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DIRECTIONAL DIFFERENTIABILITY OF THE METRIC
PROJECTION IN HILBERT SPACE

DOMINIKUS NOLL

The differentiability properties of the metric projection Pc
on a closed convex set C in Hilbert space are characterized
in terms of the smoothness type of the boundary of C. Our
approach is based on using variational type second derivatives
as a sufficiently flexible tool to describe the boundary struc-
ture of the set C with regard to the differentiability of Pc. We
extend results by R.B. Holmes and S. Fitzpatrick and R.R.
Phelps.

1. Introduction.

Let H be a real Hilbert space, C a closed convex subset of H. Given an
element x of iϊ, consider the problem of finding the best approximation of
x by elements of C. Let the unique best approximating element of C be
denoted by Pc^ > or simply Px, that is

(1.1) \\x-Px\\= inf{ | |ar-ί/ | | :yeC}.

The operator P so defined is called the nearest point mapping or the metric
projection onto C. One may ask how the solution Px of (1.1) behaves under
slight perturbations of the data x.

Such sensitivity analysis of the best approximation problem is of course
closely tied to the differentiability properties of the metric projection, and
the latter therefore have been looked at by many authors. We mention
in particular the work of E.H. Zarantonello [29, 30], R.B. Holmes [17], S.
Fitzpatrick and R. Phelps [14]. For other references see F. Mignot [19], A.
Haraux [15], where applications to variational inequalities are considered, J.
Sokolowski [27, 28], K. Malanowski [18], or A. Shapiro [25, 26] for sensi-
tivity analysis, T. Abatzoglu [1] for relations to approximation theory, R.R.
Phelps [22] for an application in nonlinear optimization, and [7, 8], [21] for
further information.

It is well-known that, at least in a separable Hilbert space, the operator
P, being non-expansive, is Gateaux differentiable almost everywhere. See
N. Aronszajn [2], and also [15], [19], [11] for this extension of Rademacher's
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Theorem to infinite dimensions. However, one could not hope to obtain a
more refined analysis of the differentiability properties of P by using these
techniques. In [16], therefore, J.B. Hiriart-Urruty posed the problem of
characterizing the differentiability points of P as well as providing techniques
which allow one to calculate the derivatives in a more or less explicit form.

It seems clear that the differentiability of P should be somehow tied to
the smoothness of the boundary of the set C. Highlighting this observation,
R.B. Holmes [17] has shown that if C has boundary of class Ck(k > 2),
then P is of class Ck~ι in H\C, and S. Fitzpatrick and R. Phelps [14] have
shown that the converse is also true under an additional (in fact a necessary
and sufficient) qualification hypothesis (see Section 6 for this). The situation
becomes more complicated, however, when the smoothness type assumption
is not satisfied throughout the boundary of the set C. For instance, if Px
is a point of second order smoothness of C, (meaning that the gauge μc is
twice differentiate at Px), is it true that P is differentiate at x G H\CΊ
We shall present an answer to this and related problems concerning the first
order differentiability of P.

It turns out that the key to understanding the differentiability of the
metric projection is to consider variational type second order concepts such as
second order Mosco derivatives or second order Attouch-Wets derivatives. In
fact we will show here that P is Gateaux (Frechet) differentiable at x E H\C
if and only if the boundary of C is second order Mosco (Attouch-Wets)
smooth at the point Px.

This gives new insight even in finite dimensions, for in this case, second
order Mosco derivates coincide with second order epi derivates in the sense
of R.T. Rockafellar [23, 24].

2. Differentiability.

It was shown by E. Zarantonello [29] that the metric projection P onto a
closed convex set C with nonempty interior has a directional derivative at
every boundary point x G dC in the sense that

(2.1) P(x + th)=x + t d+P(x)h + o(<),

h e H, t -» 0+. Here the operator d+P(x) turns out to be the orthogonal

projection Ps{x) onto the support cone of C at x:

S(x)=\J\(C-x).
λ > 0

In particular, d+P(x) can only be linear in the rather special case where S(x)
is a linear subspace. This observation suggests that one should in general
consider directional type derivatives of the operator P.
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We will say that P is directionally Gateaux differentiable at x G H, if the
limit

exists in norm for every h G H, or equivalently, if

(2.3) P(x + th) = P{x) +1 d+P(x)h + o(t),

for h G H, t -> 0+, where o(t)/t -» 0 in norm as t -* 0+. Notice that our
approach is more general as for instance in [14], where the authors consider
Gateaux derivatives in the more restricted sense that the operator d+P(x)
has to be linear. We preserve their notation dP(x) for this particular case. If
the limit (2.2) is uniform over \\h\\ < 1, then P is said to have a directional
Frechet derivative at x, noted -P|(#). Again we use the notation P'{x)
(consistent with [14]) to indicate when P+(x) is linear. Let us collect some
basic information about d+P. To start with, recall the fact that P is the
Prechet derivative of the continuous convex function f on H defined by

(2-4) f{x) = \\\x\\2-\\\x

(see [14] or [29]). This gives rise to the following observation.

Proposition 2.1. Let x G H\C, and suppose d+P(x) exists. Then f given
by (2.4) is twice differentiable at x in the sense that it has a second order
Taylor expansion at x of the form

(2.5) f(x + th) = f(x) + ί(V/(aτ), h) + t2q(h) + o(t2),

h G H, t —> 0 +

; VF/(x) = Px, for a positive and positively 2-homogeneous

continuous convex function q : H -> R. Moreover, we have

(2.6) d+P(x)h = VFg(/ι), heH.

Proof. As P = V/, the convergence of }(P(x + th) — Px,h) implies the
existence of a second order Taylor expansion of t -» f(x + th) at t = 0, that
is

/Or + th) = f(x) + t{Vf(x),h) + ^(d+P(x)h,h) + o(ί2),

t —)> 0+. (See for instance [10, §2]). In other terms, (2.5) is satisfied with q
given by q(h) = \(d+P(x)h,h), which is continuous, convex and positively
2-homogeneous. We have to show that d+P(x)h = VFg(/i) for every h.
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Consider the second order difference quotient of / at x, that is

(97λ Λ , M f(x + th)-f(x)-t(y,h)

t φ 0, h G H, (y = Vf(x) = Px). Then (2.5) means Δ/)X)2Λί -> g pointwise
as t —> 0+. Now observe that, for t > 0,

so for any k E H, the subgradient inequality gives

i(P(s + th) - Px, k) < Af,x,Vtt(h + k) -

Passing to the limit t -> 0+, we obtain

{d+P{x)h,k) <q(h + k)-q(h),

which shows d+P(x)h G dq(h). But d+P(x) is nonexpansive, hence contin-
uous, and so dq has a selection which is everywhere continuous. This means
that q is everywhere Prechet differentiate. D

The following result is essentially known, although the proofs in [14] and
[30] seem to rely on the linearity of the derivative. We therefore include a
proof of our own.

Proposition 2.2. Let x G H\C, and suppose d+P(x) (rsp. P+(x)) exists.
Then d+P(y) (rsp. P+(y)) exists for every point y on the ray from Px
through x, that is, for y of the form

y = \χ + (1 - \)PXj X > 0.

Proof. Let h G H be fixed. Write v = Px, vt = P(x + th). Let y =
Xx + (1 — X)Px. We choose kt such that

υt + λ(x + th-vt)=y + tkt,

which means that P(y + tkt) = P(x + th) = υt. We find

kt = (1 - λ ) - — - + Xh -+ (1 - X)d+P(x)h + Xh =: k.

Now

j(P(y + tk) - Py) = -t{P{y + tkt) - Py) + ±(P(y + tk) - P(y H-

U + th) - Py) + o(l) -> d+P(x)h.
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It remains to show that every k E H may be written in the form k = (1 —
X)d+P(x)h + \h for some h E H, i.e., that the operator A = (1 — λ)d+P(x) +
Xid has full range. Now observe that d+P(x), being a subdiίferential by
Proposition 2.1, is maximally monotone. For 0 < λ < 1, we may therefore
write

for the solution h of Ah = k. As for λ > 1, notice that id — d+P(x) as well
is maximally monotone, being a subdifferential, too. So here we write

h = (id + (λ - l)(id - d+P(x)))~\k)

for the solution h of Λ/i = A:. This completes our argument. Notice that a
chain rule similar to the one obtained in [14] may readily be stated using
the (nonlinear) operator A. D

The relation addressed in Proposition 2.1 seems to hint that we should
even consider weak directional derivatives of the operator P, these being
equivalent to / (given by (2.4)) having a second order Taylor expansion
(2.5). However, this notion seems to have a drawback: It lacks the property
derived for d+P(x) in Proposition 2.2. Namely, we have the following

Proposition 2.3. Let x E H\C. Suppose P is weakly directionally Gateaux
differentiate at every point y on the ray from Px through x. That is, the
limit (2.2) exists in the weak topology for any such y. Then P is already
directionally Gateaux differentiate in norm, that is, d+P(y) exists as a limit
in norm.

Remark. Suppose that for a point x E H\C, the limit (2.2) exists in the
weak sense, but d+P(x) fails to exist. Then we must be able to find a point
y (in fact there are many such points) on the ray from Px through x where
(2.2) even fails to converge weakly. This is clearly hard to imagine, and in
fact, we do not have an explicit example of such behaviour, so it may very
well be true that weak convergence in (2.2) always implies norm convergence.

Proof. This is a special case of a result by H. Attouch [3, Theoreme 1.2],
stating that for a sequence / n ,/ of proper lower semi-continuous convex
functions satisfying 0 E 5/n(0), weak convergence (id + Xdfn)'1 —̂  (id +
Xdf)"1 for every λ > 0 entails norm convergence (id + Xdfn)'1 —> (id +

1. Notice that the result applies with fn the second order difference
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quotient Δ σ c x ? p a . ί n of the support function σc of C, and / the function q
from Proposition 2.1 satisfying d+P(x) = Vg. Here we have

σCtXtpXttn

3. Variational Second Derivatives.

As we have seen in Section 2, second order differentiability of a convex func-
tion may be defined as pointwise convergence of the second order difference
quotient (2.7) to a fully defined continuous convex limit function q. Vari-
ational type second derivatives are now introduced in the same way by re-
placing pointwise convergence with any kind of variational type convergence,
such as epi, Mosco or Attouch-Wets convergence, and moreover, by allowing
for the corresponding limit function q to take on the value +oo. To begin
with, let us consider Mosco convergence of sequences of convex functions.

A sequence (/n) of convex, proper lower semi-continuous functions is said
to Mosco converge to a limit function /, noted fn Q /, if the following
conditions are satisfied:
(α) For any x G H there exist xn —> x (norm) such that fn(xn) —*•/(#);

(β) For any x G if, n^ f oo and Xk —^ x (weakly), we have

\\m mΐ^fnk{xk) >f{x).

See Attouch [3, 4] for basic information on this notion of convergence. Def-
inition 3.1 A continuous convex function / on H is said to be second order
Mosco differentiate at x G H with respect to y G df(x) if the second order
difference quotient (2.7) Mosco converges to some limit function g, that is,
Δ/.x^.t -^ q as t ->• 0+. The function q is called the second order Mosco
derivative of / at x with respect to y G df(x).

Notice that dom(q) might be a proper subcone of H] even dom(q) = {0}
is admitted. Unless dom(q) is dense, we therefore may not infer from the
existence of a second Mosco derivative that the first derivative exists. That
explains why we have to specify the subgradient y G df(x) in Definition 3.1.

This notion seems quite queer at first sight, especially since we allow for
such limit functions as dom(q) = {0}. However, as we will see, one often gets
situations where this generalized second derivative is actually the classical
second derivative. This is made precise by the following result, proved in
[9, Prop. 6.1].
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Proposition 3.1. Let f be twice Mosco differentiable at x E H with respect
to y E df(x), with second Mosco derivative q. That is ΔftXtVtt ^ q(t -> 0 + ).
Forq to be a second derivative in the usual sense (i.e., in the sense of formula
(2.5)); it is necessary and sufficient that f be Lipschitz smooth at x. In this
case, dom(g) = H, and y = VFf(x).

Recall here from Fabian [13] that / : H —> K is Lipschitz smooth at x if
there exist C > 0 and δ > 0 such that

(3.1) f{x + Λ) - f{x) - <V/(s), h) < C\\h\\2

is satisfied for all \\h\\ < δ. Notice that (3.1) may be expressed equivalently
by saying that Δf,Xtytt is uniformly bounded on \\h\\ < δ for 0 < |*| < 1, say,
(cf. [9, Section 2]).

It will be convenient to have a test for whether a function is second or-
der Mosco differentiable. This is not always easy to check, but we have a
reasonable method when the function / is of class C 1 ' 1 .

Proposition 3.2. Let f be a convex C1Λ function on H. Then the following

are equivalent:
(1) f is second order Mosco differentiable at x;

(2) V/ is norm Gateaux differentiable at x.

Moreover, (2) implies (1) even without any assumptions on f.

Proof. First assume (1), that is, Δ* := &f,x,y,t Q q for some limit function
q. Now by Attouch's characterization of Mosco convergence, (cf. [3]), this
means that for any fixed sequence tn -» 0+, h E H and v G dq(h) there
exist hn -» h (norm) and vn G d Δ ί n (hn) having vn —> v (norm). The
latter means j-(Vf(x + tnhn) — Vf(x)) = υn —>• v in norm. Using the local
Lipschitz assumption on V/, we find f-(S7f(x + tnh) — Vf(x)) —> υ in norm,
which is precisely the meaning of statement (2).

Conversely, assume (2) is satisfied. This implies At —> q pointwise for
some limit function q (see [9, §2]). We have to show that convergence is as
well in the Mosco sense. Since condition (α) is clear, it remains to check
condition (/?). Fix tn -» 0+ and hn -^ h (weakly). Then vn = £ (V/(a; +
tnh)—y7f(x)) is an element of dAtn (h). The subgradient inequality therefore
gives

(vn,hn-h) < Atn{hn)-Atn(h).

Since by assumption vn converges in norm, and hn — h —̂  0 weakly, the left
hand side tends to 0 here. Since Atn —> g, we find liminf Atn(hn) > q(h) as
desired. This proves statement (1). D
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Remark. Notice that (1) no longer implies (2) if the local Lipschitz assump-
tion on V/ is dropped, as shown by Example 7.3. Nevertheless, Proposition
3.2 provides a useful test for second order Mosco smoothness which in par-
ticular applies to the outer parallel sets of a convex set (see Section 4). As
shown by Example 7.4, a function / of class C1 '1 may be second order dif-
ferentiable at some point x, without being second order Mosco differentiate
there. However, by the result of Aronszajn [2], in a separable space H, for
almost all points x E H, second order differentiability of / at x already
implies second order Mosco differentiability.

With these preparations, we may now state our first main result.

Theorem 3.3. Let C be a closed convex set in H, Pc its metric projec-
tion, σc its support function, dc its distance function. Then the following
statements are equivalent:
(1) σc is twice Mosco differentiable at x with respect to y G dσc(x),

(y = Pc(x + y));

(2) Pc is directionally Gateaux differ entiable at z = x + y E H\C,
(y = Pcz,x = z-Pcz);

(3) The distance function dc is twice Mosco differentiable at z = x + y;

(4) The distance function dc is twice differentiable in the classical sense
at every point zx = Xz + (1 — λ)y = Xz + (1 — X)Pz, X > 0.

Proof. The proof uses a general result by H. Attouch [3, Theoreme 1.2]. Let
us first show (1) <$ (4). Indeed, statement (1) is: ΔσCjX>2/jί -^ q for some q.
Now a general fact is that

(3.2)

with * denoting Young-Fenchel conjugation. As Mosco convergence is in-
variant under conjugation, (1) translates into the equivalent statement

where %c — cr^ is the indicator function of C. Next we use the quoted
result by Attouch saying that Mosco convergence is equivalent to pointwise
convergence of all the infimal convolutions with multiples of || | |2, that is,
(1') is equivalent to

(1" ) Δ i c , y , x , t D ^ | | II2 - > < ? * • ^ | | ||2,

pointwise (as t -> 0+) for every fixed λ > 0. Now recall another general fact
saying that

(3 3 ) ^f,u,v,t Π 2^|| ||2 = Δ
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That means, we have the new equivalent statement

) ΔtcD&IHI^v+λ*,*,* -> q LJ — II I)

pointwise (as t ->> 0+) for every fixed λ > 0. Now we remark that

(3-4) %c • ^ I H Γ = - τ 4 ,

which shows that (Γ") is statement (4), since the differentiability properties
of dc and d2

c are equally good on H \ C.
Let us next prove (4) 4=> (2). Indeed, the Prechet derivative of \d2

c is
id — Pc, hence statement (4) is equivalent to saying that Pc is weakly direc-
tionally Gateaux differentiable at every point y + λrr, that is, every point Zχ
on the ray from y through z = x + y. By Proposition 2.3, this is equivalent
to the existence of d+P(z), as claimed in statement (2).

Finally, let us show (1) 4Φ (3). Indeed, we first observe that (1) is equiv-
alent to

for every λ > 0. This may be checked either directly using conditions (a) and
(/?), or by using the family of pseudo metrics defining the Mosco topology on
the cone of proper convex and lower semi-continuous functions as presented
in At touch [3, §2]. Using once again the invariance of Mosco convergence
under conjugation in tandem with formula (3.2), we see that (3;) amounts
to the equivalent statement Aic,y,xj D | | | | |2 -> g* D | | | | |2, pointwise,
which by formula (3.4) and Attouch's Theorem is equivalent to statement
(3) •

It turns out to be a more difficult problem to relate the differentiability
of P to the second order differentiability properties of the gauge functional
μc of C. The following result, which uses a technique from [14], gives an
answer in the case where the derivative dP(x) is linear.

Corollary 3.4. Let C be closed bounded convex with 0 in its interior. Let
x G H\C. Then the following are equivalent:
(1) Pc is Gateaux differentiable atx, i.e., dPc(x) exists;

(2) μc is twice Mosco differentiable at Pcx with respect to

(x - PcX.Pcx)'1^ ~ Pcx) e dμc(Pcx),

its second Mosco derivative q being a generalized quadratic form.
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Proof. We know from Proposition 2.1 that, once Pc is differentiate at x, it
is so at every point on the ray from Pcx through x. We can find a point x
on this ray which satisfies

(3.5) (x-Pcx,Pcx) = l

Let us call x the ideal point on this ray. Now Fitzpatrick and Phelps [14]
have shown that differentiability of Pc at the ideal point x is equivalent
to differentiability of Pco at x, where in both cases, dPc{x) and dPco(x)
are supposed to be linear operators. Now we apply Theorem 3.3 to see
that the latter is equivalent to second order Mosco differentiability of σ^o
at x — Pcox with respect to Pc°x G dσco(x — Pcox), the second derivative
being a generalized quadratic form. But recall that σ<?o = μCi so we are
almost done. Notice that the choice of the ideal point x is such that

Pc°{x) = Q{β) =x — Pcx = x - Pcx,

with Q as in [14], so μc is finally seen to be twice Mosco differentiable

at x — PQOX = Pcx with respect to x — PQX G dμc{Pcχ) This proves

the result, for x — Pcx + (x — Pcx,Pcx)~λ(x — Pcx)-> and so x — PQX —

(x - Pcx, Pcx)-γ{x - PCx) •

As we will see later, this result may be exploited to obtain results in the

spirit of [17] or [14] by finding the right conditions on C at Pcx which force

the second Mosco derivative of μc at Pcx above to be a classical second

derivative.

4. Epigraphical Analysis.

The task of this section is to prove that the differentiability of the metric
projection at a point x G H \ C is equivalent to the second order Mosco
smoothness of the boundary of C at Px. Equivalently, if dC is represented
as the graph of a convex function / around Px, then / must be twice Mosco
differentiable at the corresponding point.

Theorem 4.1. Let f be a continuous convex function on H, and let (z, a) be
a point not contained in the epigraph epif of f. Let (y ,f{y)) ~ Pepif(z,a).
Then the following are equivalent:

(1) Pepif is directionally Gateaux differentiable at (z,a);

(2) / is twice Mosco differentiable at y with respect to

(f(y)-c*)-1(z-y)edf(y).
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The proof will be obtained by a series of auxiliary results. To begin with,
let us consider / : H —» R continuous convex with /(0) = —1,0 G 3/(0), so
thatPβ p 4 /(0,μ) = (0,-1) = (0,/(0)) for any μ < - 1 . Now let C = {(z,α) €
ϋΓ x R ||α;|| < l,α < l,α > /(#)}• Then C is a bounded closed convex
set having (0,0) in its interior. Moreover, Pepif — Pc in a neighbourhood of
(0,-2). Under these conditions, we have the following:

Lemma 4.2. If Pc is directionally Gateaux differentiable at x = (0, — 2),
then so is

Proof Notice that the result would follow directly from [FP, Proposition 4.1]
if we knew that d+Pc(x) was linear. Indeed, as ((0, —2) — (0, —1), (0, —1)) =
1, x — (0, -2) is just the ideal point on the ray from Pcx through x to
which the quoted reference applies. However, as d+P(x) need not be linear,
we have to check the proof given in [14] in detail.

Let T be the operator defined by

(4.1) Th = h- (h- d+P(x)h, Px)x,

which in [14, Prop. 4.1] arises as the derivative dA(x) of Ay = (y — Py,y)~1y
at x. We do not claim here that T is invertible, as it is in [14]. However, it
suffices to know that T is surjective in order to carry out the second half of
the argument in [14] following formula (4) there. So the argument rests on
showing that T is surjective. While this is easy to see in the linear case, here
we only know that T is positively homogeneous, i.e., T(λh) = \Th for λ > 0.
We have to show that, setting φ(h) — (h — c?+P(x)/ι,Pα;), the equation

(4.2) h - φ{h)x = k

is solvable for any fixed k. Naturally, any solution must lie in the two
dimensional subspace L — \in{x,k}, and clearly T maps L into itself. So
the problem of solving (4.2) is reduced to the case of two dimensions.

Let r > 0 be arbitrary, and define Φ : [0,1] x Br(0) -> L by setting

/ ι e L , 0 < ί < l . Then Φ(0, •) - T, while Φ(1,Λ) = T{\h)-T(-\h) is odd,
that is, Φ(l, —h) — — Φ(l, h). We claim that

for all 0 < t < 1. Indeed, otherwise we would have T(j^h) = T(—γ^h) for
some 0 < t < 1 and \\h\\ = r. Or rather,

h =
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So h = px for some p φ 0, with

Now, if p > 0, we obtain

while p < 0 gives

ii Φ{χ) + j^Φix),

using the fact that φ is positively homogeneous. But

φ(x) =(x- d+P(x)x, Px) = (x, Px),

φ(-x) = (-x-d+P(x)(-x),Px) = -(x,

since d+P(x)x = d+P(x)(—x) = 0 is our special situation. Indeed, it is
always true that d+P(x)(\(x — Px)) = 0, and here x — 2Px. So we end
up with 1 = (x,Px) = ((0, —2), (0, —1)) = 2, a contradiction, showing that
0 <£Φ(t,dBr(0)) for any t.

Let Bs(0) be a ball such that

for all 0 < t < 1. For any y G Bs(0), the homotopy invariance of the degree
function now shows

deg(T,Sr(0),y) =deg(Φ(t,-),SΓ(0),(l -t)y)

= deg(Φ(l,-),JBr(0),0).

The latter value, however, is odd by Borsuk's Theorem, so Bs(0) C
T(Br(0)). This shows that T is open at 0, and positive homogeneity shows
T is surjective. For the arguments concerning the degree we refer the reader
to Deimling [12, p. 21 and p. 23]. D

Our next step is to use Theorem 3.3, which shows that, under the con-
ditions of Lemma 4.2, Pco is now directionally Gateaux diflferentiable at
(0,-2), hence σ^o = μc is twice Mosco differentiate at (0,-1). This leads
to the following

Lemma 4.3. Under the conditions of Lemma 4.2, suppose f is also Lipschitz

smooth at 0. If Pc is directionally Gateaux differentiate at (0, — 2), then f
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is twice differentiable and twice Mosco differentiable at 0. Conversely, if f is
twice Mosco differentiable at 0 (and hence by Lipschitz smoothness also twice
differentiable), then Pc is directionally Gateaux differentiable at (0,-2).

Proof, a) First assume that Pc is directionally Gateaux differentiable at
(0,-2). It follows from Lemma 4.2 that μc is twice Mosco differentiable
at (0,-1) = (0,/(0)) with respect to (0,-1) G dμ c (0,- l ) . We are going
to argue that μc is also Lipschitz smooth at (0,-1). Suppose this has been
shown. Then, by Proposition 3.1, μc is twice differentiable at (0,-1) in the
sense of (2.5). Now observe that near (0,-1), ΘC coincides with the graph of
/. The fact that second order differentiability of μc at (0,-1) = (0,/(0))
implies second order differentiability of / at 0, and vice versa now follows
from the formula

(4.3) Δμc,(o,_i),(o,-i),*n(Λ,.s) = Ίn Δ/,o,o,ίn ( T ^ Ό *

where ηn = μc{tnh^—l + tns) —> μc(0, — 1) = 1. So it remains to show
that μc is Lipschitz smooth at (0,-1). To prove this, recall that in a Hubert
space, Lipschitz smoothness of / at 0 is equivalent to the following geometric
condition: There exists a ball B touching the epigraph of / at (0,/(0))
which is entirely contained in epi /. Let us assume, then, that in the above
situation, B = {(^,α) : | |z | |2 + (a + 1 — ε)2 < ε2} is contained in epi /.
Recalling the definition of the set C, we may also assume that B C C. We
have to show that, for some δ > 0, the ball

Bδ = {(*, α,β) : \\z\\2 + (a + 1 - δ)2 + (β - 1 + δ)2 < δ2}

is contained in ep'ι(μc) Assume the contrary and find (zδ,cxδiβδ) £ Bδ such
that βδ < μc{zδ,&δ) But notice that βδ -> 1, aδ —> —1, zδ -> 0 as δ -> 0+, so
(-1, ψ ) is eventually contained in J5, hence in C. This means βc{^~-,ψ-) ^ 1>
and so (zg,oiδ,βδ) € ePΨc, a contradiction which completes the first half of
the proof.

b) Let us now assume that / is twice Mosco differentiable at 0 with respect
to 0 G 5/(0), and with second Mosco derivative g, say. We have to show
that μc is twice Mosco differentiable at (0,-1) with respect to (0,-1) G
dμc(0, — 1), and it will turn out that the second Mosco derivative is given
by Q(h, s) = q(h). Indeed, we have to check conditions (a) and (β) of Mosco
convergence for the second difference quotient (4.3) of μc. Now observe that,
due to the Lipschitz smoothness of / at 0, the second Mosco derivative q is
also a second derivative in the usual sense, so Δ/O,o,ίn -* Q pointwise for any
fixed tn -> 0+, and hence the right hand side of (4.3) converges because of
7n -> 1. This proves condition (a). As for (/?), fix (hn,sn) —* (/i,s), then
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(4.3) gives liminfΔμC)(o,-i),(o,-i),ίn(/in,5n) > q(h) = Q(h,s), as required.
This proves the result. •

For a closed convex set C in ff, the outer parallel set C[ε] at distance ε > 0
is defined as

C[ε] = {x e H : dc(x) < ε}.

Suppose that locally, the boundary of C is represented as the graph of a
continuous convex function /. We ask for a function fε locally representing
the graph of C[εy By the mere definition of C[φ we find that the conjugates
of / and fε must be related by

(4-4)

Conjugation therefore gives us

(4.5) Λ = / • -

Notice that fε is a C 1 ' 1 function; in particular, it is everywhere Lipschitz
smooth. With these preparations we are now in the position to give the
Proof of Theorem 4.1. Involving an affine change of coordinates, we may
assume that /(0) = 0 , 0 E df(0). We have to show that Pepif is direction-
ally Gateaux diίferentiable at (0, α) ,α < 0, if and only if / is twice Mosco
differentiate at 0 with respect to 0 G df(0).

Let fε be the convex C 1 ' 1 function representing the outer parallel surface
of epi / in a neighbourhood of the point (0, —ε) = (0, Λ(0)). As a first step
a), we will show that directional differentiability of P e pi/ at x = (0, α), a < 0,
is equivalent to fε being twice differentiate at 0 for all ε small enough.

For this, first observe that the projections Pepif and Pepi/£ are related by
the formula

h £ H\epifε. Let us now for simplicity fix ε = 1, and suppose x — (0, —2).

This means that the situation of Lemmas 4.2, 4.3 is met with fλ and
Pepϊfi playing the roles of / and Pep[f there. So the differentiability of
Pepif! at (0,-2) implies second order differentiability of /i at 0, since fx

is Lipschitz smooth, whence we may infer that /i, and similarly every / ε,
is twice differentiate at 0. The converse follows from the second part of
Lemma 4.3, i.e., if any one of the fε is twice Mosco differentiate at 0, then
P e p iy ε, and hence Pep[f: is directionally differentiate at x — (0,-2). This
completes the proof of a).

In a second step b), we now establish the following
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L e m m a 4.4. Under the above circumstances, the following statements are
equivalent:
(1) f is second order Mosco-differentiable at 0 with respect to 0 G df(O);

(2) For all ε > 0 sufficiently small, fε is twice differentiate at 0;

(3) For all ε > 0 sufficiently small, fε is twice Mosco differentiate at 0.

Proof. As the fε are Lipschitz smooth, statement (3) immediately implies
(2) by Proposition 3.1. So the implications (1) => (3) and (2) => (1) remain
to be checked.

We need to relate Δ^o,o,ί &nd Δ/£ o o t . Prom (4.4) and (4.5) we infer that

( 4 6 ) Δ/e,o,o,t =

where φε(h) — —y/ε2 — ||/ι| |2. Hence the second order difference quotient of
φε at 0 with respect to 0 = Vφε (0) is

Now it is clear that (1) implies (3), for Δ/)O,o,t ~^ Q implies Δ/jO,o,ί Π
A^)O)o,i -^ qθ -~\\ | | 2, which implies statement (3) by formula (4.6). Fi-
nally, to see that (2) and (1) are in fact equivalent, we calculate the following
estimate

( 4-7> 2ε

with O(t2) being uniform over all ί2 | |Λ||2 < ε. Prom this we infer the estimate

(Δ / | O | O f i(fc) + ̂ \\h - k\\ή - (Δ / | O f O |«(*) + Δ,. fo f C M(Λ ~ * ) )

< O(ί 2 )||Λ -A;||4,

which shows (Δ/fOtoft • £ | | \\2)(k) - (Δ/,0,0,* • Δ,. iOiOJ(fc) -+ 0(t -> 0+).
Hence statement (2) is equivalent to pointwise convergence of all the infimal
convolutions Δ/>Ojo,t Π £ | | * ||2? which by Attouch's Theorem is equivalent to
Mosco convergence of Δ/O,o,ί This completes the proof. D

We conclude this section with the following Definition, which is justified
by Theorem 4.1.

Definition 4.1 Let C be a closed convex set with nonempty interior.
A point x G dC is called a point of second order Mosco smoothness with
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respect to the outer normal vector v G Nc{x) if, in a neighbourhood of re,
the boundary of C may be represented as the graph of a continuous convex
function / : H[x] -> R, where H[x] — {h G H : (υ,h) = (v,x)}, such that /
is twice Mosco differentiate at x G H[x] with respect to 0 G df(x).

Remark. Combining Theorem 4.1 and Corollary 3.4 shows that in the
case where the corresponding second order Mosco derivative of / above is a
generalized quadratic form, we might have introduced second order Mosco
smoothness of C at x G dC by saying that the gauge μc is twice Mosco
differentiate at x with respect to (v,x)~1v G dμc(x). Notice, however, that
our method of proof does not show whether this equivalency also holds when
the derivative of the projection Pc at the corresponding point x + v fails to
be linear.

5. Frechet Derivatives.

In the previous sections we have been dealing with directional Gateaux
derivatives of the operator P. In this paragraph we give a more compact
account of the situation for directional Prechet derivatives. This requires
another notion of variational convergence which is known as Attouch-Wets
convergence. Let us briefly recall the definition.

Let C, D be closed convex sets in H. The excess of C and D is defined
as ex(C,Z>) = sup{φ;, D) : x G C}. For p > 0 let Cp = C Π B(0,p). The
bounded Hausdorff distance of C and D is then defined as

hausp(C, D) = max{ex(Cp, £>), ex(£>p, C)}.

Now the sequence (fn) of lower semi-continuous proper convex functions is
said to be Attouch-Wets convergent to the limit /, noted fn ^% /, if

hausp(epi/n,epi/) -> 0 (n -» oo)

for all p sufficiently large. Notice that fn >̂ / implies fn —^ f. We refer the
reader to [6] and [5] for more information on this type of convergence. The
following parallel of Theorem 3.3 was essentially proved in [20]. It shows
that Attouch-Wets convergence plays the same role for Prechet differentia-
bility of the metric projection P as Mosco convergence does for Gateaux
differentiability.

Theorem 5.1. Let C be a closed convex set in H, Pc its metric projec-
tion, σc its support function, dc its distance function. Then the following
statements are equivalent:
(1) σc is second order Attouch-Wets differentiable at x with respect to

y G dσc{x), y = Pc(x + y)- That is, AσCyXiVj ^ q for some q;
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( 2 ) P c i s d i r e c t i o n a l l y F r e c h e t differentiable a t z = x + y , y = P c z , x =
z - P c z ;

( 3 ) dc is second order Attouch-Wets differentiable at z = x + y;

(4) dc is strongly second order differentiable at z, that is Ad c > a ; + y ) a. ) t con-

verges uniformly on bounded sets (as t —> 0 + ).

With this result at hand, we may obtain an analogue of Theorem 4.1 using
essentially the same pattern of reasoning.

Theorem 5.2. Let f be a continuous convex function on H, and let (z,a)
be a point not contained in the epigraph of f. Let (y,/(y)) = Pepif(z,a).
Then the following are equivalent:

(1) Pepif is directionally Frechet differentiable at (z,a);

(2) / is second order Attouch- Wets differentiable at y with respect to (f(y) —

a)-ί(z-y)€df(y);

(3) For ε > 0 small enough, fe is strongly second order differentiable at
-1/2

ye, where yε = y + ε(\\z - y\\2 + (/(y) - α ) 2 ) (z - y).

Remark. Attouch Wets convergence is somehow related to uniform conver-
gence on bounded sets as Mosco convergence is related to pointwise con-
vergence. There is, however, one major difference. Namely, while uniform
convergence on bounded sets implies Attouch-Wets convergence, pointwise
convergence does not imply Mosco convergence. As shown in Example 7.4,
this is so even when convergence of second order difference quotients is con-
sidered.

6. Applications.

In this section we apply our result to relate the differentiability properties

of Pc and the smoothness type of the boundary of C.

Theorem 6.1. Suppose Pc is directionally Gateaux differentiable at x G
H\C. Then C is second order Gateaux smooth at Pcx if and only if a ball
contained in C touches dC at

Proof. By Theorem 4.1, any convex function / locally representing the
boundary of C in a neighbourhood of Pcx is twice Mosco differentiable
at the corresponding point in its domain. But a ball touching dC at Pcx
from within means that / is also Lipschitz smooth there, and hence / is
twice differentiable by Proposition 3.1. Almost needless to say, the second
derivative is a quadratic form iff rf+P(x) is linear. D
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We may add here that for C bounded and containing 0 in its interior, we
may recast second order smoothness of C at Pcx by saying that the gauge
μc is twice differentiate and twice Mosco differentiable at

Theorem 6.2. Let x G H\C. The following are equivalent:

(1) Pc is directionally Gateaux differentiable at x;

(2) For all ε > 0 small enough, the outer parallel sets C[ε] are second order

smooth at Pc[ε](x).

Proof. (1) implies (2) by Theorem 5.1. The converse is implicit in the proof
of Theorem 4.1. D

For directional Frechet derivatives we obtain the analogous results:

Theorem 6.3. Suppose Pc is directionally Frechet differentiable at x G
H\C. Then C is second order Frechet smooth at Pcx if and only if a ball
contained in C touches dC at

Clearly, the Frechet analogue of Theorem 6.2 is also true, that is, di-
rectional Frechet differentiability of PQ at x corresponds to strong second
order smoothness of the outer parallel bodies at the points Pc[e]x As a
consequence of this we obtain the following result, stated by Fitzpatrick and
Phelps [14] under the stronger assumption that the boundary of C be of
class C1. Notice that this is a localized version of the principal result of
Holmes [17].

Corollary 6.4. Let C be closed convex with 0 in its interior. Suppose the

boundary of C is second order Frechet smooth at z, which means that μc is

strongly second order differentiable at z. Then Pc is Frechet differentiable

at every x with z = PQX-

Proof. Use Theorem 5.2 and the fact that uniform convergence on bounded
sets implies Attouch-Wets convergence. D

In view of this result, it is natural to ask whether, similarly, second order
Gateaux smoothness of C at z G dC implies Gateaux differentiability of Pc
at x, Pcx = z. Surprisingly, the answer is in the negative, as shown by Ex-
ample 7.4. In fact, our theory says that second order Gateaux smoothness
alone is not sufficient, since second order Mosco smoothness of the boundary
at z is needed, and the latter does not follow from the first in general. This
does not seem to be true even when the boundary of C is everywhere Lips-
chitz smooth, i.e., if at every boundary point, a ball touches dC from within.
What is surprising, in the somewhat pathological situation of Example 7.4,
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with x e H\C, z = Pcx, the set C will be second order Gateaux smooth at
2, but as a consequence of Lemma 4.4, at least one of the outer parallel sets
C[e] will fail to be second order Gateaux smooth at the corresponding point
z€ = PC[e]x.

Let us now ask for conditions under which, dually to Theorems 6.1 and
6.3, the differentiability of Pc at x G H \ C implies the second order differ-
entiability of the support function σc at x — Pcx. We have the following

Theorem 6.5. Let C be a bounded closed and convex set with nonempty
interior. Suppose PQ is directionally Gateaux (Frechet) differentiable at x G
H \C. Then σc is second order differentiable (rsp. strongly second order
differentiable) at x — Pcx if and only if a ball containing C touches dC at

Proof. By Theorem 3.3 rsp. Theorem 5.1, directional Gateaux (rsp. Frechet)
differentiability of Pc at x is equivalent to second order Mosco (rsp. Attouch-
Wets) differentiability of σ<? at x — PcX- Now Proposition 3.1 tells that
the missing condition to ensure second order differentiability is Lipschitz
smoothness of σc at x — PcX Notice that the same is true for Attouch-Wets
via strong second order differentiability (see [20]). Now we use a result
of Fabian [13, Prop. 2.2], which translates Lipschitz smoothness of σc at
x — Pcx into a dual condition: C is Lipschitz exposed at Pcx by x — PcX-
But notice that in a Hubert space, and for a bounded set C, Lipschitz
exposedness of C at Pcx by x — Pcx and with constant c > 0 is the same as
saying that the ball with radius | and centre on the ray Pcx + λ(Pcx — x),
λ > 0 lies locally between the boundary of C and its tangent hyperplane at
PcX' By increasing the radius of the ball, we obtain the statement of the
Theorem. D

Remark. Notice that in Hubert space, the Lipschitz exposed points of a
bounded closed convex set are precisely the farthest points. Here x G C is
called a farthest point if, for some y, \\x — y\\ = s\xp{\\z — y\\ : z G C}. This
coincidence is no longer true even in ίv for p φ 2.

We end this section with some analytic parallels to Theorems 6.1 and 6.5.

Theorem 6.6. Let C be bounded closed and convex with nonempty interior.
Suppose P is directionally Gateaux differentiable at x G H\C. Then σc is
second order differentiable at x — Px if and only if
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for some 0 < c < l , ί > 0 and all \\h\\ < δ. In particular, if dP(x) exists,

then \\dP(x)\\ < 1.

Proof. We have to show that condition (6.1) is equivalent to Lipschitz smooth-
ness of σc at x — Px. Now our analysis in [9, §7] shows that the latter is
equivalent to the following condition:

(6.2) (P(x + h)-Px,h) < c\\h\\2

for some 0 < c < 1, δ > 0 and all \\h\\ < δ. Now recall that the projection
operator is firmly non-expansive, that is, we have the estimates

(6.3)

< (P(x + h) - Px,h) < \\P(x + h) - Px\\\\h\\,

(cf. for instance [17]). This shows (6.1) and (6.2) being equivalent. D

Corollary 6.7. Let C be bounded closed convex with nonempty interior.
Suppose P is Frechet differentiable at x E H\C. Then σc is strongly second
order differentiable at x — Px if and only if \\Pι(x)\\ < 1.

Theorem 6.8. Let C be closed and convex with nonempty interior, and

suppose P is directionally Gateaux differentiable at x E H \C. Then C is

second order Gateaux smooth at Px if and only if

(6.4)

for some 0 < c < 1, δ > 0, and all \\h\\ < δ, h E H[x] = {k E H :
(k,x-Px)=0}.

Proof. We may assume that C C H x R and that the boundary of C is
locally represented as the graph of a convex function / : H —> R, with say
Px = (0,/(0)) = (0,1), x = (0,0). This means 0 E <9/(0). We have to show
that statement (6.4) is equivalent to / being Lipschitz smooth at 0. Notice
that in our local coordinates, the hyperplane H[x] consists of the vectors of
the form h = (υ, 0), v E H. Now let P(x + h) = (w, f{w)) for some w E if,
then we have the relation v = w + f(w)df(w), where df(w) stands for some
subgradient of / at w. This gives

(6.5)

\\p(x + h)-Px\\> ( HI V , / ll/M-/(o)||
HΛ||S
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Now suppose first that / is Lipschitz smooth at 0. By Proposition 2.1 in [13],
this means that the ratio ||9/(tt;)||/||i(;|| is bounded on ||ΐi;|| < δ, say, and this
clearly means that the first term on the right hand side of (6.5) is uniformly
bounded away from 0 for all ||tt;|| < δ. Now observe that \\v\\ > \\w\\ since P
is non-expansive, so statement (6.4) is verified.

Conversely, suppose (6.5) is uniformly bounded away from 0 on ||?;|| <
δ. Then all the ratios ||<9/(?i;)||/||w|| related to vectors v as above will be
bounded by some constant. Choosing δf > 0 such that \\w\\ < δ' implies
| |Ϊ; | | < ί, we see that this estimate will then hold for all \\w\\ < δ1, and hence
/ is Lipschitz smooth at 0 by Fabian's result. D

Corollary 6.9 (cf.[14],[17]). Let x e H \C. Then C is second order
Frechet smooth at Px if and only if P is Frechet differentiable at x and
Pf(x) is invertible on H[x].

Proof. Indeed, for a Frechet derivative, invertibility of P'(x) on H[x] is just
statement (6.4). Use Theorem 5.2 for the rest. D

7. Examples.

In this section we give some examples explaining our results. The first two
are elementary though instructive.

Example 1. Let / : R -> E be a convex function satisfying /(0) = 1, /'(0) =
0. For simplicity we may assume that / is everywhere differentiable, but
this is not essential. Consider the differentiability of the metric projection
P onto the epigraph epi/ of / at the point x = (0,0). We fix the direction
h = (1,0). Let 5GK, then P{x + t(s)h) = (s, f(s)) for t(s) = s + f{s)f'(s).
Now the difference quotient of P at (0,0) is

P(x + t(s)h)-Px _

t(s)

which converges (for s -> 0+) if and only if the ratio f'(s)/s has a limit
which may be either finite or oo. This is precisely the same as saying that /
has a one-sided second order Mosco derivative q at 0. Notice that the cases
dom(q) = {0}, dom(g) = [0, oo), dom(g) = (—oo,0] and dom(q) = R are
all possible. Clearly / fails to have a second order Mosco derivative at 0 iff
f'(s)/s has different accumulation points. If we take f(s) = 1 + |s|3 , we get
the standard example where P is differentiable at (0,0), but the boundary
is not second order smooth at (0,1). This also explains Theorem 6.1, since
no circle can touch the graph of f(s) = 1 + \sf/2 at (0,1) from above. On
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the other hand, the circle JB((0,2), 1) touches the graph of / at (0,1) and
lies locally between the graph of / and its tangent y = 1, so epi/ is Lipschitz
exposed at (0,1) by (0,1), whence the support function is second order dif-
ferentiable at (0,1).

Example 2. Let us now consider f(x) = \χ\ on the real line at x ~ 0. Then
the projection P onto the epigraph C of / is differentiate at every point
in the interior of the normal cone Nc (0,0) of C at 0, that is, at points of
the form (x, y), |a;| < y. So / must be second order Mosco differentiable
at 0 with respect to the corresponding subgradients v, \v\ < 1. Since / is
not even differentiable at 0, we need to look at its conjugate in order to un-
derstand what this means. Now /* equals 0 on [—1,1], and oo outside this
interval. By duality, / is second order Mosco differentiable at 0 with respect
to v E df(0) iff /* is second order Mosco differentiable at v with respect to
0 G df*(υ), and the latter statement clearly makes perfect sense for \υ\ < 1.
As for the boundary values \υ\ = 1 we have to consider directional second
order derivatives, then P is still directionally differentiable at points (#, x)
rsp. (#, —x).

Example 3. Define / : ί2 -> K by

(7.1) f(x) = sup — — .

n€N v n nι)

Then /(0) = 0, / > 0 and V/(0) = 0. We show that / is second order
differentiable at 0, that is, \df(th) converges weakly, but fails to converge
in norm. Nevertheless, / is second order Mosco differentiable at 0, which
shows that Proposition 3.2, (1) => (2) is no longer true without the Lipschitz
assumption on V/.

First observe that / is Lipschitz smooth at 0. Indeed, an elementary
calculation shows that f(x) < \\x\\2 for all \\x\\ < 1/2. Next we claim that
the second order difference quotient at 0 converges pointwise, i.e.,

as k —> oo. Due to the Lipschitz smoothness of / at 0, it suffices to check this
for the finite sequences h (see [9, §5] for this argument), and this is easily
done. Also, the sequence tk = \ is representative here for all sequences
tk —> 0+, (see [2] for this argument).

According to [9, §2], pointwise convergence of the second order difference
quotient is equivalent to j(df(th) — V/(0)) —*• \eι weakly for every fixed h.
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We show that this difference quotient fails to converge in norm here. Indeed,
take h — (^), then

which converges weakly but not in norm to ^e1. This follows by checking
that for x = £/ι, the maximum in (7.1) is attained at n — 2k — 2.

Let us finally show that Δ / O i O i ^ also converges to q in the Mosco sense.
Since condition (a) is already clear, we have to check condition (β). Let
hk —̂  h. Fix εk -» 0 + such that εkk -> oo. Suppose \\hk\\ < M < oo, and let
hi φQ for simplicity. Now let δk = ^== —)• 0. We define

I{k) = {neN: hk

n< -δk}.

Then M2 > \\hk\\2 > ΣneI{k){hk

n)
2 > ^card/(A;), so card I(k) < ^ = εkk <

2εkk. Therefore, as the interval J(k) — [2k/hk —εkk,2k/hk -\-εkk] has length
2εkk, we may pick n(k) E J(k) \ I(k). But then

n(k)2 ~ \k(2klh\-εkk) (2fc/Λ{ + ekkf

h\-δk 1 Ahi)2 .
2/hk

ι-εk

which proves condition (β).

Example 4. Define / : ί2 -> K by

(7.2)

/^(^l + l^ + -
f(x) = sup

ΠGN V n n2

=: sup/n(a;).

As in Example 3, /(0) = 0, / > 0, V/(0) = 0. Again an elementary cal-
culation shows that / is Lipschitz smooth at 0. Therefore second order
differentiability of / at 0 follows since Af00^(h) = k2f(^h) converges for
every finite sequence h. We show that / is not second order Mosco differen-
tiable at 0. Fix h = (£). Then ΔftOiO^(h) -> \ = <?(/ι). This may be seen
by checking that for x = |/ι, assymptotically the sup in (7.2) is attained for
n = 2k. Now let us define a sequence hk —x /ι by

V 2 3
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with — ̂ ~ occurring 2k times. We prove that liminf k2f(^hk) < ^ < | ,
which shows that condition (β) of Mosco convergence is violated.

First consider the terms k2fn(\hk) with n < k. The maximum possible
contribution here comes from n = fc, giving

6 /7Γ2 1\ 1 2A:

( + ) + k 1 f t

Next consider k < n < 2fc, that is, n = α& for 1 < α < 2, say. Then

^ a-a1/2(2a-2)-l

so these indices n do not contribute to the supremum (7.2).
Next consider n = ak, 2 < a < 4. Here we have

ι h ) -

a2

eventually, so these indices do not contribute either. Finally consider n = ak
with a > 4. Here we have

l + o(l)--i,log2 1 . α - 1

and since a > 4, this has maximum value ~, as claimed. This completes
our argument.

Letting C denote the epigraph of /, we see that C is second order Gateaux
smooth at (0,0), but Pc is not directionally differentiate at (0,-1), since
C fails to be second order Mosco smooth at (0,0). As a consequence of
Lemma 4.4, some of the outer parallel sets C[e] therefore fails to be second
order Gateaux smooth at (0, —ε). This means that the Gateaux analogue of
Corollary 6.4 is false.
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