L\right)_{n}$ in $\operatorname{Br}(L)$, we have $T \approx D$ where D is the underlying division algebra of $\left(a_{1}, u_{2} ; L\right)_{n} \otimes_{L}\left(a_{2}, u_{1}^{-1} ; L\right)_{n} \otimes_{L}$ $\left(a_{1}, a_{2} ; L\right)_{n}$. By Remark 3.6 (ii), and Prop. 1.4, and as $N_{L / F}\left(a_{2}\right)=a_{2}^{[L: F]}$, ${ }^{c} T \approx{ }^{c} D \sim\left(a_{1}, N_{L / F}\left(u_{2}\right) ; F\right)_{n} \otimes_{F}\left(a_{2}, N_{L / F}\left(u_{1}^{-1}\right) ; F\right)_{n} \otimes_{F}\left(a_{1}, a_{2}^{[L: F]} ; F\right)_{n}$. But $\left(a_{1}, a_{2}^{[L: F]} ; F\right)_{n} \sim\left(a_{1}, a_{2}^{e} ; F\right)_{n^{\prime}}$, where $d=\operatorname{gcd}(n,[L: F]),[L: F]=d e$, and $n=d n^{\prime}$ so that $\operatorname{gcd}\left(e, n^{\prime}\right)=1$. Say, let $\left(a_{1}, a_{2}^{e} ; F\right)_{n^{\prime}}=\left(a_{1}, a_{2}^{e}, \omega ; F\right)_{n^{\prime}}$ for some primitive n^{\prime}-th root ω of unity. Then $\left(a_{1}, a_{2}^{e}, \omega ; F\right)_{n^{\prime}}=\left(a_{1}, a_{2}, \omega^{k} ; F\right)_{n^{\prime}}$ for some k with $\operatorname{gcd}\left(k, n^{\prime}\right)=1$. So $\left(a_{1}, a_{2}^{[L: F]} ; F\right)_{n}$ is similar to a symbol algebra $\left(a_{1}, a_{2}, \omega^{k} ; F\right)_{n^{\prime}}$ where $n^{\prime}=n / \operatorname{gcd}(n,[L: F])$. Hence ${ }^{c} T \approx{ }^{c} D \sim$ $\left(a_{1}, N_{L / F}\left(u_{2}\right) ; F\right)_{n} \otimes_{F}\left(a_{2}, N_{L / F}\left(u_{1}^{-1}\right) ; F\right)_{n} \otimes\left(a_{1}, a_{2}, \omega^{k} ; F\right)_{n^{\prime}}$ in $\operatorname{Br}(F)$. Then by Remark 3.6, and Cor. 3.5,

$$
Z(\bar{c} \bar{c})=Z\left(\overline{{ }^{c} D}\right)=\bar{F}\left(\left(\overline{N_{L / F}\left(u_{2}\right)}\right)^{n^{\prime} / n},\left(\overline{N_{L / F}\left(u_{1}^{-1}\right)}\right)^{n^{\prime} / n}\right)
$$

Since $[L: F]=[\bar{L}: \bar{F}], \overline{N_{L / F}\left(u_{1}^{-1}\right)}=N_{\bar{L} / \bar{F}}\left(\overline{u_{1}^{-1}}\right)$ and $\overline{N_{L / F}\left(u_{2}\right)}=N_{\bar{L} / \bar{F}}\left(\overline{u_{2}}\right)$ by Lemma 3.7 above. So

$$
Z(\overline{c T})=\bar{F}\left(N_{\bar{L} / \bar{F}}\left(\bar{u}_{2}\right)^{1 / d}, N_{\bar{L} / \bar{F}}\left(\overline{u_{1}^{-1}}\right)^{1 / d}\right) \subseteq \bar{F}\left(N_{\bar{L} / \bar{F}}(\bar{L})^{1 / d}\right)
$$

where $d=n / n^{\prime}=\operatorname{gcd}(n,[L: F])$.
Theorem 3.9. Suppose $T \in \mathcal{D}_{t t r}(L)$ and $n=\exp \left(\Gamma_{T} / \Gamma_{L}\right)$. (So $\mu_{n} \subseteq L$.) If $\mu_{n} \subseteq F$, then

$$
Z(\bar{c} \bar{T}) \subseteq \bar{F}\left(N_{\bar{L} / \bar{F}}(\bar{L})^{1 / d}\right), d=\operatorname{gcd}(n,[L: F])
$$

where $N_{\bar{L} / \bar{F}}$ is the norm map from \bar{L} to \bar{F}.
Proof. By Prop. 1.6, $T=\stackrel{k}{\otimes}{ }_{i=1}^{\otimes} T_{i}$, where each T_{i} is a symbol division algebra in $\mathcal{D}_{t t r}(L)$ of index n_{i} with $n_{i} \mid n$. Then ${ }^{c} T \sim{\underset{i=1}{k}{ }^{c} T_{i} \sim{ }^{c} T_{0} \otimes_{F}{ }^{c} T_{k} \text { where }{ }^{c} \text {. }}^{\prime}$ $T_{0}={ }_{i=1}^{k-1} T_{i}$. We prove that $Z(\bar{c} \bar{T})=Z\left(\overline{{ }^{c} T_{1}}\right) \cdots Z\left(\overline{{ }^{c} T_{k}}\right)$. By induction on k, we need only to prove $Z\left(\overline{{ }^{c} T}\right)=Z\left(\overline{{ }^{c} T_{0}}\right) Z\left(\overline{{ }^{c} T_{k}}\right)$. Since ${ }^{c} T_{0} \in \mathcal{D}_{t}(F)$ by Theorem 2.4, ${ }^{c} T_{0} / F$ is defectless, and $Z\left(\overline{{ }^{c} T_{0}}\right) / \bar{F}$ is Galois by [JW2, Lemma 6.1]. So, $\mathcal{L}=Z\left(\overline{{ }_{c} T_{0}}\right) \cap Z\left(\overline{{ }^{c} T_{k}}\right)$ is separable over \bar{F}, and $Z\left(\overline{{ }^{c} T_{0}}\right)$ and $Z\left(\overline{{ }^{c} T_{k}}\right)$ are linearly disjoint over \mathcal{L}. Also, by Prop. 3.2, and as $\Gamma_{T} / \Gamma_{L}=\underset{i=1}{\oplus}\left(\Gamma_{T_{i}} / \Gamma_{L}\right)$, we have $\Gamma_{{ }^{c} T_{0}} \cap \Gamma_{c} T_{k} \subseteq \Gamma_{T_{0}} \cap \Gamma_{T_{k}}=\Gamma_{L}=\Gamma_{F}$. Hence, by [MW, Cor. 3.12], $Z\left(\overline{{ }^{c} T}\right)=Z\left(\bar{c} \bar{c}_{0}\right) Z\left({ }^{c} T_{k}\right)=Z\left(\overline{\bar{c} T_{1}}\right) \cdots Z\left(\overline{{ }^{c} T_{k-1}}\right) Z\left(\bar{c} \overline{T_{k}}\right)$. But by Prop. 3.8, for $1 \leq i \leq k$,

$$
Z\left(\bar{c} \overline{T_{i}}\right) \subseteq \bar{F}\left(N_{\bar{L} / \bar{F}}(\bar{L})^{1 / d_{i}}\right), \quad d_{i}=\operatorname{gcd}\left(n_{i},[L: F]\right)
$$

Therefore, as $n_{i} \mid n$,

$$
Z(\bar{c} \bar{T}) \subseteq \bar{F}\left(N_{\bar{L} / \bar{F}}(\bar{L})^{1 / d}\right), \quad d=\operatorname{gcd}(n,[L: F])
$$

4. Tame division algebras.

We will show in Theorems 4.4-4.6 below that $\Gamma_{c_{D}} \subseteq \Gamma_{D}$ for $D \in \mathcal{D}_{t}(L)$, without any restriction on roots of unity in F, and that for $D \in \mathcal{D}_{t}(L)$, $Z\left(\overline{{ }^{\bar{D}}}\right) \subseteq \mathcal{N}(Z(\bar{D}) / \bar{F})^{1 / k}$, where $k \geq 1$ is some integer dividing $\exp \left(\operatorname{ker} \theta_{D}\right)$ which depends on which roots of unity lie in F. We first give some propositions which will be used in the proofs of the theorems.

Proposition 4.1. Let $n=p^{k}$ with p an odd prime, $k \geq 1$, and let ω_{k} be a primitive n-th root of unity in L. Suppose $a, b \in F^{*}$ and $T=(a, b ; L)_{n} \in$ $\mathcal{D}_{\text {ttr }}(L)$. Then
(a) if $\mu_{p} \subseteq F$, then ${ }^{c} T \sim\left(a, b^{\ell} ; F\right)_{n / r}$ in $\operatorname{Br}(F)$, where $\ell=\left[L: F\left(\omega_{k}\right)\right]$, and $r=\left[F\left(\omega_{k}\right): F\right]$. Hence, ${ }^{c} T \in \mathcal{D}_{t t r}(F)$ and $\Gamma_{c_{T}}=[L: F] \Gamma_{T}+\Gamma_{F}$;
(b) if $\mu_{p} \nsubseteq F$, then ${ }^{c} T=F$.

Proof. (a) For $1 \leq i \leq k$, set $\omega_{\imath}=\left(\omega_{k}\right)^{p^{k-i}}$, a primitive p^{i}-th root of unity. Let $F_{i}=F\left(\omega_{i}\right)$. Let t be maximal with $\omega_{t} \in F$ so that $F=F_{t}$ and $\left[F_{i+1}: F_{i}\right]=p$ for $i \geq t$. (Note that $r=\left[F_{k}: F\right]=\left[F_{k}: F_{t}\right]=p^{k-t}$, so $p^{t}=n / r$.) Then by [M, \#15, p. 144],

$$
\operatorname{cor}_{F_{2+1} / F_{2}}\left(\left(a, b, \omega_{i+1} ; F_{i+1}\right)_{p^{i+1}}\right) \sim\left(\left(a, b, \omega_{i} ; F_{i}\right)_{p^{i}}\right) .
$$

So it follows that

$$
\operatorname{cor}_{F_{k} / F}\left(\left(a, b, ; F_{k}\right)_{n}\right) \sim\left(a, b ; F_{t}\right)_{p^{t}}=(a, b ; F)_{n / r}
$$

Hence, by Prop. 1.4,

$$
\begin{aligned}
{ }^{c} T & \sim \operatorname{cor}_{L / F}\left((a, b, ; L)_{n}\right) \sim \operatorname{cor}_{F_{k} / F}\left(\operatorname{cor}_{L / F}\left((a, b, ; L)_{n}\right)\right) \\
& \sim \operatorname{cor}_{F_{k} / F}\left(\left(a, b^{\ell} ; F_{k}\right)_{n}\right) \sim\left(a, b^{\ell} ; F_{k}\right)_{n / r} .
\end{aligned}
$$

The second statement follows easily by Prop. 3.1.
(b) Let $K=F\left(\omega_{1}\right)$ and let s be maximal with $\omega_{s} \in K$ so that $K=F_{s}$ and $\left[F_{i+1}: F_{i}\right]=p$ for $i \geq s$. As above, it follows by $[\mathbf{M}, \# 15, \mathrm{p} .144]$ that

$$
\operatorname{cor}_{F_{k} / K}\left(\left(a, b, \omega_{k} ; F_{k}\right)_{p^{k}}\right) \sim\left(a, b, \omega_{s} ; K\right)_{p^{s}}
$$

If $\operatorname{Gal}(K / F)=\langle\sigma\rangle$, then $\sigma\left(\omega_{s}\right)=\omega_{s}^{u}$ where $u^{m} \equiv 1\left(\bmod p^{s}\right)$ for $m=$ $[K: F]$ and $u \not \equiv 1(\bmod p)$ since σ moves ω_{1}. It follows easily that $N_{K / F}\left(\omega_{s}\right)=1$ and so $\operatorname{cor}_{K / F}\left(\left(a, b, \omega_{s} ; K\right)_{p^{s}}\right) \sim F$ by [M, \#16, p. 145]. So $\operatorname{cor}_{F_{k} / F}\left(\left(a, b, \omega_{k} ; F_{k}\right)_{n}\right) \sim F$. Hence by Prop. 1.4., as $N_{L / F_{k}}(b)=b^{\ell}, \ell=[L:$ F_{k}],

$$
\begin{aligned}
&{ }^{c} T \sim \operatorname{cor}_{L / F}\left((a, b ; L)_{n}\right) \sim \operatorname{cor}_{F_{k} / F}\left(\operatorname{cor}_{L / F_{k}}\left((a, b ; L)_{n}\right)\right) \sim \\
& \sim \operatorname{cor}_{F_{k} / F}\left(\left(a, b^{\ell} ; F_{k}\right)_{n}\right) \sim F .
\end{aligned}
$$

Proposition 4.2. Let $n=2^{k}, k \geq 3$, and let ω_{k} be a primitive n-th root of unity in L. Suppose $a, b \in F^{*}$ and $T=(a, b ; L)_{n} \in \mathcal{D}_{t t r}(L)$. Then
(a) if $\mu_{4} \subseteq F$, then ${ }^{c} T \sim\left(a, b^{\ell} ; F\right)_{n / r} \otimes_{F}\left(a, b^{\ell} ; F\right)_{2} \sim\left(a, b^{\ell e} ; F\right)_{n / r}$ in $\operatorname{Br}(F)$, where $\ell=\left[L: F\left(\omega_{k}\right)\right], r=\left[F\left(\omega_{k}\right): F\right]$ and $e=1+\frac{n}{2 r}$ is an odd integer. Hence ${ }^{c} T \in \mathcal{D}_{\text {ttr }}(F)$ and ${ }^{c} T=[L: F] \Gamma_{T}+\Gamma_{F}$;
(b) if $\mu_{4} \nsubseteq F$, then ${ }^{c} T=(a, b ; F)_{2}$ or $=F$, and ${ }^{c} T \in \mathcal{D}_{\text {ttr }}(F)$.

Proof. (a) For $1 \leq i \leq k$, set $\omega_{i}=\left(\omega_{k}\right)^{2^{k-i}}$, a primitive 2^{i}-th root of unity. Let $F_{i}=F\left(\omega_{i}\right)$. Let t be maximal with $\omega_{t} \in F$ so that $F=F_{t}$ and $\left[F_{i+1}: F_{i}\right]=2$ for $i \geq t$. (Note that $t \geq 2$ as $\mu_{4} \subseteq F$.) Then by [M, \#15 and \#13, p. 144],

$$
\begin{aligned}
\operatorname{cor}_{F_{i+1} / F_{i}}\left(\left(a, b, \omega_{i+1} ; F_{i+1}\right)_{2^{i+1}}\right) & \sim\left(\left(a, b,-\omega_{i} ; F_{i}\right)_{2^{i}}\right) \\
& \sim\left(\left(a, b, \omega_{i} ; F_{i}\right)_{2^{i}}\right) \otimes_{F}\left(\left(a, b,-1 ; F_{i}\right)_{2}\right) .
\end{aligned}
$$

Since $\operatorname{cor}_{F_{i} / F_{i-1}}\left(\left(a, b,-1 ; F_{i}\right)_{2}\right) \sim F_{i-1}$ by Prop. 1.4 as $N_{F_{i} / F_{i-1}}(b)=b^{2}$, we end up with $\operatorname{cor}_{F_{k} / F}\left(\left(a, b ; F_{k}\right)_{n}\right) \sim(a, b ; F)_{n / r} \otimes_{F}(a, b ; F)_{2}$. Hence, by Prop. 1.4,

$$
\begin{aligned}
{ }^{c} T & \sim \operatorname{cor}_{L / F}\left((a, b, ; L)_{n}\right) \sim \operatorname{cor}_{F_{k} / F}\left(\operatorname{cor}_{L / F_{k}}\left((a, b, ; L)_{n}\right)\right) \\
& \sim \operatorname{cor}_{F_{k} / F}\left(\left(a, b^{\ell} ; F_{k}\right)_{n}\right) \sim\left(a, b^{\ell} ; F_{k}\right)_{n / r} \otimes\left(a, b^{\ell} ; F\right)_{2} .
\end{aligned}
$$

The second statement follows easily by Prop. 3.1.
(b) Let $K=F_{2}=F(\sqrt{-1})$ and let s be maximal with $\omega_{s} \in K$ so that $K=F_{s}$ and $\left[F_{i+1}: F_{i}\right]=2$ for $i \geq s$. As above, it follows by [M, \#15 and \#13, p. 144] that

$$
\operatorname{cor}_{F_{k} / K}\left(\left(a, b, \omega_{k} ; F_{k}\right)_{2^{k}}\right) \sim\left(a, b, \omega_{s} ; K\right)_{2^{s}} \otimes_{K}(a, b,-1 ; K)_{2}
$$

Note that $\operatorname{cor}_{K / F}\left((a, b,-1 ; K)_{2}\right) \sim F$ by Prop. 1.4. If $\operatorname{Gal}(K / F)=\langle\sigma\rangle$, then $\sigma\left(\omega_{s}\right)=\omega_{s}^{u}$ where $u^{2} \equiv 1\left(\bmod 2^{s}\right)$ and $u \not \equiv 1(\bmod 4)$ since σ moves $\sqrt{-1}$. It follows easily that $N_{K / F}\left(\omega_{s}\right)=1$ or -1 , and so $\operatorname{cor}_{K / F}\left(\left(a, b, \omega_{s} ; K\right)_{2^{s}}\right) \sim F$ or $(a, b,-1 ; F)_{2}$ by [M, \#16 and \#7, pp. 143-145]. So $\operatorname{cor}_{F_{k} / F}\left(\left(a, b, \omega_{k} ; F_{k}\right)_{n}\right)$ $\sim F$ or $(a, b,-1 ; F)_{2}$. Hence,

$$
{ }^{c} T \sim \operatorname{cor}_{L / F}\left((a, b ; L)_{n}\right) \sim F \quad \text { or } \quad(a, b ; F)_{2}
$$

Lemma 4.3. Let ω_{4} be a primitive fourth root of unity in L. Let $a, b, c, d \in$ F^{*}, and let $T=(a, b ; L)_{4}$ and $T_{0}=(a, b ; F)_{2}$. Suppose $T, T_{0} \in \mathcal{D}_{\text {ttr }}(L)$. Then
(a) if $\omega_{4} \in F$, then ${ }^{c} T \sim\left(a, b^{\ell} ; F\right)_{4}$ in $\operatorname{Br}(F)$, where $\ell=[L: F]$. So ${ }^{c} T \in \mathcal{D}_{t t r}(F)$, and $\Gamma_{c T}=[L: F] \Gamma_{T}+\Gamma_{F} . A l s o,{ }^{c} T_{0} \sim\left(c, d^{\ell} ; F\right)$ in $\operatorname{Br}(F)$, so ${ }^{c} T_{0} \in \mathcal{D}_{t t r}(F)$, and $\Gamma_{{ }^{c} T_{0}}=[L: F] \Gamma_{T_{0}}+\Gamma_{F}$;
(b) if $\omega_{4} \notin F$, then ${ }^{c} T=F$.

Proof. (a) follows easily by Prop. 1.4 and Prop. 3.1. (b) can be proved by the exact same arguments in the proof of Prop. 4.2 (b).

Recall that we are assuming L / F is a finite separable inertial extension of Henselian fields.

Theorem 4.4. Let $T \in \mathcal{D}_{t t r}(L)$ and $\exp \left(\Gamma_{T} / \Gamma_{L}\right)=p_{0}^{e_{0}} p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, where $p_{0}=2, e_{0} \geq 0$, and for $1 \leq i \leq r$, the p_{i} are distinct odd primes, and $e_{i}>0$. Let $T=\stackrel{r}{\otimes} T_{i=0}$ be the primary decomposition of T where T_{i} is the p_{i} primary component of T. (So $\Gamma_{T}=\sum_{i=0}^{r} \Gamma_{T_{i}}$ and $\Gamma_{T_{i}} / \Gamma_{L}$ is the p_{i}-primary component of Γ_{T} / Γ_{L}.) Suppose $\mu_{p_{i}} \subseteq F$ for $1 \leq i \leq r_{0}$ and $\mu_{p_{i}} \nsubseteq F$ for $r_{0}+1 \leq i \leq r$. Then
(a) if $4 \nmid \exp \left(\Gamma_{T} / \Gamma_{L}\right)$ or $\mu_{4} \subseteq F$, then

$$
[L: F]\left(\Gamma_{T_{0}}+\Gamma_{T_{1}}+\cdots+\Gamma_{T_{r_{0}}}\right)+\Gamma_{F} \subseteq \Gamma_{c T} \subseteq \Gamma_{T}, \text { and }
$$

(b) if $4 \mid \exp \left(\Gamma_{T} / \Gamma_{L}\right)$ and $\mu_{4} \nsubseteq F$, then

$$
[L: F]\left(\Gamma_{T_{1}}+\cdots+\Gamma_{T_{r_{0}}}\right)+\Gamma_{F} \subseteq \Gamma_{c_{T}} \subseteq \Gamma_{T}
$$

Proof. As $T_{i} \in \mathcal{D}_{\text {ttr }}(L)$ by Prop. 1.6, $T_{i}=\underset{k=1}{\ell_{i}}\left(\alpha_{k}, \beta_{k} ; L\right)_{m_{k}}$ for some $\alpha_{k}, \beta_{k} \in$ L^{*}, and some m_{k} powers of p_{i} for $1 \leq k \leq \ell_{i}\left(\operatorname{so} \Gamma_{T_{i}} / \Gamma_{L}=\underset{k=1}{\ell_{i}}\left\langle\frac{1}{m_{k}} v\left(\alpha_{k}\right)+\Gamma_{L}\right.\right.$,
 $S_{i} \in \mathcal{D}_{i s}(L)$ and $a_{k}, b_{k} \in F^{*}$ with $v\left(a_{k}\right)=v\left(\alpha_{k}\right), v\left(b_{k}\right)=v\left(\beta_{k}\right)\left(1 \leq k \leq \ell_{i}\right)$. Let $T_{i}^{\prime} \sim{\underset{k=1}{\ell_{i}}}_{\otimes_{k}}\left(a_{k}, b_{k} ; L\right)_{m_{k}}$. As $T_{i} \in \mathcal{D}_{t t r}(L)$, Prop. 3.1 shows $T_{i}^{\prime} \in \mathcal{D}_{t t r}(L)$, and $\Gamma_{T_{i}^{\prime}}=\Gamma_{T_{i}}$. Since $T_{i} \sim T_{i}^{\prime} \otimes_{L} S_{i}$ where $T_{i}^{\prime} \in \mathcal{D}_{t t r}(L)$, and $S_{i} \in \mathcal{D}_{i s}(L)$, by Prop. 1.7, $\Gamma_{T_{i}}=\Gamma_{T_{i}^{\prime}}+\Gamma_{S_{i}}$. Also, as L / F is inertial, ${ }^{c} S_{i} \in \mathcal{D}_{i s}(F)$ and $\Gamma_{c_{S_{i}}} \subseteq \Gamma_{S_{i}}$ by Theorem 2.4.

For $1 \leq i \leq r_{0}$, as $\mu_{p_{i}} \subseteq F$, by Prop. $4.1{ }^{c} T_{i}^{\prime} \sim{\underset{k}{*}}_{\stackrel{\ell_{i}}{\otimes}}^{k}\left(a_{k}, b_{k}^{n_{k}} ; F\right)_{m_{k} / r_{k}}$ where $n_{k}=\left[L: F\left(\omega_{m_{k}}\right)\right]\left(\omega_{m_{k}}\right.$, a primitive m_{k}-th root of unity) and $r_{k}=$ [$\left.F\left(\omega_{m_{k}}\right): F\right]$. Let A_{k} be the underlying division algebra of $\left(a_{k}, b_{k}^{n_{k}} ; F\right)_{m_{k} / r_{k}}$. As $\left(a_{k}, b_{k} ; F\right)_{m_{k} / r_{k}} \in \mathcal{D}_{t t r}(F)$, by Prop. 3.1, $A_{k} \in \mathcal{D}_{t t r}(F)$ and

$$
\begin{aligned}
\Gamma_{A_{k}} / \Gamma_{F} & =n_{k}\left(\left\langle\frac{r_{k}}{m_{k}} v\left(a_{k}\right)+\Gamma_{F}, \frac{r_{k}}{m_{k}} v\left(b_{k}\right)+\Gamma_{F}\right\rangle\right) \\
& =[L: F]\left(\left\langle\frac{1}{m_{k}} v\left(a_{k}\right)+\Gamma_{F}, \frac{1}{m_{k}} v\left(b_{k}\right)+\Gamma_{F}\right\rangle\right)
\end{aligned}
$$

as $n_{k} r_{k}=[L: F]$. Then, by Prop. 3.1 again, $A:=\stackrel{\ell_{i}}{\otimes=1} A_{k} \in \mathcal{D}_{t t r}(F)$ and $\Gamma_{A} / \Gamma_{F}=\underset{k=1}{\ell_{i}}\left(\Gamma_{A_{k}} / \Gamma_{F}\right)=[L: F]\left(\Gamma_{T_{i}^{\prime}} / \Gamma_{F}\right)$. So, ${ }^{c} T_{i}^{\prime}=A \in \mathcal{D}_{t t r}(F)$ and $\Gamma_{{ }^{c} T_{i}^{\prime}} / \Gamma_{F}=[L: F]\left(\Gamma_{T_{i}^{\prime}} / \Gamma_{F}\right)=[L: F]\left(\Gamma_{T_{i}} / \Gamma_{F}\right)$. Since ${ }^{c} T_{i} \sim{ }^{c} T_{i}^{\prime} \otimes_{F}$ ${ }^{c} S_{i}, \Gamma_{{ }^{c} \boldsymbol{T}_{i}}=\Gamma_{c_{T_{i}^{\prime}}}+\Gamma_{c_{S_{i}}}$ by Prop. 1.7. So,

$$
[L: F] \Gamma_{T_{i}}+\Gamma_{F} \subseteq \Gamma_{c_{T_{i}}}=\Gamma_{c_{T_{i}^{\prime}}}+\Gamma_{c_{S_{i}}} \subseteq \Gamma_{T_{i}^{\prime}}+\Gamma_{S_{i}}=\Gamma_{T_{i}} .
$$

For $r_{0}+1 \leq i \leq r$, as $\mu_{p_{i}} \nsubseteq F$ by assumption, ${ }^{c} T_{i}^{\prime}=F$ by Prop. 4.1. So ${ }^{c} T_{i}={ }^{c} S_{i}$, and $\Gamma_{{ }^{{ }^{T_{i}}}}=\Gamma_{{ }^{{ }_{S}}} \subseteq \Gamma_{S_{i}} \subseteq \Gamma_{T_{i}}$.
(a) If $4 \nmid \exp \left(\Gamma_{T} / \Gamma_{L}\right)$ or $\mu_{4} \subseteq F$, then the same argument proving of the case when $1 \leq i \leq r_{0}$ gives us $[L: F] \Gamma_{T_{0}}+\Gamma_{F} \subseteq \Gamma_{c T_{0}} \subseteq \Gamma_{T_{0}}$, using Prop. 4.2 and Lemma 4.3 instead of Prop. 4.1. Thus, since $\Gamma_{T}=\sum_{i=0}^{r} \Gamma_{T_{i}}$ and $\Gamma_{c_{T}}=\sum_{i=0}^{r} \Gamma_{{ }_{T_{i}}}$ by [JW2, Cor. 1.15], $[L: F]\left(\Gamma_{T_{0}}+\Gamma_{T_{1}}+\cdots+\Gamma_{T_{r_{0}}}\right)+\Gamma_{F} \subseteq$ $\Gamma_{c_{T}} \subseteq \Gamma_{T}$.
(b) If $4 \mid \exp \left(\Gamma_{T} / \Gamma_{L}\right)$ and $\mu_{4} \nsubseteq F$, then by Prop. 4.2 and Lemma 4.3, ${ }^{c} T_{0}^{\prime} \sim{\stackrel{\ell_{0}}{\otimes}}_{k=1} A_{k}$, where for $1 \leq k \leq \ell_{0}, A_{k}=\left(a_{k}, b_{k} ; F\right)_{2}$ or $=F$. Hence ${ }^{c} T_{0}^{\prime} \in \mathcal{D}_{t t r}^{k=1}(F)$ and $\Gamma^{c} T_{0}^{\prime} \subseteq \Gamma_{T_{0}^{\prime}}$. As ${ }^{c} T_{0} \sim{ }^{c} T_{0}^{\prime} \otimes{ }^{c} S_{0}$ with ${ }^{c} S_{0} \in \mathcal{D}_{i s}(F)$, by Prop. 1.7, $\Gamma_{{ }_{c} T_{0}}=\Gamma_{{ }^{c} T_{0}^{\prime}}+\Gamma_{{ }_{c} S_{0}} \subseteq \Gamma_{T_{0}^{\prime}}+\Gamma_{S_{0}}=\Gamma_{T_{0}}$. Therefore, [L : $F]\left(\Gamma_{T_{1}}+\cdots+\Gamma_{T_{r_{0}}}\right)+\Gamma_{F} \subseteq \Gamma_{c_{T}} \subseteq \Gamma_{T}$.

Theorem 4.5. If $D \in \mathcal{D}_{t}(L)$, then $\Gamma_{c_{D}} \subseteq \Gamma_{D}$.
Proof. By Prop. 1.7, there are $S \in \mathcal{D}_{i s}(L)$ and $T \in \mathcal{D}_{t t r}(L)$ such that $D \sim S \otimes_{L} T$ in $\operatorname{Br}(L)$, whence $\Gamma_{D}=\Gamma_{S}+\Gamma_{T}$. Then by Theorem 2.4 and Theorem 4.4, $\Gamma_{c_{S}} \subseteq \Gamma_{S}$ and $\Gamma_{c_{T}} \subseteq \Gamma_{T}$. Also, by Theorem 2.4, ${ }^{c} S$ and ${ }^{c} T$ are tame over F. As ${ }^{c} D \sim{ }^{c} S \otimes_{F}{ }^{c} T$ in $\operatorname{Br}(F)$, by [JW2, Cor. 6.7], $\Gamma_{c_{D}} \subseteq \Gamma_{c_{S}}+\Gamma_{c_{T}} \subseteq \Gamma_{S}+\Gamma_{T}=\Gamma_{D}$.

Now, we will give relations between $Z(\bar{D})$ and $Z\left(\overline{{ }^{c}} \bar{D}\right)$ and between $\exp \left(\operatorname{ker} \theta_{D}\right)$ and $\exp \left(\operatorname{ker} \theta_{c_{D}}\right)$ for $D \in \mathcal{D}_{t}(L)$.

Theorem 4.6. Let $D \in \mathcal{D}_{t}(L)$ and $t=\exp \left(\operatorname{ker} \theta_{D}\right)$. Let $t=2^{e_{0}} p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, where $e_{0} \geq 0$, and the p_{i} are distinct odd primes and $e_{i}>0$ for $1 \leq i \leq r$. Suppose $\mu_{p_{i}} \subseteq F$ for $1 \leq i \leq r_{0}$, and $\mu_{p_{i}} \nsubseteq F$ for $r_{0}+1 \leq i \leq r$. Let $s=2^{e_{0}} p_{1}^{e_{1}} \cdots p_{r_{0}}^{e_{r_{0}}}$ and $s^{\prime}=p_{1}^{e_{1}} \cdots p_{r_{0}}^{e_{r_{0}}}$. Then
(a) if $4 \nmid t$ or $\mu_{4} \subseteq F$, then $\exp \left(\operatorname{ker} \theta_{c_{D}}\right)=s / \operatorname{gcd}([L: F], s)$ and $Z\left(\overline{{ }^{c}} \bar{D}\right) \subseteq$ $\mathcal{N}(Z(\bar{D}) / \bar{F})^{1 / n}$ where $n=\operatorname{gcd}([L: F], s) \cdot(t / s)$, and
(b) if $4 \mid t$ and $\mu_{4} \nsubseteq F$, then $\exp \left(\operatorname{ker} \theta_{c_{D}}\right)=\varepsilon s^{\prime} / \operatorname{gcd}\left([L: F], s^{\prime}\right)$ where $\varepsilon=1$ or 2 , and $Z(\bar{c} \bar{D}) \subseteq \mathcal{N}(Z(\bar{D}) / \bar{F})^{1 / n^{\prime}}$ where $n^{\prime}=\operatorname{gcd}\left([L: F], s^{\prime}\right) \cdot\left(t / s^{\prime}\right)$.

Proof. By Prop. 1.7, there is a noncanonical decomposition in $\operatorname{Br}(L), D \sim$ $S^{\prime} \otimes_{L} T^{\prime}$ where $S^{\prime} \in \mathcal{D}_{i s}(L)$ and $T^{\prime} \in \mathcal{D}_{t t r}(L)$. As $\operatorname{ker}\left(\theta_{D}\right)=\Gamma_{T^{\prime}} / \Gamma_{L}$, we have $t=\exp \left(\operatorname{ker} \theta_{D}\right)=\exp \left(\Gamma_{T^{\prime}} / \Gamma_{L}\right)$. Let $T^{\prime}=\stackrel{r}{\otimes} T_{i=0}^{\prime}$ be the primary decomposition of T^{\prime}. Since $T_{i}^{\prime} \in \mathcal{D}_{\text {ttr }}(L)$, by Prop. 1.6, $T_{i}^{\prime=0}$ is a tensor product of tame totally ramified symbol algebras

$$
T_{i}^{\prime}=\stackrel{j(i)}{\bigotimes_{j=1}^{\otimes}}\left(x_{(i, 2 j-1)}, x_{(i, 2 j)} ; L\right)_{t(i, j)}
$$

where

$$
\Gamma_{T_{2}^{\prime}} / \Gamma_{L}=\stackrel{j(i)}{\oplus} \underset{j=1}{\oplus}\left|\left\langle\frac{1}{t(i, j)} v\left(x_{(i, 2 j-1)}\right)+\Gamma_{L}, \frac{1}{t(i, j)} v\left(x_{(i, 2 j)}\right)+\Gamma_{L}\right\rangle\right|
$$

(cf. Prop. 3.1). Note that as

$$
\exp \left(\Gamma_{T_{i}^{\prime}} / \Gamma_{L}\right)=\text { the } p_{i} \text {-component of } \exp \left(\Gamma_{T^{\prime}} / \Gamma_{L}\right)=p_{i}^{e_{i}}
$$

each $t(i, j) \mid p_{i}^{e_{i}}$. (For $n \in \mathbb{Z}$ and p a prime, if we write $n=n_{p} \cdot n_{p}^{\prime}$ where n_{p} is a power of p and n_{p}^{\prime} is prime to p, then we refer to n_{p} as the p-component of n.)

Since $\Gamma_{L}=\Gamma_{F}, x_{\left(i, j^{\prime}\right)}=u_{\left(i, j^{\prime}\right)} y_{\left(i, j^{\prime}\right)}, 1 \leq j^{\prime} \leq 2 j(i)$, for some $y_{\left(i, j^{\prime}\right)} \in F^{*}$ and $u_{\left(i, j^{\prime}\right)} v$-units in L^{*}. Note that

$$
\begin{aligned}
& \left(x_{(i, 2 j-1)}, x_{(i, 2 j)} ; L\right)_{t(i, j)} \\
\sim & \left(u_{(i, 2 j-1)}, x_{(i, 2 j)} ; L\right)_{t(i, j)} \otimes\left(y_{(i, 2 j-1)}, u_{(i, 2 j)} ; L\right)_{t(i, j)} \otimes\left(y_{(i, 2 j-1)}, y_{(i, 2 j)} ; L\right)_{t(i, j)}
\end{aligned}
$$

and

$$
\left[\left(u_{(i, 2 j-1)}, x_{(i, 2 j)} ; L\right)_{t(i, j)} \otimes\left(y_{(i, 2 j-1)}, u_{(i, 2 j)} ; L\right)_{t(i, j)}\right] \in \operatorname{Br}\left(L_{n r} / L\right)
$$

Let S_{i} be the underlying division algebra of

$$
\stackrel{\otimes_{j=1}^{j(i)}}{\otimes}\left[\left(u_{(i, 2 j-1)}, x_{(i, 2 j)} ; L\right)_{t(i, j)} \otimes\left(y_{(i, 2 j-1)}, u_{(i, 2 j)} ; L\right)_{t(i, j)}\right]
$$

and $T_{i}=\stackrel{\bigotimes_{j=1}^{\otimes(i)}}{\otimes}\left(y_{(i, 2 j-1)}, y_{(i, 2 j)} ; L\right)_{t(i, j)}$. It follows from Prop. 3.1, that $T:=$ $\stackrel{r}{\otimes} T_{i} \in \mathcal{D}_{t t r}(L)$. Then by replacing S^{\prime} and T^{\prime} with the underlying division algebra of $S^{\prime} \otimes\left(\stackrel{r}{\otimes} \underset{i=0}{\otimes} S_{i}\right)$ and T, we have in $\operatorname{Br}(L), D \sim S \otimes_{L} T$ where $S \in \mathcal{D}_{i s}(L), T=\stackrel{r}{\otimes} T_{i=0}$ and $T_{i}=\stackrel{\bigotimes_{j=1}^{j(i)}}{\otimes}\left(y_{(i, 2 j-1)}, y_{(i, 2 j)} ; L\right)_{t(i, j)}$ with $y_{\left(i, j^{\prime}\right)} \in F^{*}$. And ${ }^{c} D \sim{ }^{c} S \otimes_{F}{ }^{c} T$ where ${ }^{c} S \in \mathcal{D}_{i s}(F)$ by Theorem 2.4.
(a) Suppose $4 \nmid t$ or $\mu_{4} \subseteq F$.

By Prop. 4.1 (a) for $1 \leq i \leq r_{0}$, and by Prop. 4.2 (a) and Lemma 4.3 for $i=0,{ }^{c} T_{i} \sim{\underset{j=1}{j(i)}}_{\otimes}^{\otimes}\left(y_{(i, 2 j-1)}, y_{(i, 2 j}^{\ell(i, j)} ; F\right)_{t(i, j) / r(i, j)}$ where $\ell(0, j)=f_{j} \cdot[L$: $\left.F\left(\omega_{t(0, j)}\right)\right]$ with f_{j} an odd integer, $\ell(i, j)=\left[L: F\left(\omega_{t(i, j)}\right)\right]$ for $1 \leq i \leq r_{0}$ and $r(i, j)=\left[F\left(\omega_{t(i, j)}\right): F\right]$ for $0 \leq i \leq r_{0}\left(\omega_{t(i, j)}\right.$ is a primitive $t(i, j)$ th root of unity). Let $d(i, j)=\operatorname{gcd}\left(\ell(i, j), \frac{t(i, j)}{r(i, j)}\right), \ell^{\prime}(i, j)=\frac{\ell(i, j)}{d(i, j)}$, and $t^{\prime}(i, j)=\frac{t(i, j)}{r(i, j) d(i, j)}=\frac{t(i, j)}{g c d([L: F], t(i, j))}$ so that $\operatorname{gcd}\left(\ell^{\prime}(i, j), t^{\prime}(i, j)\right)=1$. Then $r(i, j) d(i, j)=\operatorname{gcd}([L: F], t(i, j))$ as $r(i, j) \ell(i, j)=[L: F]$ for $1 \leq i \leq r_{0}$ and $r(0, j) \ell(0, j)=[L: F] f_{j}, 2 \nmid f_{j}$, and $t(0, j)$ are powers of 2 . Then ${ }^{c} T_{i} \sim{\underset{j=1}{\otimes(i)}}_{\otimes_{j=1}}\left(y_{(i, 2 j-1)}, y_{(i, 2 j)}^{\ell^{\prime}(i, j)} ; F\right)_{t^{\prime}(i, j)}$.
 $\operatorname{Br}(F)$. Since

$$
\begin{aligned}
\Gamma_{T} / \Gamma_{L}=\Gamma_{T} / \Gamma_{F} & =\underset{i=0}{\oplus}\left(\Gamma_{T_{i}} / \Gamma_{F}\right)= \\
& =\underset{i=0}{\underset{\oplus}{j(i)}} \underset{j=1}{\oplus}\left\langle\frac{1}{t(i, j)} v\left(y_{(i, 2 j-1)}\right)+\Gamma_{F}, \frac{1}{t(i, j)} v\left(y_{(i, 2 j)}\right)+\Gamma_{F}\right\rangle
\end{aligned}
$$

and $\Gamma^{c} T_{i} / \Gamma_{F} \subseteq \Gamma_{T_{i}} / \Gamma_{F}$, it follows from Prop. 2.4 that ${ }^{c} T \cong{ }_{i=0}^{{ }_{8}}{ }^{c} T_{i} \in$ $\mathcal{D}_{t t r}(F)$ and

$$
\begin{aligned}
& \Gamma_{c_{T}} / \Gamma_{F}=\underset{i=0}{r_{0}}\left(\Gamma_{c T_{i}} / \Gamma_{F}\right)= \\
& =\underset{i=0}{r_{0}} \underset{\substack{j(i)}}{\underset{j=1}{\oplus}}\left\langle\frac{1}{t^{\prime}(i, j)} v\left(y_{(i, 2 j-1)}\right)+\Gamma_{F}, \frac{1}{t^{\prime}(i, j)} v\left(y_{(i, 2 j)}\right)+\Gamma_{F}\right\rangle,
\end{aligned}
$$

as $\operatorname{gcd}\left(\ell^{\prime}(i, j), t^{\prime}(i, j)\right)=1$.
Let $T^{\prime}=\underset{i=0}{\stackrel{r}{0}_{0}^{\otimes}} T_{i}$. Then

$$
\begin{aligned}
\Gamma_{T^{\prime}} / \Gamma_{L} & =\underset{i=0}{\stackrel{r_{0}}{\oplus}\left(\Gamma_{T_{i}} / \Gamma_{L}\right)} \\
& =\underset{\substack{r_{0} \\
i=0 j=1}}{\oplus(i)}\left\langle\frac{1}{t(i, j)} v\left(y_{(i, 2 j-1)}\right)+\Gamma_{L}, \frac{1}{t(i, j)} v\left(y_{(i, 2 j)}\right)+\Gamma_{L}\right\rangle .
\end{aligned}
$$

Since $\Gamma_{L}=\Gamma_{F}$ and

$$
\frac{t^{\prime}(i, j)=t(i, j)}{\operatorname{gcd}([L: F], t(i, j)), \Gamma_{c_{T}} / \Gamma_{F}=[L: F]\left(\Gamma_{T^{\prime}} / \Gamma_{L}\right)} .
$$

Recall that $s=2^{e_{0}} p_{1}^{e_{1}} \cdots p_{r_{0}}^{e_{r_{0}}}=\exp \left(\Gamma_{T^{\prime}} / \Gamma_{L}\right)$, as $t=2^{e_{0}} p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}=$ $\exp \left(\Gamma_{T} / \Gamma_{L}\right)$. Note that $(t / s) \Gamma_{T} \subseteq \Gamma_{T^{\prime}}$, as $\exp \left(\Gamma_{T_{i}} / \Gamma_{L}\right) \mid(t / s)$ for $i>r_{0}$. Also, for $0 \leq i \leq r_{0}$, as each $t(i, j) \mid s$, each $t(i, j) / t^{\prime}(i, j)=\operatorname{gcd}([L: F]$, $t(i, j)) \mid \operatorname{gcd}([L: F], s)$. Therefore, $\operatorname{gcd}([L: F], s) \Gamma_{T^{\prime}} \subseteq \Gamma_{c_{T}}$. Hence, as $n=\operatorname{gcd}([L: F], s) \cdot(t / s)$, we have $n \Gamma_{T} \subseteq \Gamma_{c T}$.

Note that if A is a finite abelian group (written additively) and ℓ is a positive integer, then

$$
\begin{equation*}
\exp (\ell \cdot A)=\frac{\exp (A)}{\operatorname{gcd}(\ell, \exp (A))} \tag{4.7}
\end{equation*}
$$

(This follows from the fact that there is $b \in A$ with $o(b)=\exp (A)$ and the formula $o(\ell \cdot b)=o(b) / \operatorname{gcd}(\ell, o(b))$.) Since $\Gamma_{c_{T}} / \Gamma_{F}=[L: F]\left(\Gamma_{T^{\prime}} / \Gamma_{L}\right)$ and $\Gamma_{T^{\prime}} / \Gamma_{L}$ is a finite abelian group,

$$
\exp \left(\Gamma_{c_{T}} / \Gamma_{F}\right)=\frac{\exp \left(\Gamma_{T^{\prime}} / \Gamma_{L}\right)}{\operatorname{gcd}\left([L: F], \exp \left(\Gamma_{T^{\prime}} / \Gamma_{L}\right)\right)}=s / \operatorname{gcd}([L: F], s)
$$

by (4.7) above. Since ${ }^{c} D \sim{ }^{c} S \otimes_{F}{ }^{c} T$ with ${ }^{c} S \in \mathcal{D}_{i s}(F)$ and ${ }^{c} T \in \mathcal{D}_{\text {ttr }}(F)$, by Prop. $1.7 \exp \left(\operatorname{ker} \theta_{c_{D}}\right)=\exp \left(\Gamma_{c_{T}} / \Gamma_{F}\right)=s / \operatorname{gcd}([L: F], s)$.

Let

$$
K=F\left(\left\{y_{(i, 2 j-1)}^{1 / t^{\prime}(i, j)}, y_{(i, 2 j)}^{1 / t^{\prime}(i, j)}\right\}_{i=0}^{r_{0} j(i)}\right) .
$$

Then K / F is totally ramified and $\Gamma_{K}=\Gamma_{c_{T}}$. Since ${ }^{c} S \in \mathcal{D}_{i s}(F)$ and K / F is totally ramified, by [JW2, Cor. 5.13] $Z\left(\overline{\left({ }^{c} S\right)_{K}}\right)=\mathcal{F}\left(\theta_{c_{S}}\left(\left(\Gamma_{c_{S}} \cap \Gamma_{K}\right) / \Gamma_{F}\right)\right)$, where $\left({ }^{c} S\right)_{K}$ is the underlying division algebra of ${ }^{c} S \otimes_{F} K$. Also since ${ }^{c} D \sim$ ${ }^{c} S \otimes_{F}{ }^{c} T$ with ${ }^{c} S \in \mathcal{D}_{i s}(F)$ and ${ }^{c} T \in \mathcal{D}_{t t r}(F)$, by Prop. $1.7 Z\left(\overline{{ }^{c} D}\right)=$ $\mathcal{F}\left(\theta_{c_{S}}\left(\left(\Gamma_{c_{S}} \cap \Gamma_{c_{T}}\right) / \Gamma_{F}\right)\right)$. Hence $Z(\bar{c} \bar{D})=Z\left(\overline{\left({ }^{c} S\right)_{K}}\right)$ as $\Gamma_{c_{T}}=\Gamma_{K}$.

Now, since K / F is Galois and $K \cap L=F$ with K / F totally ramified and L / F inertial, L and K are linearly disjoint over F and $L \otimes_{F} K$ is the field $L \cdot K$. So by [D1, p. 56, Ex. 1], $\left({ }^{c} S\right)_{K} \sim \operatorname{cor}_{L K / K}\left(S_{L K}\right)$ in $\operatorname{Br}(K)$, where $S_{L K}$ is the underlying division algebra of $S \otimes_{L} L K$. Since $S_{L K} \in \mathcal{D}_{i s}(L K)$ and $L K / K$ is inertial, by Theorem 2.4,

$$
\begin{equation*}
Z\left(\overline{{ }^{c} D}\right)=Z\left(\overline{\left({ }^{c} S\right)_{K}}\right) \subseteq \mathcal{N}\left(Z\left(\overline{S_{L K}}\right) / \bar{K}\right) . \tag{4.8}
\end{equation*}
$$

Recall that $n=\operatorname{gcd}([L: F], s) \cdot(t / s)$. We showed just before (4.7) that $n \Gamma_{T} \subseteq \Gamma_{c_{T}}=\Gamma_{K}=\Gamma_{L K} . \operatorname{So}, n\left(\left(\Gamma_{S} \cap \Gamma_{T}\right) /\left(\Gamma_{S} \cap \Gamma_{L K}\right)\right)=0$.

Let

$$
\theta_{S}: \Gamma_{S} / \Gamma_{L} \rightarrow \operatorname{Gal}(Z(\bar{S}) / \bar{L})
$$

be the map of (1.5). Then by [JW2, Lemma 5.1], θ_{S} is an isomorphism and $Z(\bar{S}) / \bar{L}$ is abelian Galois as $S \in \mathcal{D}_{i s}(L)$. By Prop. 1.7, $\theta_{S}\left(\left(\Gamma_{S} \cap \Gamma_{T}\right) / \Gamma_{L}\right)=$ $\operatorname{Gal}(Z(\bar{S}) / Z(\bar{D}))$. Also, since $S \in \mathcal{D}_{2 s}(L)$ and $L K / L$ is totally ramified, by [JW2, Cor. 5.13] again $\theta_{S}\left(\left(\Gamma_{S} \cap \Gamma_{L K}\right) / \Gamma_{L}\right)=\operatorname{Gal}\left(Z(\bar{S}) / Z\left(\overline{S_{L K}}\right)\right)$. So

$$
\begin{aligned}
\operatorname{Gal}\left(Z\left(\overline{S_{L K}}\right) / Z(\bar{D})\right) & \cong \operatorname{Gal}(Z(\bar{S}) / Z(\bar{D})) / \operatorname{Gal}\left(Z(\bar{S}) / Z\left(\overline{S_{L K}}\right)\right) \\
& \cong\left(\Gamma_{S} \cap \Gamma_{T}\right) /\left(\Gamma_{S} \cap \Gamma_{L K}\right)
\end{aligned}
$$

Hence $\operatorname{Gal}\left(Z\left(\overline{S_{L K}}\right) / Z(\bar{D})\right)$ is an abelian n-torsion group by the preceding paragraph. Note that $\mu_{n} \subseteq Z(\bar{D})$ as $n \mid t=\exp \left(\Gamma_{T} / \Gamma_{L}\right)$, and $\mu_{t} \subseteq \bar{L} \subseteq$ $Z(\bar{D})$. Hence by Kummer theory $Z\left(\overline{S_{L K}}\right)$ is an n-Kummer extension of $Z(\bar{D})$, i.e., $Z\left(\overline{S_{L K}}\right)=Z(\bar{D})\left(\left\{\alpha_{m}^{1 / n}\right\}_{m=1}^{s}\right)$ for some $\alpha_{m} \in Z(\bar{D})$. Therefore,

$$
\begin{equation*}
Z\left(\overline{S_{L K}}\right) \subseteq Z(\bar{D})^{1 / n} \tag{4.9}
\end{equation*}
$$

Since $\bar{K}=\bar{F}$, by (4.8) and (4.9) above

$$
Z(\bar{D}) \subseteq \mathcal{N}\left(Z(\bar{D})^{1 / n} / \bar{F}\right) \subseteq \mathcal{N}(Z(\bar{D}) / \bar{F})^{1 / n}
$$

(b) Suppose $4 \mid t$ and $\mu_{4} \nsubseteq F$.

By Prop. 4.1, for $1 \leq i \leq r_{0}$, as shown in proof of (a)

$$
{ }^{c} T_{i} \sim \stackrel{\bigotimes}{j=1}_{j(i)}^{\otimes}\left(y_{(i, 2 j-1)}, y_{(i, 2 j)}^{\ell(i, j)} ; F\right)_{t(i, j) / r(i, j)}
$$

where $\ell(i, j)=\left[L: F\left(\omega_{t(i, j)}\right)\right]$ and $r(i, j)=\left[F\left(\omega_{t(i, j)}\right): F\right]$, and for $r_{0}+1 \leq$ $i \leq r,{ }^{c} T_{i}=F$. Also, by Prop. 4.4 and Lemma 4.3, ${ }^{c} T_{0} \sim{\underset{j=1}{j(0)}}_{\otimes_{j}} A_{j}$ where

Then by the exact same arguments as in proof of (a), ${ }^{c} T \cong\left(\underset{j=1}{j(0)} A_{j}\right) \otimes_{F}$ $\left({ }_{i=1}^{r_{0}}{ }^{\otimes}{ }^{c} T_{i}\right) \in \mathcal{D}_{t t r}(F)$ and

$$
\begin{aligned}
& \Gamma_{c_{T}} / \Gamma_{F}=\left(\underset{j=1}{\underset{j}{\oplus}(0)}\left(\Gamma_{A_{j}} / \Gamma_{F}\right)\right) \oplus\left(\underset{i=1}{\left.\stackrel{r_{0}}{\oplus}\left(\Gamma_{c T_{i}} / \Gamma_{F}\right)\right)}\right. \\
& \left.=\left(\underset{j=0}{\stackrel{j(0)}{\oplus}\left(\Gamma_{A}\right.} / \Gamma_{F}\right)\right) \oplus[L: F]\left(\Gamma_{T^{\prime \prime}} / \Gamma_{L}\right)
\end{aligned}
$$

where $T^{\prime \prime}=\underset{i=1}{r_{0}} T_{i}$. So $\exp \left(\Gamma_{c_{T}} / \Gamma_{F}\right)=\varepsilon \exp \left([L: F]\left(\Gamma_{T^{\prime \prime}} / \Gamma_{L}\right)\right)$ where $\varepsilon=1$ or 2. But by (4.7),

$$
\begin{aligned}
\exp \left([L: F]\left(\Gamma_{T^{\prime \prime}} / \Gamma_{L}\right)\right) & =\frac{\exp \left(\Gamma_{T^{\prime \prime}} / \Gamma_{L}\right)}{\operatorname{gcd}\left([L: F], \exp \left(\Gamma_{T^{\prime \prime}} / \Gamma_{L}\right)\right)} \\
& =\frac{s^{\prime}}{\operatorname{gcd}\left([L: F], s^{\prime}\right)} .
\end{aligned}
$$

Hence $\exp \left(\Gamma_{c_{T}} / \Gamma_{F}\right)=\varepsilon s^{\prime} / \operatorname{gcd}\left([L: F], s^{\prime}\right)$.
As in (a), let K^{\prime} be a totally ramified extension of F with $\Gamma_{K^{\prime}}=\Gamma_{c_{T}}$. Let $n^{\prime}=\operatorname{gcd}\left([L: F], s^{\prime}\right) \cdot\left(t / s^{\prime}\right)$. Since $t(0, j) \mid 2^{e_{0}}$, we have $t(0, j) \mid n^{\prime}$. For $i>0$, we have, just as in (a), $t(i, j) \mid t^{\prime}(i, j) n^{\prime}$ if $i \leq r_{0}$ and $t(i, j) \mid n^{\prime}$ if $i>r_{0}$. These divisibility relations show $n^{\prime} \Gamma_{T} \subseteq \Gamma_{L K^{\prime}}$, hence $Z\left(\overline{{ }^{c} D}\right) \subseteq \mathcal{N}(Z(\bar{D}) / \bar{F})^{1 / n^{\prime}}$, by just the same argument as for (a).

Theorem 4.6 gives us the best general relation one can expect between $Z(\bar{D})$ and $Z\left(\overline{{ }^{c}} \bar{D}\right)$ for $D \in \mathcal{D}_{t}(L), L / F$ inertial, as the following example illustrates.

Example 4.10. Let r_{1}, r_{2}, and t be positive integers with $t \mid[L: F]$. Let x_{1}, $x_{2} \in F^{*}$ such that for any prime p dividing r_{1}, r_{2} or t, we have $v\left(x_{1}\right)+p \Gamma_{F}$, $v\left(x_{2}\right)+p \Gamma_{F}$ are \mathbb{Z}_{p}-linearly independent in $\Gamma_{F} / p \Gamma_{F}=\Gamma_{L} / p \Gamma_{L}$. Suppose $\mu_{\ell} \subseteq F$, where $\ell=\ell \mathrm{cm}\left(r_{1}, r_{2}, t\right)$. Then if D is the underlying division algebra of $\left(x_{1}, u_{1} ; L\right)_{r_{1}} \otimes_{L}\left(x_{2}, u_{2} ; L\right)_{r_{2}} \otimes\left(x_{1}, x_{2} ; L\right)_{t}$, where u_{1} and u_{2} are units in L^{*}, then by Prop. 1.4 and as $t \mid[L: F]$, in $\operatorname{Br}(F)$

$$
\begin{aligned}
{ }^{c} D \sim & \left(x_{1}, N_{L / F}\left(u_{1}\right) ; F\right)_{r_{1}} \otimes_{F} p\left(x_{1}, N_{L / F}\left(u_{2}\right) ; F\right)_{r_{2}} \\
& \quad \otimes_{F}\left(x_{1}, x_{2}^{[L F F]} ; F\right)_{t} \\
& \sim\left(x_{1}, N_{L / F}\left(u_{1}\right) ; F\right)_{r_{1}} \otimes_{F}\left(x_{2}, N_{L / F}\left(u_{2}\right) ; F\right)_{r_{2}} .
\end{aligned}
$$

So, by Cor. 3.5, $Z(\bar{D})=\bar{L}\left(\bar{u}_{1}^{t / r_{1}}, \bar{u}_{2}^{t / r_{2}}\right)$, and $Z(\bar{c} \bar{D})=\bar{F}\left(\left(N_{\bar{L} / \bar{F}}\left(\bar{u}_{1}\right)\right)^{1 / r_{1}}\right.$, $\left.\left(N_{\bar{L} / \bar{F}}\left(\bar{u}_{2}\right)\right)^{1 / r_{2}}\right)$. Hence $Z\left(\overline{{ }^{c} D}\right) \subseteq \mathcal{N}(Z(\bar{D}) / \bar{F})^{1 / t}$, where $t=\operatorname{gcd}(t,[L: F])$ as $t \mid[L: F]$.

Appendix.

In [Ta, p. 259], Tate gave a formula describing the homological corestriction using a set of representatives of the right cosets. From this, we will deduce a formula stated in Section 1 describing the homological corestriction with respect to a set of representatives of the left cosets. Presumably, this formula is known, but we have been unable to find it in the literature, except for $m \leq 2$. Here we use the notation $\overline{\sigma \rho_{i}}$ for $\rho_{\sigma_{*}(i)}$ in (1.3) above.

Let G be a group and A a left G-module. Let H be a subgroup of G of finite index n, and let $\mathcal{R}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of representatives of the right cosets of H in G. For $\tau \in G$, we write $\bar{\tau} \in R$ for the representative of $H \tau$. Given $\alpha_{i} \in \mathcal{R}$ and $\sigma \in G$, there are uniquely determined elements $\varepsilon\left(\alpha_{i}, \sigma\right) \in H$ and $\overline{\alpha_{i} \sigma} \in \mathcal{R}$ such that

$$
\begin{equation*}
\alpha_{i} \sigma=\varepsilon\left(\alpha_{i}, \sigma\right) \overline{\alpha_{i} \sigma} \tag{A1}
\end{equation*}
$$

Then we have, for any $\sigma, \tau \in G$ and $\alpha_{i} \in \mathcal{R}$,

$$
\begin{equation*}
\varepsilon\left(\alpha_{i}, 1\right)=1, \quad \text { and } \quad \varepsilon\left(\alpha_{i}, \sigma \tau\right)=\varepsilon\left(\alpha_{i}, \sigma\right) \varepsilon\left(\overline{\alpha_{i} \sigma}, \tau\right) \tag{A2}
\end{equation*}
$$

By [Ta, p. 259], the homological corestriction from $H^{m}(H, A)$ to $H^{m}(G, A)$ ($m \geq 1$) can be described as follows: It is the homomorphism $\operatorname{cor}_{H}^{G}$ of the cohomology groups induced by the cochain transformation of $C^{m}(H, A)$ into $C^{m}(G, A)$, for a cochain $f \in C^{m}(H, A)$, given by

$$
\begin{align*}
& \operatorname{cor}_{H}^{G}(f)\left(\sigma_{1}, \ldots, \sigma_{m}\right)= \tag{A3}\\
& =\sum_{i=1}^{n} \alpha_{i}^{-1}\left[f \left(\varepsilon\left(\alpha_{i}, \sigma_{1}\right), \varepsilon\left(\overline{\alpha_{i} \sigma_{1}}, \sigma_{2}\right), \ldots, \varepsilon\left(\overline{\alpha_{i} \sigma_{1} \cdots \sigma_{j-1}}, \sigma_{j}\right)\right.\right. \\
& \left.\left.\quad \ldots, \varepsilon\left(\overline{\alpha_{i} \sigma_{1} \cdots \sigma_{m-1}}, \sigma_{m}\right)\right)\right]
\end{align*}
$$

Let $\rho_{i}=\alpha_{i}^{-1}$ for $1 \leq i \leq n$, so $\mathcal{L}=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$ is a set of representatives of the left cosets of H in G. For $\tau \in G$, we write $\bar{\tau} \in \mathcal{L}$ for the representative of τH in \mathcal{L}. (It will be clear from the context when $\bar{\tau}$ stands for a left coset representative and when for a right coset representative.) Given $\rho_{i} \in \mathcal{L}$ and $\sigma \in G$, there are uniquely determined elements $\overline{\sigma \rho_{i}} \in \mathcal{L}$ and $\delta\left(\sigma, \rho_{i}\right) \in H$ such that

$$
\begin{equation*}
\sigma \rho_{i}=\overline{\sigma \rho_{i}} \delta\left(\sigma, \rho_{i}\right) . \tag{A4}
\end{equation*}
$$

Then, since $\overline{\sigma \tau \rho_{i}} \delta\left(\sigma \tau, \rho_{i}\right)=\overline{\sigma \overline{\tau \overline{\rho_{i}}}} \delta\left(\sigma, \overline{\tau \rho_{i}}\right) \delta\left(\tau, \rho_{i}\right)$ for any $\sigma, \tau \in G$, and $\rho_{i} \in$ \mathcal{L}, we have

$$
\begin{equation*}
\overline{\sigma \tau \rho_{i}}=\overline{\sigma \overline{\tau \rho_{i}}}, \quad \text { and } \quad \delta\left(\sigma \tau, \rho_{i}\right)=\delta\left(\sigma, \overline{\tau \rho_{i}}\right) \delta\left(\tau, \rho_{i}\right) \tag{A5}
\end{equation*}
$$

Since $1=\delta\left(\sigma \sigma^{-1}, \rho_{i}\right)=\delta\left(\sigma, \overline{\sigma^{-1} \rho_{i}}\right) \delta\left(\sigma^{-1}, \rho_{i}\right)$, we have also
(A6) $\quad \delta\left(\sigma^{-1}, \rho_{i}\right)^{-1}=\delta\left(\sigma, \overline{\sigma^{-1} \rho_{i}}\right) \quad$ for any $\quad \sigma \in G \quad$ and $\quad \rho_{i} \in \mathcal{L}$.

By taking the inverses in the both sides of (A1), we have

$$
\sigma^{-1} \alpha_{i}^{-1}={\overline{\alpha_{i}}}^{-1} \varepsilon\left(\alpha_{i}, \sigma\right)^{-1}
$$

where $\overline{\alpha_{i} \sigma^{-1}} \in \mathcal{L}$ and $\varepsilon\left(\alpha_{2}, \sigma\right)^{-1} \in H$. But $\sigma^{-1} \alpha_{i}^{-1}=\overline{\sigma^{-1} \rho_{i}} \delta\left(\sigma^{-1}, \rho_{i}\right)$ where $\overline{\sigma^{-1} \rho_{i}} \in \mathcal{L}$ and $\delta\left(\sigma^{-1}, \rho_{i}\right) \in H$ are uniquely determined elements as in (A4). Hence we have

$$
\begin{equation*}
\overline{\alpha_{i} \sigma^{-1}}=\overline{\sigma^{-1} \rho_{2}} \tag{A7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon\left(\alpha_{i}, \sigma\right)=\delta\left(\sigma^{-1}, \rho_{i}\right)^{-1}=\delta\left(\sigma^{-1}, \alpha_{i}^{-1}\right)^{-1} \tag{A8}
\end{equation*}
$$

Now by using successively (A3), (A8), (A7), (A5) and (A6), the cochain transformation (A3) becomes;

$$
\operatorname{cor}_{H}^{G}(f)\left(\sigma_{1}, \ldots, \sigma_{m}\right)=
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \alpha_{i}^{-1}\left[f \left(\varepsilon\left(\alpha_{i}, \sigma_{1}\right), \varepsilon\left(\overline{\alpha_{i} \sigma_{1}}, \sigma_{2}\right),\right.\right. \\
& \left.\left.\ldots, \varepsilon\left(\overline{\alpha_{i} \sigma_{1} \cdots \sigma_{j-1}}, \sigma_{j}\right), \ldots, \varepsilon\left(\overline{\alpha_{i} \sigma_{1} \cdots \sigma_{m-1}}, \sigma_{m}\right)\right)\right] \\
& =\sum_{i=1}^{n}{\alpha_{i}^{-1}\left[f \left(\delta\left(\sigma_{1}^{-1}, \alpha_{i}^{-1}\right)^{-1}, \delta\left(\sigma_{2}^{-1}, \overline{\alpha_{i} \sigma_{1}}{ }^{-1}\right)^{-1},\right.\right.}^{\ldots \delta\left(\sigma_{j}^{-1}, \overline{\alpha_{i} \sigma_{1} \cdots \sigma_{j-1}}{ }^{-1}\right)^{-1},} \\
& \left.\left.\ldots, \delta\left(\sigma_{m}^{-1}, \overline{\alpha_{i} \sigma_{1} \cdots \sigma_{m-1}}{ }^{-1}\right)^{-1}\right)\right] \\
& =\sum_{i=1}^{n} \rho_{i}\left[f \left(\delta\left(\sigma_{1}^{-1}, \rho_{i}\right)^{-1}, \delta\left(\sigma_{2}^{-1}, \overline{\sigma_{1}^{-1} \rho_{i}}\right)^{-1},\right.\right. \\
& \ldots, \delta\left(\sigma_{j}^{-1},\left(\overline{\left.\sigma_{1} \cdots \sigma_{j-1}\right)^{-1} \rho_{i}}\right)^{-1},\right. \\
& \left.\ldots, \delta\left(\sigma_{m}^{-1},\left(\overline{\left.\sigma_{1} \cdots \sigma_{m-1}\right)^{-1} \rho_{i}}\right)^{-1}\right)\right] \\
& =\sum_{i=1}^{n} \rho_{i}\left[f \left(\delta\left(\sigma_{1}, \overline{\sigma_{1}^{-1} \rho_{i}}\right), \delta\left(\sigma_{2}, \overline{\sigma_{2}^{-1} \sigma_{1}^{-1} \rho_{i}}\right),\right.\right. \\
& \left.\ldots, \delta\left(\sigma_{j}, \overline{\sigma_{j}^{-1} \sigma_{j-1}^{-1} \cdots \sigma_{1}^{-1} \rho_{i}}\right), \ldots, \delta\left(\sigma_{m}, \overline{\sigma_{m}^{-1} \sigma_{m-1}^{-1} \cdots \sigma_{1}^{-1} \rho_{i}}\right)\right] \\
& =\sum_{i=1}^{n} \overline{\sigma_{1} \cdots \sigma_{m} \rho_{i}}\left[f \left(\delta\left(\sigma_{1}, \overline{\sigma_{2} \cdots \sigma_{m} \rho_{i}}\right), \delta\left(\sigma_{2}, \overline{\sigma_{3} \cdots \sigma_{m} \rho_{i}}\right),\right.\right. \\
& \left.\left.\ldots, \delta\left(\sigma_{j}, \overline{\sigma_{j+1} \cdots \sigma_{m} \rho_{i}}\right), \ldots, \delta\left(\sigma_{m}, \rho_{i}\right)\right)\right],
\end{aligned}
$$

by replacing ρ_{i} with $\overline{\sigma_{1} \cdots \sigma_{m} \rho_{i}}$, since $\left\{\overline{\sigma_{1} \cdots \sigma_{m} \rho_{1}}, \ldots, \overline{\sigma_{1} \cdots \sigma_{m} \rho_{n}}\right\}$ is a permutation of $\left\{\rho_{1}, \ldots, \rho_{n}\right\}$.

The homological corestriction $\operatorname{cor}_{H}^{G}$ from $H^{m}(H, A)$ to $H^{m}(G, A)(m \geq 1)$ is the homomorphism of cohomology groups induced by the cochain transformation $C^{m}(H, A) \rightarrow C^{m}(G, A)$ just computed.

Acknowledgment.

I am grateful to the referee for improving the proofs of Proposition 4.1 and 4.2.

References

[Bo] N. Bourbaki, Algèbre Commutative, Chapitre VI, Valuations, Hermann, Paris, 1961.
[B] K. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982.
[CF] J.W.S. Cassels and A. Frölich, Eds., Algebraic Number Theory, Academic Press, London, 1967.
[D1] P. Draxl, Skew Fields, London Math. Soc. Lecture Note Series, Vol. 81, Cambridge Univ. Press, Cambridge, 1983.
[D2] _ Ostrowski's theorem for Henselian valued skew fields, J. Reine Angew. Math., 354 (1984), 213-218.
[E] O. Endler, Valuation Theory, Springer-Verlag, New York, 1972.
[H1] Y. Hwang, The corestriction of valued division algebras over Henselian Fields, Doctoral Dissertation, University of California, San Diego, 1992.
[H2] , The corestriction of valued division algebras over Henselin Fields II, Pacific J. Math., 170 (1995), 83-103.
[JW1] B. Jacob and A. Wadsworth, A new construction of noncrossed product algebras, Trans. Amer. Math. Soc., 293 (1986), 693-721.
[JW2] , Division algebras over Henselian fields, J. Algebra, 128 (1990), 126-179.
[L] S. Lang, Algebra, Second Edition, Addison-Wesley, Menlo Park, Calibornia, 1984.
[M] A. S. Merkurjev, On the structure of the Brauer groups of fields, Izv. Akad. Nauk SSSR Ser. Mat., 49 (1985), 828-846; (English trans.) Math. USSR Izv., 27 (1986), 141-157.
[MW] P. Morandi and A. Wadsworth, Integral Dubrovin valuation rings, Trans. Amer. Math. Soc., 315, Number 2 (1989), 623-640.
[P] R. S. Pierce, Associative Algebras, Springer-Verlag, New York, 1982.
[Re] I. Reiner, Maximal Orders, Academic Press, London, 1975.
[Rb] P. Ribenboim, Equivalent forms of Hensel's lemma, Exposition. Math., 3 (1985), 3-24.
[Ri] C. Riehm, The corestriction of algebraic structures, Invent. Math., 11 (1970), 73-98.
[Ro] J.J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
[S] O.F.G. Schilling, The Theory of Valuations, Math Surveys no. 4, Amer. Math. Soc., Providence, R.I., 1950.
[Se] J.-P. Serre, Local Fields, Springer-Verlag, New York, 1979, (English trans. of Corps Locaux).
[Ta] J. Tate, Relations between K_{2} and Galois Cohomology, Invent. Math., 36 (1976), 257-274.
[Ti] J.-P. Tignol, On the corestriction of central simple algebras, Math. Z., 194 (1987), 267-274.
[TW] J.-P. Tignol and A. Wadsworth, Totally ramified valuations on finite dimensional division algebras, Trans. Amer. Math. Soc., 98 (1986), 20-22.
[W1] A. Wadsworth, Extending valuations to finite dimensional division algebras, Proc. Amer. Math. Soc., 98 (1986), 20-22.
[W2] _ Valuations on tensor products of symbol algebras, Azumaya Algebras, Actions and Modules (D. Haile and J. Osterburg, eds.) Contemp. Math., Vol. 124, Amer. Math. Soc., 1992, 275-289.
[We] E. Weiss, Cohomology of Groups, Academic Press, New York, 1969.
Received November 10, 1992 and revised April 8, 1993. Partially supported as a research assistant by the NSF.
Department of Mathematics
Korea University
Anam-Dong 5-1, Sungbuk-Ku
Seoul 136-701, Korea
E-MAIL ADDRESS: YHWANG@SEMI.KOREA.AC.KR

