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ON PROPER SURJECTIONS WITH LOCALLY TRIVIAL
LERAY SHEAVES

R.J. DAVERMAN AND D.F. SNYDER

Let / : X -* Y be a closed proper surjection whose Leray
sheaves are locally constant through a given dimension k.
Spectral sequences are used to analyze the cohomological con-
nectivity and manifold properties of Y. Generally, when Y
has dimension at most /c, it is a cohomology A -manifold over a
given principal ideal domain R if and only if Hq(X, X — f~1y;R)
is isomorphic to Hom.R(Hq~k(f~1y;R),R) for every y G Y and
q < k. As a result, if X is an orientable (n + &)-manifold,
each f~ιy has the shape of a closed, connected, orientable n-
manifold, and Y is finite dimensional, then Y is a generalized
/c-manifold. Euler characteristic relationships involving X, 1%
and the typical fiber f~λy are derived in case the Leray sheaves
of / are locally constant in all dimensions and the range has
cohomologically finite type.

The main thrust of this paper is to establish the following:

Theorem . Let Q be an upper semicontinuous decomposition of an orientable
(n + k)-manifold into subcompacta having the shape of closed, orientable n-
manifolds such that the decomposition space B is finite-dimensional and the
Leray sheaf of the decomposition map is locally constant through dimension
k — 1. Then B is a generalized k-manifold with boundary. If the Leray sheaf
is also locally constant in dimension k, then B is a generalized k-manifold.

Even if the Leray sheaf is constant in all dimensions, such a map need not
be an approximate fibration, as Example 5.3 of [Dl] shows.

The paper is organized into three sections. The first of these merely
establishes the terminology and symbolism used in the sequel. It is known by
a result of J. Dydak [Dy] that B is LCι\ moreover, B is an ANR if, and only
if, B is cohomologically locally connected. The second section concentrates
on establishing cohomology manifold properties for the image of a closed,
proper map provided the Leray sheaf is locally constant through certain
dimensions. The third section applies the results of Section 2, the above

461



462 R.J. DAVERMAN & D.F. SNYDER

theorem being one consequence. It also presents an Euler characteristic
result (for closed proper maps with locally constant Leray sheaves in all
dimensions) which is akin to the one for orientable fibrations. The most
satisfying payoff occurs in studying a proper map / : M -> B defined on an
arbitrary closed, orientable (n + 2)-manifold M whose point preimages, up
to cohomological equivalence, are all copies of a closed orientable n-manifold
iV, for then χ{M) = χ{B) χ(N). This indicates, for example, that neither
integral cohomology 4-spheres nor closed orientable 4-manifolds of odd Euler
characteristic can be upper semicontinuously decomposed into copies of a
fixed surface.

1. Definitions.

All spaces are assumed to be separable metric spaces. Let Q, Z, and Z p

denote the, rationale, integers, and integers modulo p, respectively. Let
Λ =. {2,3,... } U {oo}; as we use this often as an index set we regard Λ as a
totally ordered set, where oo represents the maximal element. We use R to
denote a principal ideal domain without zero divisors.

For the definition of a stack (presheaf) or sheaf on a space Y and most
of the following terminology, see [Sw] or [Brl]. A stack on Y naturally
induces a sheaf on Y; conversely, a sheaf naturally induces a stack (the stack
of sections) over Y. The only stacks considered in this paper are the Leray
stacks. Let / : X —> Y be a continuous function; for any q > 0 and U open
in y, define Sq(U) = Hq(U;R), the Leray stack in dimension q of f over
R on y. We define H9[f\ R] to be the sheaf induced by Sq and H*[f; R] to
be the "graded sheaf {Hq[f;R]\q > 0}. When, by context, both / and R
are understood, we may write %q and H* without ambiguity. Recall that a
sheaf is trivial if it is equivalent, in the category of sheaves, to a constant
sheaf K x 7 , where K is an i?-module; a sheaf S is locally trivial if for each
y ξϊY there is a neighborhood U of y in Y such that <S|c/ is trivial.

Given an upper semicontinous decomposition (used) Q of a space M, we
let B denote the decomposition space MJQ and π the decomposition map
[D3]. For A C JB, we follow the notation of James [J] and let MA — T Γ " 1 ^ ) ;

if b e B then Mb = π~ι(b).
We say that Q (or π) is sheaf-trivial over R in dimension k (resp. locally

sheaf-trivial over R in dimension fc), denoted k-STR (resp. k-LSTR), if
Ήfe[π; R] is trivial (resp. locally trivial) over the decomposition space. We say
that Q is sheaf-trivial (resp. locally sheaf-trivial) over R through dimension
k denoted ST% (resp. LST*), if Q is l-STR (resp. l-LSTR) for all 0 < I < k.
Furthermore, Q is weakly locally sheaf-trivial over R, denoted LSTR, iΐQ is

R for all k > 0. Finally, Q is strongly locally sheaf-trivial over R, denoted
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, if each point of the decomposition space has a neighborhood over
which H9[π; R] is trivial, for all q > 0. If the subscript "R" is omitted, then
R = Z is assumed.

There are three definitions of sheaf cohomology (categorical, Alexander
and Cech), all of which agree for a given sheaf and the type of supports
we consider; moreover, if the space is homologically locally connected (for
example, an ANR) and the sheaf is trivial, then each of these theories agrees
with the singular theory [Sw]. Thus, cohomology with coefficients in the
Leray stack, or in the Leray sheaf, is unambiguously defined.

Since many of the spaces studied have potentially bizarre local structure,
Cech cohomology is the theory employed throughout.

To prevent possible confusion, we spell out that the notation Hom^A, B)
means the R-module of all i?-homomorphisms A —> B.

A space X is cohomologically locally connected in dimension i with respect
to iϊ, denoted i-clcR, if for all x G X and all neighborhoods U of x in X,
there is a neighborhood V C U of x such that H\U\R) -+ H^V R) has
finitely generated image. A space X is cohomologically locally connected
through dimension % with respect to i?, denoted clcι

Ri if it is j-clcR for all
0 < j < i. A space X is cohomologically locally connected with respect
to i?, denoted dc% if it is j-clcR for all j > 0. A space X is strongly
cohomologically locally connected with respect to ϋ , denoted clc^, if for all
x G X and all neighborhoods U of x in X, there is a neighborhood V C U of
x such that Hι(U;R) -> Hι(V., R) has finitely generated image for alii > 0.
Note that a finite-dimensional metrizable space is dcω

R if, and only if, it is
clc'ft', in this case, we omit the superscript and say simply that the space is
CICR. If the subscript "iϊ" is omitted, then R = Z is assumed.

A cohomology k-manifold over R is a space X of finite cohomological
dimension with respect to R [Na, p. 247] such that, for every x G X,
H\X,X — x\R) is trivial when i φ k and is isomorphic to R when i = k.
A cohomology fc-manifold with boundary is a space X such that for each
x G X, H*(X,X — x R) either is trivial or satisfies the requirements of a
cohomology A -manifold. Following standard practice, we use dX to denote
{x G X I H*(X,X — x]R) = 0}. Older references, it should be mentioned,
typically make it a requirement of the definition that dX be closed relative
to X, but W. J. R. Mitchell [Mi] has shown this always holds. A gen-
eralized k-manifold [-with-boundary] over R is a cohomology A -manifold
[-with-boundary] over R which is, in addition, a fc-dimensional ANR. For
k = 0,1,2, a generalized A -manifold is, in fact, locally Euclidean. However
for k > 3, there are generalized A -manifolds that have no Euclidean patches;
see [CD]. Even in the presence of such pathology, generalized manifolds are
locally orientable [Br2].
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The following Theorem's proof is found in [Brl, pp. 140-141].

Theorem (Leray-Grothendieck). For a closed map f : X —> Y, there is a

first quadrant spectral sequence

=

Remarks:
1. For our purposes we need only consider the family φ of closed supports

on X, and φ either the family of closed supports on Y or φ — {y}. In
the former case φ(φ) = φ, and in the latter φ(φ) — φ\y, the closed
subsets of y — f~1y; in this latter case, if / is also proper then

2. £%& = ker(dr)/im(dr), where the differential d™ : E™ -> Ef+r "-r+1

has bidegree (r, 1 — r).

3. ^ = ^ ΐ 1 = ^ ί 2 = --- = ^ f o r r > p + ? + l.

4. There is a filtration 0 C Jo C Λ C C Jp = Hp

φW(X), where

Jo = E*° and Ji/Ji^ = E^\ i < p.

5. [McL] has a quick introduction concerning calculation of spectral se-

quences.

6. [BT] is a wonderful beginner's guide to understanding the Leray sheaf,
sheaf cohomology and the structure of this spectral sequence.

2. Cohomological manifold properties of B.

A standing hypothesis for this section is that M is a connected separable
metric space. Note that the elements of Q in the following theorem are
allowed to have infinite cohomological dimension.

Theorem 2.1. Let Q be LST^, and suppose that 7ί* has finitely generated
stalks in each dimension. Assume M, Mb are connected and that dim B < k.
Then the following are equivalent:

1. B is a cohomology k-manifold over R.

2. Hq(M,M - Mb) ^ ΉomR(Hq-k(Mb),R), for all b e B and q>0.

Proof. Select b G B. We let φ be the family {0, {&}} of supports in the
spectral sequence of π; as before, φ is the collection of closed subsets of M.
We treat the case where Q is STjf, leaving the more general setting to the
interested reader (hint: localize, use the excision property, and induct on q).
(1) implies (2):

Since B is a cohomology A -manifold, HP(B,B - b) = Hp

φ(B) is trivial
except for p — fc, in which case it is R. Since Q is STpf, we can apply the
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Universal Coefficient theorem to H^(B\Hq) to see that Eξ'q is isomorphic

to UomR(Hq-k(Mb), R)ifp = A;, and is trivial otherwise. So E2 = E3 ^ . . .

and thus E™ is trivial except when p = fc, where J5^g = H^^(M). Hence,

JΓ*(M,M - Mb) S f Γ J w ( M ) S £&*-* £ JBj *-fc S Hk(B;Hq-k(Mb)) £*

Homfl(lfg""*(Mft),jR) as promised.

(2) irap/ies (1):

JS2'« = Hl{B]W{Mh)) ^ 0 since 5 is connected.

A standard dimension argument [Na, pp. 244-247] gives Hp(B,B — b) = 0

for all p> k.

We now induct on p. For p < k, let Φ(p) denote the statement uEP'>q = 0

for all q > 0, r E Λ and p' + q < p." Assume Φ(p — 1), where p < k. Then

HP(B,B - b) £ #£(B) = J5f'° = JS? °, the last isomorphism due to the

image of d?- r ' r " 1 being trivial for all r by Φ(p - 1); and so j^ ' ° ^ £J^°.

Thus HP(B,B - b) = Hζ(φ)(M), and, by hypothesis, the latter module

is isomorphic to HomjR(ί3Γp~fc(Mfe), JR), which is trivial since p < k implies

the coefficient group is trivial. Applying the Universal Coefficient Theorem

[Sp, p. 246] to Efq £ Hp' ( £ , 5 - 6 ; Uq) for 0 < p1 + q < p, we get jEf'9 S 0;

thus EP'Λ = 0 for all 0 < p1 + ς < p and and r G Λ. Hence, Φ(p) is

true. In particular, by induction, HP(B,B — b) = 0 for all p < k. Also

note that we can now apply this argument for p = A; and conclude that

# * ( £ , B - b ) = Hk

(φ)(M,M-Mb)^ RomR(H°(Mb),R) ^ Λ. Thus, J5 is a

cohomology Λ -manifold over i?. D

The next result is a corollary to the proof of Theorem 2.1.

Corollary 2.2. Suppose Q is LSTR and Hι has finitely generated stalks

for each I < k. Assume M,Mb are connected and dim B < k. Then the

following are equivalent:

1. B is a cohomology k-manifold over R.

2. Hq{M,M- Mb) Ξ RomR(Hq-k(Mb),R), for all b e B and q<k.

We can weaken the hypotheses of Corollary 2.2 somewhat, with a corre-

sponding weakening of the conclusion.

Theorem 2.3. Let Q be LSTR~ι, where Hι has finitely generated stalks for
I < k—\. Assume that M,Mb are connected, d i m β < k, Hq(M,M—Mb) = 0
for q < k, and Hk(M,M — Mb) C JR. Then B is a cohomology k-manifold
with boundary over R.

Proof Select b G B. Exactly as in the proof of Theorem 2.1, we see that
HP(B, B — b) = 0 for p < k. Continuing in the same fashion, we find that

Hk{B,B- b) C Hk(M,M- Mb) C R.
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According to a standing hypothesis, ideals in R are either trivial or isomor-
phic to J2, so B is a cohomology fc-manifold with boundary over R. D

Example 2.4. The double M of the mapping cylinder of the 2 — 1 cover
of P2n by S2n is a closed, orientable (2n + l)-manifold which admits an
obvious used Q into two copies of projective 2n-space and an uncountable
collection of 2n-spheres. Here Q is LC\ for trivial reasons and Hλ(M,M —
Mb) = H2n(Mb) is not always a copy of Z, being trivial for two values of
b. As B = M/Q clearly is a closed interval, this shows how boundary can
occur in settings fulfilling less than the full strength of hypotheses in 2.2.
Related examples involving arbitrary codimension k < 2n arise from the
map π x Id : M x Rk~λ -> [—1,1] x i?*"1, where the induced decomposition
is LSTR for R = Q and JR = Zp, provided p is an odd prime; such examples
reveal how boundary can arise for these values of R even when Q is

Corollary 2.5. Let Q be LSTJ^1 where Hι has finitely generated stalks for
I < k—1. Assume that M,Mb are connected, dimjB < k, Hq(M,M—Mb) = 0
for q < k, and Hk(M,M — Mh) = R. Then B is a cohomology k-manifold
with boundary over R and

= {beB\ H°(B;Hh) = R}.

If we assume, in addition, that %k is Hausdorff, then dB is empty.

Proof. This requires just a minor addendum to the proof of Theorem 2.3. If
Hk(B,B - b) = 0, then from the filtration of Hk(M,M - Mh) induced by
the spectral sequence, R S Hk(M,M - Mb) £ H^{B]Hk). Obviously Uk

Hausdorff implies H$(B;Ή.k) = 0, as then that sheaf has no sections whose
support is a singleton. D

Theorem 2.6. Suppose N is α closed, R-orientαble n-mαnifold; Mn+k is an
R-orientable (n + k)-manifold; Q is a used of Mn+k such that each g G Q has
the shape of N and Ή,ι[π; R] is locally constant for 0 < i < k; and dim B = k.
Then 7ίn[π]R] is locally constant.

Proof. Just as in Theorem 2.1, E\Ά = 0 unless p = k, so E™ = 0 for r G Λ,
pφk. In the spectral sequence filtration of Hk(B, B — b) we have

Jo = Ek/ = £ 2

M ^Hk(B,B-b)^R for all r.

Moreover, Jo S Jλ ^ ^ Jk ^ Hk{M,M - Mb) ^ Hn{Mb) ^ Hn(Mb), by
duality. Local orientablility of B implies local constancy of Hn [TΓ R]. D
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3. Discussion and Applications

This section discusses the results of the previous sections in relation to the
literature of manifold decompositions, and gives a few applications that are
significant additions to the subject.

Lemma 3.1. Let f : X —> Y be a closed, proper surjection whose point-
inverses are path-connected FANRs, where X is a locally compact ANR and
f isLST% [resp. LST^1]. ThenY is LCω [resp. LCk}. In particular, ijY
is finite dimensional [resp. dimY < k], then Y is an ANR.

Proof. A result of Dydak's [Dy] says that Y is LC1. By Corollary 1 of
[DyW2], Y is clc% [resp. c/c|]. Hence, a fairly standard Hurewicz theorem
(see [Sn, Lemma 1.4.8]) gives that Y is LCω [resp. LCk}. The concluding
statement is implied by a well-known characterization of finite-dimensional
ANRs [Hu]. D

Consider a use decomposition Q of an (n+fc)-manifold M into subcontinua
having the shape of closed n-manifolds. When k < 3 the decomposition space
B = M/Q must be fc-dimensional [Dl, D2, DW2]; however, the discovery
of dimension raising cell-like maps [Dr, DyW3] indicates that dim B can
be infinite when k > 4. Prom here on, therefore, we assume B to be finite-
dimensional.

Next we present a cohomological variant of [DW2, Lemma 5.3]. Because
that argument seems to require further elaboration, we give a complete proof
here.

Theorem 3.2. Let Q be a used of the orientable (n + k)-manifold M into
subcontinua having the shape of closed, n-manifolds, so that B = M/Q is
finite-dimensional and Q is LST^~ι.

Then B is a generalized k-manifold {over Z), possibly with boundary.
Moreover, dB — 0 ifHh[π;Z] is Hausdorff. In particular, if Q is LST^,
then dB — Φ, and Ήn[π, Z] is locally constant.

Proof. By Lemma 3.1, B is an ANR.
Given 5 G B , the Universal Coefficient Theorem yields

Hι(M,M- Mh) = Homz(#/(M,M - M6);Z) Θ E x t { H ^ M . M - Mb);Z).

Since M is orientable, Alexander duality reveals that Hm(M,M — Mb) =
Hn+k-m(Mb). So, for I < k, we can calculate that Hι(M,M - Mb) £
Hι~k(Mb). Thus B is a generalized manifold, possibly with boundary. As in
the previous section, Ή*[π; Z] Hausdorff implies dB is empty. D
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Finally, we note that M need not be orientable as long as there is a
orientable neighborhood of M6, for every b £ B; also we may use any PID
in place of Z if desired. The novelty of the result is for k > 2, as Daverman
and J.J. Walsh showed, without the sheaf-triviality restriction, that B is a
2-manifold for k = 2 [DW1]; and Daverman [Dl] did the same for k = 1.

The following result is useful for establishing the non-existence of certain
types of manifold decompositions, and is similar to a result of [D5] in which
π is a PL map, but not necessarily LSTω.

Theorem 3.3 [Sp, p. 481]. Let Q be an LST% decomposition of a locally
compact metric space M into subcontinua having Euler characteristic de-
finable over the field R (or R = Z) with B = M/Q having definable Euler
characteristic over R. Then the Euler characteristic over R of M can be
defined and

= χ(B)-χ(Mb),

where Mb is the element of Q over any b £ B.

The proof follows that of Spanier's fairly closely; he hypothesizes an ori-
entable fibration rather than a decomposition of this type, but the algebra
is the same. Moreover, we may apply the above result to get as a corollary:

Corollary 3.4. Let Q be an LSTR decomposition of a closed, R-orientable
(over Z or a field) (n + k)-manifold M into subcontinua having the shape of
R-orientable n-manifolds. Then, for any b £ B,

= χ(B) χ(Mb).

Since B is an i?-cohomology A -manifold, this is immediate.

Lemma 3.5. Suppose f : X -» Rn is a proper, surjective map, H*[f]
is locally constant over Rn — origin, and f'1 (origin) is an ANR. Then
χ(f-1(Rn))=χ(f-1 (origin)).

Proof It suffices to show that the inclusion f~λ (origin) —>• f~1(Rn) induces
a cohomology equivalence. The key step involves the following:

Claim. Let V be the interior of the unit disk in Rn. Then the inclusion
f~ι(V — origin) —> f~λ(Rn — origin) induces a cohomology isomorphism.

Just as in the proof of the claim in the midst of [DW2, Proposition 1.1],
H*(V — origin) and H*(Rn — origin) are (naturally) isomorphic to H*((Rn —
origin) x f~x(z)), z £ Rn - origin.
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In light of the Claim, inspection of the cohomology ladder for the inclusion
of pairs

{Γl{V),Γ\V - oήgm))(Γ\R%Γ\Rn - origin))

quickly confirms that H*(f-1(Rn)) -+ H*{f~λ(y)) is an isomorphism. By
simply prearranging to have f~ι(Y) deformation retract to /"^(origin) in
f~ι(Rn), we obtain the required cohomology isomorphism and complete the
proof of 3.5. D

Theorem 3.6. Suppose N is a closed, orientable n-manifold and Q is a used
of a closed, orientable (n + 2)-manifold M into copies of N (up to shape).

Proof. By [DW1] B is a 2-manifold, and there exists a finite set F —
61,..., bm such that p : M — p~ι{F) -> B — F has locally constant Leray
sheaf, in all dimensions. By Theorem 3.3

χ{M-p-\F)) = χ(B - F) • χ(N) = (χ(B) - k) • χ(N).

The various h G F have pairwise disjoint neighborhoods £/j, each homeomor-
phic to R2. Lemma 3.5 assures χ(p~ι{Ui) = χ{N) for each i. Furthermore,

^Ui - h)) = χ(Ui - h) • χ(N) = 0. Finally,

χ(M) = χ(M-p-\F))

= (χ(B) -m) -χ(N) + m-χ(N) -0

= χ(B)-χ(N).

Ώ

Corollary 3.7. If G is used of a Z-cohomology (2n + 2)-sphere M into
continua having the shape of a fixed closed, orientable, In-manifold F, then
X(F) = 1.

Proof. Again, B = M/G is a closed 2-manifold. Since π induces an Hι~
epimorphism, B = S2. The conclusion follows directly from Theorem 3.6
and the fact that χ(M) = 2. D

Corollary 3.8. There is no used of a Z-cohomology ^-sphere into continua
having the shape of a fixed surface F.

Proof. If there were, the decomposition space would be a compact 2-manifold
[D4]. Since an orientable (n + fc)-manifold admits no used with ANR im-
age into closed, non-orientable n-manifolds [DH, Theorems 2.10 and 3.1], F
must be orientable, and then Corollary 3.7 gives a contradiction. D
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Corollary 3.9. If M is a closed, orientable \-manifold with Hι(M', Q) = 0,
then there is no used of M into continua having the shape of a surface F
with χ{F) < 0; if, in addition, β2{M) > 2, then there is no used of M into
continua having the shape of any surface.

Proof. As in 3.8, F would be orientable. Here again we would have B = S2

or B = P 2 , as if1 (5; Q) = 0. As then χ(M) > 2 and χ(B) > 1, this would
yield χ(B) χ(F) < 0 < χ(M) when χ(F) < 0. D

Corollary 3.10. There is no used of any closed, orientable A-manifold of
odd Euler characteristic into continua having the shape of a fixed surface F.

Proof. Here χ{F) must be even by the orientability argument of 3.8. D

Theorem 3.11. Suppose N is a closed orientable n-manifold and Q is a
used of an orientable (n + k)-manifold M such that each g £ Q has the shape
of an ANR with H*(g; Q) S H*(N; Q), Un is Hausdorff, and dimB < oo.
Then B is a Q-cohomology k-manifold.

Proof. Naturality of Poincare duality implies that the Leray sheaf of π is
locally constant. •

Corollary 3.12. Under the hypothesis of Theorem 3.11, assuming M com-
pact, χ{M) = χ{N) χQ(B).

Question: In Theorem 3.2, if we assume that the elements of Q are ori-
entable and Q is LST^'1, is dB necessarily empty? (Yes for k = 1,2
[Dl, DW1].)
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