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PARTITIONS, VERTEX OPERATOR CONSTRUCTIONS
AND MULTI-COMPONENT KP EQUATIONS

M.J. BERGVELT, A.P.E. TEN KROODE

For every partition of a positive integer n in k parts and
every point of an infinite Grassmannian we obtain a solution
of the k component differential-difference KP hierarchy and
a corresponding Baker function. A partition of n also de-
termines a vertex operator construction of the fundamental
representations of the infinite matrix algebra gl^ and hence
a r function. We use these fundamental representations to
study the Gauss decomposition in the infinite matrix group
Gloo and to express the Baker function in terms of r-functions.
The reduction to loop algebras is discussed.

1. Introduction.

1.1. Infinite Grassmannians and Hirota equations. Sato discovered
that the Kadomtsev-Petviashvili (KP) hierarchy of soliton equations could
be interpreted as the Plucker equations for the embedding of a certain infinite
Grassmannian in infinite dimensional projective space, see e.g. [Sal, Sa2].

Let us first recall the finite dimensional situation. The Grassmannian
Grj(Cn) consists of all j-dimensional subspaces W of the n-dimensional
complex linear space Cn. Let {ê  | i = 1,2,... ,n} be a basis for C2 and
let Hj e Grj(Cn) be the subspace spanned by the first j basis vectors
ex, e 2 , . . . , βjί. The stabilizer in Gl(n, C) of Hj is the "parabolic" subgroup Pj
consisting of invertible matrices X = ΣXabEabi with Xab = 0 if a > j and
b < j . Here Eab is the elementary matrix with as only non zero entry a 1 on
the (α, b)th place. So Grj(Cn) can be identified with the homogeneous space
Gl(n,C)/Pj. Now this homogeneous space is projective, i.e., admits an em-
bedding into a projective space.' Explicitly, let ΛCn be the exterior algebra
generated by the basis elements ea of Cn and ΛJCn the degree j part, i.e.,
the linear span of elementary wedges eh A ei2 A Λ eiά. For W G Grj(Cn)
with basis W\, w2,..., w3 we have the element wλ A w2 A Λ Wj which is up to
multiplication by a non zero scalar independent of the choice of basis. This
then defines an embedding φj : Grj^) -> IPΛ^C1. (If V is a vector space
FV denotes the associated projective space.) The image of φj is the projec-
tivization of the Gl(n, C) orbit of the highest weight vector ex Λ e2 Λ Λ e,
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and is described by the following quadratic equations: if r G A J C n , r 7̂  0
then [r], the line through r, belongs to Im φj iff it satisfies the following
equation:

n

(1.1.1)
a=l

Here φ(a) and φ{a)*: a — 1,... , n are fermionic creation and annihilation
operators on ΛCn that act on elementary wedges by

(1.1.2)

ψ(a) (eα i Λ eα2 Λ • Λ eaj) = eα Λ eα i Λ eα2 Λ Λ eaj,

j

V>*(α) (eα i Λeα 2 Λ Λe β j ) - Y^{-l)k+1Saah:eai Λ eα2 Λ • Λ eak Λ Λe f l j.

Here the hatΛ denotes deletion. The equation (1.1.1) is one of the forms of
the famous Plϋcker equations, cf., [GH].

The infinite dimensional situation relevant for soliton equations of KP-
type is initially very much the same as in finite dimensions: one considers
a group G of certain invertible infinite matrices indexed by Z, a parabolic
subgroup P and the homogeneous space Gr = G/P, an infinite Grassman-
nian. (We will be sketchy in this introduction about the precise definition of
the infinite dimensional objects G, P etc; there are various choices for them,
corresponding to various classes of solutions of the hierarchies.)

The group G has a central extension 0 -> C* -» G -> G -> 0. (Such
an extension also occurs in the finite dimensional situation of G7(n,C), but
is there necessarily trivial and is usually ignored.) There is an integrable
highest weight representation Lχ for G, with λ an integral dominant weight,
such that the lift P of P stabilizes the highest weight vector vx of Lχ. Then
the projectivized group orbit P(G υχ) C ΨLχ is isomorphic to G/P and so
this construction gives a projective embedding of G/P. The representation
L\ can be realized explicitly as a homogeneous component (with respect to
the grading by "charge") of a "semi infinite wedge space" on which fermionic
creation and annihilation operators ψ{a) and φ(a)*, a G Z act by formulae
analogous to (1.1.2). The image of G/P in FL\ is described by (1.1.1), but
with now the summation running over all integers.

To obtain the KP hierarchy one next considers the principal Heisenberg
subalgebra sprιnc of the Lie algebra g associated to the group G and one
proves that L λ, now thought of as a module for <?, remains irreducible un-
der the action of the subalgebra sprιnc. By uniqueness of representations of
Heisenberg algebras one concludes that Lλ is isomorphic to a polynomial
algebra C[xi,x2? ] in an infinite number of variables. An element r of
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this polynomial algebra corresponds to a point of the group orbit G • υλ pre-
cisely when it satisfies an infinite collection of differential equations (Hirota
equations) of the form

(1.1.3) P(θ/dx)τ{x) • τ(x) := P(d/dy)τ(x + y)τ(x - y) | y = 0 = 0,

for certain polynomials P. The equations (1.1.3) are a "bosonized" form of
the fermionic Plucker equations (1.1.1). This then is the KP hierarchy in
so called Hirota form and gives the defining equations for the projectivized
group orbit.

One sees that the construction of the KP hierarchy depends essentially on
the choice of the principal Heisenberg algebra to obtain a concrete, bosonic,
realization of the representation L\. It is therefore natural to investigate
what happens if one focuses one's attention to other Heisenberg subalgebras
s of #, that, as is well known, give rise to other so called vertex operator con-
structions ([KaP2, Lep]). In general the representation Lx will not remain
irreducible under other Heisenberg algebras but in our situation there is in
the group G a subgroup T, the translation group, of elements that commute
with <§ in the representation Lλ and such that L\ remains irreducible under
the action of the pair (s,T).

Investigating examples (see for example [tKB], [KaW]) one quickly dis-
covers that one obtains from these other constructions of Lλ in much the
same way as before defining equations for the group orbit, but the equations
can have a rather different character; in particular one will find hierarchies
that contain also difference, as opposed to just differential, equations. For
example the Toda lattice can be obtained in this way. The difference equa-
tions are "caused" by the occurrence of the translation group in the vertex
operator construction sketched above. Also the differential equations that
one obtains for other Heisenberg algebras look rather different: in the sim-
plest case one obtains the Davey-Stewartson equation instead of the KP
equation.

In this paper we want to discuss the hierarchies of soliton equations related
to certain vertex operator constructions of the central extension g of the
infinite matrix algebra. These constructions use Heisenberg algebras of g
obtained from all possible Heisenberg algebras of the affine Lie algebras
gl(n, C), where we think of gl(n, C) as a subalgebra of g.

1.2. Lax and zero curvature form. Until now in this introduction we
have described soliton equations in Hirota form, using the representationL

theory of a central extension of the infinite linear group.
Other approaches to these equations are the Lax and zero curvature for-

malisms. Let us sketch how these approaches are related to the representa-
tion theoretic one. As we discussed before the main ingredient in the recipe
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for the construction of Hirota equations was the choice of Heisenberg system
(s, T) consisting of a Heisenberg subalgebra of g and a translation subgroup
T of G. Now using the sequences

(1.2.1) 0-*C-><7->#->0, 0 - + C * - > G - ) - G - > 0

we obtain a pair (s,T) consisting of a commutative subalgebra in g and a
subgroup T in G that commutes with s. The decomposition s = s + θ s _ θCc
in annihilation operators, creation operators and central elements induces
a decomposition s = s+ 0 s_. Then one considers on G/P "continuous
and discrete time flows" from the pair (7+,T), where 7+ = exp(s+). The
compatibility or commutativity conditions of these flows will then be the
Lax or zero curvature equations (depending on how one sets things up).

It is well known (at least for the KP hierarchy) that the Hirota type equa-
tions are equivalent to the Lax or zero curvature equations. The main point
of this equivalence is the connection between the so called Baker function,
or wave function, and the r-function, well known from the Japanese litera-
ture (e.g., [DJMK]) and also, in the algebro-geometric situation, in Russian
works (e.g., [Kr]). In the case of the principal Heisenberg algebra this con-
nection was given by [SeW, 5.14], by a "simple but mystifying proof" in the
words of [Wl]. For the case of the homogeneous Heisenberg algebra [Di3]
uses this connection to define the τ-function.

It is the aim of this paper to give a representation theoretic derivation of
the connection between the τ-function and the wave function. (We will use
the term wave function instead of Baker function in the main part of the
paper.) In our set-up this relation is derived from the observation that the
wave function consists, essentially, of one or several columns in a lower trian-
gular matrix in the defining representation of G (for the principal Heisenberg
algebra or in general, respectively). Furthermore one finds that one can cal-
culate matrix elements of such matrices in terms of the fundamental highest
weight representations of the central extension G. The explicit use of matrix
elements of fundamental representations of Lie algebras to solve integrable
systems goes at least back to Kostant's solution of the finite non-periodic
Toda lattice, [Koj.

Let us describe this last simple, but essential, step in a finite dimensional
situation. Consider the group G7(n,C) acting on the vector space H — Cn,
with, as before, basis eu ..., en and Hj the subspace of C* spanned by the
first j basis vectors. We recall that any g G G/(n,C) admits a Gauss-
decomposition g = #_Pί/+, with #_ a lower triangular matrix with l's on
the diagonal, g+ an invertible upper triangular matrix and P a permutation
matrix. The permutation matrix is uniquely determined by g, but the g± are
not, unless P = l n . We say that g £ GZ(n,C) belongs to the big cell for H3



PARTITIONS, VERTEX OPERATOR CONSTRUCTIONS,... 27

if PHj = Hj. In this case we can choose the factors in a variant g = gj-Pg+
of the Gauss-decomposition in a unique way such that P is the permutation
matrix from the regular Gauss decomposition and gί_ is of the form

(1-2.2) 9L = lnxn

If we put gJ

+ — Pg'+ we have g+Hj — Hj and we see that the jf-dimensional
subspace W = gHj of C n projects isomorphically to Hj by the natural
projection. Now it is not too difficult to see that the matrix elements grs

of gJ_ can all be calculated using the fundamental representation Λ ̂ C1 (cf.
, ch. 3.11]): we have

(1.2.3) grs = (Ers Vj I gL v, ) = (Ers • Vj- | g VJ)/(VJ \ g V j ),

where Vj? = eλ Λ e2 Λ ê  , i? r 5 acts as if it were a group element and ( | )
is the canonical Hermitian form on Λ JCn such that {VJ \ v^ ) = 1. The
denominator Tj = (v^ | g v^ ) of (1.2.3) is the finite dimensional analogue of
the famous r-function; if we write

(1.2.4)

with A of size j x j , B of size j x n — j and I? of size n — j x n — j , then
Tj = det(A). The most important property is that Tj is nonzero iff g belongs
to the big cell for Hj iff the projection from W to Hj is an isomorphism.

Translating (1.2.3) to our infinite dimensional situation gives Lemma 5.5.1.
Recall that one can associate to every partition n of n into k parts a vertex
operator construction for the infinite matrix algebra, using the technology
of "bosonized k component fermion fields" (see, e.g., [tKvdL] and refer-
ences therein). For each of these constructions we find solutions to the
A -component differential-difference KP hierarchy and we obtain in theorem
5.5.2. by a straightforward calculation the relation between the wave func-
tion and the τ-function for these hierarchies. In the literature fc-component
KP hierarchies were introduced in [DJKM2] and studied in [UT, Di l , Di3].
However there apparently only the solutions related to the homogeneous par-
tition π = 1 + 1 + 1 are considered and also the difference equations in
the hierarchies seem to be included only implicitly.

It is for various reasons interesting to study more general partitions. Recall
(from [SeW], say), that one can associate a solution of the KP hierarchy to
algebro-geometric data, consisting of a Riemann surface X, a point p G X
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with local coordinate z~ι at p, a line bundle, etc. If z happens to be the n t h

root of a global meromorphic function on X with only a pole at p we have
a covering map X —> P1 with p as the n-tuple inverse image of the point
oo E P1 and one obtains a solution of the n-KdV hierarchy. The natural
generalization ([AB1, AB2]) of this construction consists in considering n-
fold coverings of P1 such that the pull back divisor of oo E P1 is of the form
Σα=inαPα> for Pi? JP& points on X and the nα positive integers. This
gives us a partition n of n and by choosing other appropriate geometric data
(line bundle, trivializations, etc) one finds a solution of the A -component
KP hierarchy. In [LiMu] this construction is used to study the analogue
of the Schottky problem for Prym varieties. In [Mel] these type of soliton
equations are studied in terms of flows on generalized Jacobians, see also
[Pr]. In section 5 we will spend quite some time discussing the fermionic
translation operators Qa, the translation group T constructed from it and the
relation with the infinite Grassmannian. In the algebro-geometric language
the operators Qa correspond to tensoring the line bundle with a bundle with
divisor pa.

Another way in which the hierarchies related to arbitrary partitions might
be of interest is the following. Recently there has been much renewed in-
terest in the Hamiltonian structure of soliton equations in relation to the
so called W-algebras of conformal field theory. For instance in [FePr] the
Wn algebras are constructed using vertex operator algebras and the (mod-
ified) n-KdV hierarchy corresponding to the principal partition of n. The
Hamiltonian structure of the n-KdV hierarchy is there obtained using a re-
markable duality of W algebras. It seems reasonable to expect that there
exist for every partition of n (or more generally for every vertex operator
construction of affine Kac-Moody algebras) a related W algebra and that
using duality of W algebras one can obtain Hamiltonian structures for the
corresponding soliton hierarchies. Much here remains to be worked out, but
see [BdG, BdGH, dGHM].

There are many papers on soliton equations, so we list only a few. Our
main sources have been the papers [DS, DJKM, SeW, KaPl]. For back-
ground and further references on soliton theory we refer to the books
[AbS, Ca, N, Di2]. Infinite dimensional Grassmannians and infinite dimen-
sional Lie algebras are discussed in the monographs [PrS, Ka]. Hierarchies
of soliton equations in Hirota bilinear form related to Heisenberg algebras
and vertex operator constructions have been discussed in [KaW].
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2. The infinite Grassmannian.

2.1. Infinite matrix algebra and group Let C°° be the vector space over
C with basis ê , i 6 Z. Let gl^ be the Lie algebra over C with generators
the elementary matrices (of size oo x oo) £^ , 2,7 E Z that have as only non
zero matrix entry a 1 on the i, j th place. We say, as usual, that Stj is upper
(lower) triangular if i < j (i > j). We have a natural action of gl^ on C°°
given by

(2.1.1) Sτj • ek = 6iδjk.

The group corresponding to gl^ is Gl^, consisting of infinite invertible ma-
trices X ~ J2ljeZXlJSlJ such that only a finite number of the X^ — δτj is
nonzero.

We will need in the sequel infinite linear combinations of the βi and the
Sij. These don't occur in C 0 0 ,^/^ and G ^ and therefore we introduce

C, m e Z > ,

0 for only a finite number of m = i — j > 0

— < V^ Xij£ΐj I ̂  invertible, X^ 7̂  0 for only a finite number
^ tjez

oΐ m — i — j > 0 >.

So the matrices we consider have only a finite number of non zero lower
triangular diagonals but are for the rest arbitrary. The Lie algebra gl1^ and
the group Gl1^ act on H by extension of the action (2.1.1). This definition
ensures that the exponential map of a strictly upper triangular matrix in
gl1^ is a well defined element of Gl1^, which is the main use we will make of
these infinite sums. To deal with matrices with an infinite number of both
upper and lower triangular diagonals, for instance in applications in alge-
braic geometry, one could use the analytical setup of [SeW] or of [ADKPj.
We warn the reader that in the literature on the Sato Grassmannian (e.g.,
[Sa2, AdC, KNTY, Mu]) one allows, in effect, sums that are infinite pre-
cisely in the opposite direction from our definition, e.g., infinite number of
lower triangular diagonals, but a finite number of upper triangular diagonals.
In this approach one cannot define the exponential of an upper triangular
matrix. As these papers show, one can circumvent this technical problem,
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and one would, by following this path, obtain a larger infinite Grassmannian
than we do and a wider class of (formal) solutions of the hierarchies we are
going to construct. In this paper we prefer to avoid these technicalities, so
as to be able to use later on (in Chapter 5) the results of the representation
theory of [tKvdL], which is set up just in the present context.

2.2. Infinite Grassmannian and Gauss decompositions. Define in H

for every integer j a subspace

(2.2.1) #i = { Σ c^)cH

We define the infinite Grassmannian Gr of H as the collection of subspaces
WofHof the form W = gH3, for g G G7£ and some j G Z.

The Grassmannian that we have defined here corresponds, mutatis mu-
tandis, to what is called the polynomial Grassmannian in [SeW, PrS]. We
will need just a few facts about our Grassmannian that can be conveniently
derived from a factorization of elements of the group Gl1^ as products of
lower triangular, permutation and upper triangular matrices. This so called
Gauss decomposition will also play an important role in the construction of
the soliton hierarchies in chapter 4.

To formulate the Gauss decomposition in our infinite dimensional context
let S{£ be the group of infinite permutation matrices of finite width. So
P G S^ iff P G Gl1^ has a finite number of non zero diagonals and each row
and column contains precisely one non zero entry, which is equal to 1. A
permutation matrix P G S^ acts on C°° by Pet — εσp(i), where σP : Z —• Z
is a permutation. This gives us a bijection of Sζ^ with the permutations σ
of Z such that there exist an integer N such that \σ(i) — i\ < iV, for all i G Z.

Lemma 2.2.1 (Gauss decomposition). Every g G Gl1^ can be factorized as

(2-2.2) 9 = 9-Pg+, 9-,P,g+

where #_ G Gl1^, respectively g+ G Gl1^, is strictly lower, respectively upper
triangular, i.e., #_ = 1 + Σt>j9ij^tj7 and 9+ = Σι<j9ij£ij, p £ 5 £Γ In

case g happens to belong to G/oo also the factors g± and P do.

The proof, which is not essentially different from the finite dimensional
case, is left to the reader. Note that, as in the finite dimensional situa-
tion, the permutation matrix P is uniquely determined by #, but that the
factors g± are not, unless P — l^ . We will need a variant of the Gauss
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decomposition (2.2.2) determined by the choice of an integer j . Let

(2.2.3)

glio+ = J X = Σ χrs£rs I Xrs = 0 if r > j and s < j | ,

{ £ r . £ r , I Xrβ = 0 if r < j or s >

There is a natural projection prWj : W —>• iϊ j , given by prwj(f) = Σ;<j Λei
if / — ΣH-oo /ieί We w ^^ s a y ^ a ^ a n e l e m ent W E GV belongs to the Hj
cell when the natural projection W —> jffj is an isomorphism.

Lemma 2.2.2 (Gauss decomposition adapted to Hj). Let g G Gl1^ be such
that W = ^iϊj is in the Hj cell. Then there is a unique decomposition of g
of the form

g = g-g+

with

Proof. By the Gauss decomposition we have g — g_Pg+ and since W belongs

to the Hj cell we have Pg+Hj = Hj. Now write for the minus component of

the Gauss decomposition #_ = 1^ + Σ^>m(#-W<^m Then define a matrix

(2.2.4) / ' = loo+
m<£<j £>m>j

This matrix is lower triangular with ones on the diagonal, so is invertible

and we can define a new decomposition

(2.2.5) g = glg{,

where gl_ = g~ (/-7)"1, g\ — f3 ' P g+ Then gJ_ is of the required form and
also gJ

+Hj = Hj. D

We say that the decomposition described by this lemma is adapted to Hj,

or to j for short.

These decompositions are all related by conjugation. Indeed, if Λ is the

shift matrix Σ ^ e z ^ + i ^n ^oo? then

(2.2.6) A-1εijA = εi+1J+u

so we see that

(2-2.7) ί/4+ = Λ-^C,+Λi,

gl3

oo-=A-jgl°oo,_A>.
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This will be used in Section 7.

In general an element / E W is an infinite sum / = Σ£L-oo fiei- We say
that an element / G W has finite order (in the negative direction) if there
is an integer s, called the order of /, such that

(2-2.8) /

We denote by Wήn the collection of finite order elements in W.
We use the Gauss decomposition to introduce a canonical basis for Wήn.

Let W = gHj and let g = g-Pg+ be the Gauss decomposition as in the
lemma. Then we have W = g^PHj, since g+ is an automorphism of Hj.
Now a basis for the finite order part of Hj is given by {ê  | i < j} and a basis
for (PHj)ήn is provided by {eσp(i) | i < j}, where σP is the permutation
corresponding to P. Then, since #_ is strictly lower triangular, we see that
by taking linear combinations of the finite order elements #_ eσp^) we can
obtain a canonical basis of Wnn given by

(2.2.9) ws = es

where s runs over the set Sj

P = {σP(i) \ i < j} of orders that occur in W', and
where for each s we have (for our definition of the Grassmannian) a finite
summation. SJ

P is a set of integers that is obtained from Z<j by deleting a
finite number of elements and adding a finite number of integers > j . So
SJ

P contains all sufficiently small integers. Note that if s is small enough
ws = e5, since there are in g_ only finitely many diagonals below the main
one.

The natural projection prwj '< W —» Hj has finite dimensional kernel
and cokernel. This follows, for instance, easily from the remarks about
the canonical basis of Whn we just made. So we can define the index of
prwj as md(prwj) — dim(ker(j9rvyj)) — dim(coker(prty,j)). We have also
Ίnd(prWj) — #(Sj

P — Z<j) — #(Z<^ — SJ

P), so that the index depends only
on the permutation matrix P occurring in the Gauss decomposition of g,
where W = gHj. The index of prw,o is also called the virtual dimension
of W', written VΊτtdim(W). The Grassmannian decomposes into disjoint
components of fixed virtual dimension: Gr = UjezGrj with Grj = {W~£
Gr I Virtdim(V7) = j}. For instance Hj belongs to Grj.

An element g of Gl1^ is said to belong to the big cell if it has a Gauss
decomposition with the permutation matrix P the identity. More generally
we say that g belongs to the Hj cell if it has a Gauss decomposition with
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a permutation matrix P as middle factor, such that the corresponding per-
mutation σP is a product of two (commuting) permutations σJ5 σf with σ̂
(σf) leaving the sets of integers {i \ i > j} ({i \ i < j}) pointwise fixed. An
element g belongs to the big cell iff it belongs to the Hj cell for all j G Z.

If g belongs to the Hj cell the corresponding element W — gHj can be
written as W — g~Hj, and projects therefore isomorphically to Hj. In other
words g belongs to the Hj cell iff the element W — gH3 does. This argument
also shows that the virtual dimension of W is in this case j . An element
W E Gr that is in the Hj cell has a particular simple canonical basis (for its
finite order part

(2.2.10)

Again, only a finite number of ws differ from es.

3. Partitions and associated Heisenberg systems.

3.1. Relabeling associated to a partition. Fix an integer n > 1. Let
ΏL = fai > n 2 > • > nfc > 0) be a partition of n into k parts, so that we
have n = £ j nα. We relabel the basis for C°° such that we have

(3.1.1)
α=l

with eα(i) = βj, where j — np + n x + + nα_i + q if i — nαp 4- q and
I < q < nα. We call eα(i) the type n relabeling of βj. For all positive
integers n the principal partition n — n^ i.e., into one part, leads to same,
trivial, relabeling: €j = ei(j)

The relabeling of the basis for C°° induces a natural relabeling of the
basis for gl^: an infinite matrix is then thought to be build up out o f n x n
matrices, each of which consists of blocks of size na x nfc, 1 < α, b < k. More
explicitly we put

/q 1 o^ pnap+q nbr+s c

and we have

(3.1.3) ειjbec(£) = ea(i)δjeδbc.

The multiplication for the generators after relabeling reads:

(3.1.4) ε:\εk

c

ι

d = φbcδjk.

We extend this relabeling process for vectors and matrices in the obvious
way to H and
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3.2. The numbers r&(j). Fix an integer j and a partition n = ( n i , n 2 , . . . , n&)

of n into k parts. We then can write j = np + n^ + n2 H 4- Ήα-i + 3, with
1 £ 9 < τιa,

 s o that βj corresponds to eα(z), i = nαp + g, in the relabeling of
Section 3.1. We associate to these data the numbers rb(j) defined by:

( nb(p + l) b<a
nap + q b = a
nbp b> a.

In the sequel we will usually have fixed j G Z and we then will write simply

rb for rb(j). These numbers satisfy:

(3.2.2) j = r 1 ( j ) + r 2 t 7 ) + - - - + r j b ( j ) ,

If n = (n) then rb(j) — rλ(j) = j . Note that, for any partition, the numbers
rb(0) are all zero, so the reader might wish to keep this simpler case in mind.

The meaning of these numbers is the following: consider the natural or-
dering on the basis elements of C°°: e£ < βj iff ί < j . Let ea(i) be the type
n labeling of ê  , so that j — np + n x + + nα_i + q and i = nap + q. Then
the ordering on the relabeled basis vectors is given by

(3.2.3) €b(m) < €α(ΐ) <=ϊ m < rb(j).

Another way of saying this is: eb(rb) is the largest basis vector of type b that

is smaller than ea(i) (or equal, in case b = a). So for instance we have:

(3.2.4) Hά = I Σ c * e 4
( k rb \

\
Vb-l s=-oo )

Combining the second relation of (3.2.2) and (3.2.3) we find:

(3.2.5) e^n < eb(rb(j)) < eό.

The ordering of the basis ea(i) determines which relabeled elementary ma-

trices are upper triangular:

(3.2.6) 8b

ι

a

ι is upper triangular <=> m < rb(j),

if βj corresponds to ea(i).
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3.3. Pre-Heisenberg system of a partition. Define now shift matrices
Λ+, Λ- in gl'l by

(3.3.1) Λί = Σ>«+\ K = Σε«-\
eez eez

They act on the standard basis of C°° by

(3.3.2) Λ+e6(i) - ea(i - l ) ί α 6 , A"c6(i) = ea(i + l ) ί α 6 , 1 < a < k.

Let

(3.3.3) m= 0 ( [0C(A+)*| 0 f©C(A-)fc])
α=l V U>0 J U>0 J /

be the commutative subalgebra of gl1^ generated by the shift operators. We
refer to %- as the pre-Heisenberg algebra of type n, since in the universal
central extension of gl1^ the lift of 7ί- is indeed a Heisenberg algebra, see
Section 5.1.

When n is a partition in more than one part we have besides the pre-
Heisenberg algebra another ingredient in the theory: the pre-translation
group. We need some definitions. We write H — Θ£ = 1 i/ α where Ha is the
subspace of H that can be written using only eα(ΐ), i E Z. Let l α := Σ i

be the projection operator H —» Ha. Define operators on H by
aa

(3.3.4) Qα =

Then Qa is invertible and we have

(3.3.5) Qα'

Let R = ®k

ill
rLai be the root lattice of the simple Lie algebra sZ(A;,C), with

α i 3 i = 1,2,..., k — 1, the simple roots. We define a homomorphism from

the additive group R to a multiplicative Abelian subgroup in Gl1^ by

(3.3.6) a* H> Tα i := QiQΓ+n 1 < * < * - l

In particular α = Σ*=1 diOίi gets mapped to Ta := Π*=i Γ α* τ h e i m a δ e of
i ϊ is called the pre-translation group (of type n) and is denoted by T-.

One sees immediately that elements of %- and Γ - commute. The pair
(Ή-, T-) will be called the pre-Heisenberg system of type n.
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4. Multicomponent KP equations.

4.1. Time evolution. Let n be a positive integer. We are going to associate
to every partition n of n a collection of "continuous and discrete time flows"
on the infinite Grassmannian Gr, using the pre-Heisenberg system (Ή-, T-)
of the previous section. Let Γ- be the subgroup of elements of Gl1^ of the
form

(4.1.1) w£(t,a) =exp
\i>0 α=l

Here t — {t* E C | 1 < a < k, i > 0} are the "continuous time parameters"

and a E R, where i?, the root lattice of $/(&,C), is thought of as a "dis-

crete time lattice". We will often identify the pair (£, a) with the element

WQ-(t,a) E Γ-. The elements (4.1.1) satisfy, of course,

(4.1.2) υi(t,a + β)=υi{t,a)Tβ,

for all a,β e R.
We define the action ("time flow of type n") of w^(t, a) on the Grassman-

nian in the following way: for W E Gr we put

(4.1.3) W(t, a) = υi(t, a)-ι.W = exp ( -

If P^ = g Hj then we have W(t, a) — g(t, a) Hj, where

(4.1.4) g{t,a)=i4{t,a)-1.g.

Note that different choices of n and n might give the same flow on the
Grassmannian. For example we obtain the same flow if we take for any
positive integer n the principal partition n = n of n into one part. This are
the famous KP-flows.

We denote by Y]£r the collection of points (t, a) in Γ- such that W(t, a) —
g(t,a)Hj belongs to the big cell with respect to Hj, see Subsection 2.2.

4.2. Formal Laurent series and pseudo differential operators. The
multicomponent KP equation that we are going to introduce consists of
equations for a k x k matrix function of a "spectral variable" z, which appear
as follows.

Fix, as always, a partition n of n into k parts. Denote by eα, 1 < a < k the
standard basis vector of C* with a 1 on the ath place and 0 elsewhere. We
think of the ea as column vectors. Similarly denote by Eab, 1 < α, b < k the
elementary matrix in gl(k, C) with a 1 on the (α, b)th place and 0 elsewhere.
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Let, as usual, C[[z]] be the integral domain of formal power series in the
variable z and let C((z)) be its quotient field, the field of formal Laurent
series. Denote then by H^ = ©JUiC((z))eβ the space of fc-component
formal Laurent series. Let now j - : H —» H^ be the linear isomorphism
given by

(4.2.1) ίHta{i)) = aΓ'e..

For any linear map A : H -* H we have an induced map A^k^ : H^ -> H^
given by A^k^ = j - o A o {j~)~l- When the partition n is clear from the
context we write j and A^.

For any W € Gr we will write W(*»s) (or simply W^fc\ if n is fixed) for
the image p(W) C H^kl The image of Hά C H is

{ * oo

Σ Σ

with rb — rb(j) defined in 3.2.1. In H the subspace Hj is related to the
standard subspace Ho by Hj — A~jHOi for Λ the shift matrix Σiez^n+i in
" " " . Similarly

(4.2.3) H?]

On H^ we have a natural action of the formal loop algebra gl(k, C((z))).
Often, in practice, it happens that the image A^ of an operator A : H —» H
ends up lying inside gl(k,C((z))). This is not the case for A^k\ in general,
but for example, for a = 1,2,..., k we have

(4.2.4) (A+)^=zEaa,

£ +^- 5 -), * = 1,2, . ,k - 1.

To check the first relation, we note that Λ+€&(ΐ) = δabea(i — 1), so the linear
transformation induced by j on H^ maps j(eb(i)) = z~ιeb to Sabz(z~l)ea, i.e.,
this induced map is multiplication by the matrix zEaa. The other relations
are also easily checked.

In particular the group element w% of (4.1.1), responsible for the time
evolution on Gr, corresponds to multiplication on H^ by

(4.2.5) wo(z;t,a) := («#)<*> £
i>0 α=l
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where

(4.2.6a) Ti*> = Π ( ϊ f >)*,

if α = ΣiZi di®i When we think of the root lattice as a sub lattice of
Θ*= 1Zία, with (Xi = δi — δi+1 and (δa\δb) = ίo6, then we find

(4.2.6b) T « = diag(^ ( α | < 5 l ) ^- ( α | < 5 2 ) , . . . , z-WV).

Recall the evolution group Γ- of Subsection 4.1 and the corresponding
time flows on Gr. Of all the generators of one parameter subgroups of Γ a

we distinguish a particular one and call this the generator of the rr-flow: we
define,

{ } ° dx' έ j α' a' dtf

(See [FNR] for discussion of this process of singling out a particular com-

bination of the times as "#".) We will often let this operator act from the

right, in which case we write d = g-k This operator acts on wo(z]t1 a) by

(4.2.8) wo(z;t, a)- d — wo(z;t,a) z.

We will also consider formally the inverse of d , defined by

(4.2.9) wo(z;t,a) *d~ι = wo(z\t,a) z~ι.

We will in the sequel have to consider fc-component formal Laurent series of
the form

(4.2.10) Wo X(z), X(z)=
a=l i=s

so that the vector X(z) is a Laurent polynomial in z. We can, in this

situation, "trade in" every occurrence of a power of z in X(z) for the corre-

sponding power of d : if we write X as in (4.2.10) and define

km

(4.2.11) X~ = ΣΣdiχ>>»
α=l i=s

then, clearly, w0 X — w0 X . This procedure introduces in the theory the
(non commutative) ring of matrix pseudo differential operators, which will
play an important role in the sequel.
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4.3. The wave function. We will now use the concepts introduced in the
previous sections to define the wave function.

Definition 4.3.1. Fix an integer j , an element W — gHj in Gr and a
partition n of n into k parts.

The wave function of type (j, n) ofWζ Gr is the k x k matrix function,
defined for (£, a) £ Γ^r, obtained by juxtaposing the k columns with index
Γi(j), r 2 ( i), . . , Tk{j) (these numbers are defined in (3.2.1)) of a certain infi-
nite matrix and applying to each column the isomorphism j - (defined in the
previous section) to get a /j-component formal Laurent series:

ww{z-t,a) = 3- (<(*;*,«) * ί/ifoα) ' Mn)e 2 ( r 2 ) . . . ek(rk)γ)

... ek(rk))).

Mostly we will write ww(t,cή or even ww f°r ww(z;t,a). Note that the
elements e ; ^ ) , e 2(r 2),... ,€fc(rfc) all belong to ίfj7 so the columns gJ_(t,α)
e6(^ό) belong to W(t,a) = ^ ( ^ α ) " 1 VF, and hence the columns of the
wave function ww all belong to W^k). Note furthermore that the columns
ffL(t, a) - eb(rb) are of the form

(4.3.1)
c = l

This is so because gJ_ e6(r6) = eb(rb) + X e6(r6) with X E ^ _ . Now
X e&(r&) consists of a linear combination of vectors ec{ί) that are larger
than €j = eα(i) in the ordering of Section 4.2, as one sees using the explicit
form 2.2.3 of gl^ and the inequality (4.2.4). Applying the isomorphism j
to i/(fc) shows then that the columns of the wave function are of the form

(4.3.2) (ww)h(t,a) =wΌ(z]t,a) 3~{gj-(t,a)(eb{rb))),

The summation over ί in (4.3.1-2) is finite, since in our case gL contains only
a finite number of non zero diagonals.
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The point of introducing this wave function is that its columns form a
basis for an important class of elements of W^ over a ring of differential
operators. Indeed, fix a (ί, α) G Γ- and define

(4.3.3)

W$(t,a) = (/ G W™ I f(z) = wo(z;t,a) ( £ £ z£fHeb) \ .

It is clear that W^ (ί, a) does depend trivially ona e R and we will delete a

here. We will often also, having fixed ί, suppress the t dependence. The space

W^ is the image of the space W{k) (ί, α) f i n , the finite order part of W{k) (t, α),

under the isomorphism given by multiplication by wo(z;t,a). Note that if

(ί,α), (ί, α + /3) G Γ^f (so that w w (*,<*) and ww(£,α + /3) exist) the columns

of ww(t, α), wvp(ί,α+ /?) and also of d(uv )(ί, αr), 9(ii;w)(i,a 4- /?) belong

to Wff.
We have the following generalization of results of Drinfeld-Sokolov [DS],

Segal-Wilson [SW]:

Proposition 4.3.2. Fix (£, a) G Γ ^ ? /e£ Ŵ ^̂  δe the image ofW in the space

of k-component functions H^ and define W^ by (4.3.3). Then W^ is a

free rank k module over the ring C[d], with basis the columns of ww{t,a).
More explicitly: there exists for every f(z) G WβJ a unique k-component

differential operator *P (f) = ΣLi ^'*(/)e&, A(/) G ϋfd], such that

(4.3.4) f = ww(t,a).<P(f).

Proof. Let 6j correspond to ea(i) and let rb the numbers associated with j

in Section 4.2. Suppose that for f(z) G WJP as in (4.3.3) fbΐΐlb φ 0. Then

we call mh + rb the b-order of f(z) and fbπib the leading b-coefficient. If all

fbί are zero the δ-order is — oo. (This ordering comes from a refinement of

the ordering (2.2.3) on W(t,a), via application of j and multiplication by

For example, the 6th column of ww has fr-order 0 and leading ^coefficient

is 1, whereas its c-order for c φ b is strictly negative. If / G W^ then also

/ V G WJ£\ with the 6-order of / *d bigger by 1 than that of / and with

the leading ί>-coefficient unchanged, for all b = 1,2,..., k.

If (ί,α) G Γfif, then we have W{t,a) = gl(t,a)Hό, so that W^(£,a),

projects isomorphically to iϊy. Applying j we see that W^(t,a) maps

isomorphically to ϋf\ In particular if / = w0 X G Wfi*\ with X =

ΣLiΣ7=8hz
jfbjeb then X - ^o"1 / G ^ » ( ί , α ) and X maps isomor-

phically to Hjk) using the projection p r ^ . Now if the ft-order of / were
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negative for all b then all mb would be smaller than —rb and, taking explicit
form (4.2.2) of Hf] into account, X would project to 0 G Hf\ Since this
projection is an isomorphism X, and hence /, has to be zero. So we see that
for / G Wfa at least one of the b-orders is non negative, unless / = 0.

Now, of course, the idea is, given / G W^n , to reduce its orders by sub-

traction of terms (ww)b P , for suitable differential operator P. More

precisely, let m — mb + rb be the total order of f, i.e., the maximum of

the orders that occur, and let μ be the multiplicity of m, i.e., the number

of components c for which the oorder is equal to the total order. Then

(ww)b ' P, with P = ( d )m/6mfe5 has the same 6-order m = mb + rb and

the same leading ^-coefficient as / and the c-order, c φ 6, is at most m — 1.

Subtracting we obtain an element / — (ww)b * P of W^J of lower order in

the 6-component. If the multiplicity μ was 1 the total order of / — (ww)b * P

is strictly smaller than that of /. In case the multiplicity is larger than 1

the total order of / — (ww)b P will still be m, but the multiplicity is one

smaller than that of /. By repeating this process we reduce the multiplicity

and the total order and we can find k differential operators P a such that

/ : = = f(z) ~ Σt=i(ww)a ' Pa has its 6-order, for all 6, less than 0. Then, as

we argued before, / itself must be zero, so f(z) = Σt=i(ww)a • Pα It is

easy to check that the differential operators P a are unique. D

4.4. Differential difference multi-component KP. In this subsection

we derive the equations satisfied by the wave function as a function of the

continuous and discrete time variables.

The wave function Ww(t,<x) of type j , n , defined whenever (ί, a) G Pĵ r,
can be written as

(4.4.1) ww(t, a) = wo(z] t, a) tΰV(ί,α),

where ^ϋlw is a fc x fc matrix pseudo differential operator, called the wave
operator, of the form

j

(4.4.2) few = diag(z~r i,...,2Γr fc) (lkxk -

with the Wi k x k matrices with entries in the ring of functions B and the

numbers rb defined in (3.2.1). To see this use the explicit form (4.3.2) for

the columns of the wave function and use (4.2.9) to trade in negative powers

of z for powers of d~ι. The wave operator will be used later on to define

resolvents.

Note that in (4.4.2), according to our definitions, the summation over

i is finite. Also note that ww is invertible as a formal pseudo differential
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operator (PDO), since it starts out with an invertible matrix and contains for
the rest only negative powers of d . Note finally that if we had used #_, the
component of the ordinary Gauss decomposition (Proposition 2.2.1) instead
of #i, the component in the Gauss decomposition adapted to j (Lemma
2.2.2), to define the wave function in (4.3.1), the first term in the expansion
(4.4.2) would have been not the identity matrix but rather more complicated.
The choice we make here also allows us to calculate the wave function in a
rather straight forward manner in terms of the r-function, see Theorem 5.5.2.
In this sense the decomposition introduced in Lemma 2.2.2 is adapted to j .

There exist unique k x k matrix pseudo differential operators Λα, T α . ,
such that

(4.4.3) a> 0 = wot a,

Explicitly we have

(4.4.4) X := *dE
aa

Now define

(4.4.5)

UQi :=tiΓ^1r- 1 -W

We refer to Έ,a and Uai as the pseudo differential resolvents and lattice
resolvents associated to (W,j,n) respectively. (See [GD] for the concept of
a resolvent. The lattice resolvent was introduced in [BtK].) Note that in
both ΊZ,a and Uai the first diagonal factor diag(^~Γl,2:~r2,... ,^~Γfc) of tϋw

in (4.4.2) cancels, so that resolvents and lattice resolvents have the same
general form whichever Hj cell or partition into k parts we use.

The lattice resolvent Uai is an invertible matrix pseudo differential oper-
ator. We say that an invertible k x k matrix pseudo differential operator
A is in the big cell if it admits a decomposition A = A_.A+, where A+ is
an invertible k x k matrix differential operator and A_ = lkxk + O( d ~x):~
Such a decomposition, if it exists, is unique. The resolvent 1Za is in general
not invertible. In fact TZaTZb = 0 for a φ b. (When k = 1 TZa is invertible,
as a monic scalar PDO.) We will denote by (1Zα

ι)+ the differential opera-
tor part of the i t h power of Έ,α and by (7£α

ι)_ the formal integral operator
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T^-a ~ (7£a

z)+, and similar for other possibly non invertible matrix pseudo
differential operators. So the notation subscripts ± is not entirely unam-
biguous, but the meaning is hopefully clear from the context.

Proposition 4.4.2. Let W G GTJ and suppose that (ί, a), (t, α + α )̂ belong
to Γ f̂. Then the lattice resolvent UQt is in the big cell and we have:

(4.4.6)

,a + OLi) =ww(t,a)

Proof. Until now we have defined the action of PDO's with a finite number
of negative powers of d on w0 and the action of differential operators on
expressions one obtains in this way. We also need to define an action of
arbitrary PDO's on expressions of the form (4.2.10): we put

(4.4.7) ^_

w0 • X(z) • *dEab = wo-(z + d)X(z)Eab,

w0 • X{z) • I)-1 Eat = wo-(z + d)-1X(z)Eab,

= WQ z-1 f^(-z-1dγx(z)Eab.
i=0

Here we run into a little trouble: w0 is a power series in z and there is a
priori no guarantee that the product in the last line of (4.4.7) makes sense.
The easiest way to circumvent this problem is not to try to calculate this
product and instead interpret w0 as an abstract free generator v0 of a module
N of expressions v0 Σ ϋ ^ -R̂ * o v e r the matrix PDO's with action given by
(4.4.7) (with WQ replaced by υ0). (cf. [DS]). In the obvious way we also
define differentiation with respect to the times t\ on N. We identify then
ww — w0 lvw with the element Vw = υ0 Ww and the proof of this
Proposition takes place in the module N. It happens that for some elements
of N, such as vw (^5)+? vw ' (W^.)^1, one can give an interpretation as a
formal Laurent series; in particular we can interpret υw (7^)+, vw • (^αJΐ1

as the series ww (7££)+, ww {Uai)^_ι. This being understood we will in the
sequel just write w0 for v0-

As we noted before, the columns of ww{t,a) belong to W^ and in fact
to Wfin . The same is true of dι

hww and of ww{t,& 4- ot-i)- So we can use
Proposition 4.3.2 to conclude that dτ

hww and ww(t, & + &i) are of the form
ww(t,a) O, respectively ww(t >a) P, with O,P k x k matrix differential
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operators. On the other hand we have by (4.4.1) and (4.4.3):

(4.4.8)

d\ww = u>o (Λ

= ww ^1 Λ jfoV + tΰjy $

,α) (tZΓ^(t,α) Tai -

Now w0 and hence also ww is a free generator for the action of PDO's, i.e.,

if for two PDO's X, Y we have ww -X" = ww ' Y then X — Y. This implies

(4.4.9)

P = tf7S?(i,a) Ψai

Note that ttΓ^δjt^iy is an operator containing only negative powers of d
while 0 is a differential operator. This implies

(4.4.io) t s V ^ W = -(πί)_.

Similarly ^ww(t,a)~1 - ti7w(ί,α + α<) is of the form lkxk + O( d ~ι) and
P = P(α) is an invertible differential operator. By the same argument
we see that the operator P'(a) such that ww(t>G ~ oti) = ww(tia) * -P' is
an invertible differential operator. Since Ww is a free generator we have
P'{a + ai)P(a) = 1, i.e., the inverse of P is also a differential operator.
Prom this we see that Uai belongs to the big cell and

(4.4.11) tδVCα)"1 * W(<,α + α<) = P O -

Combining (4.4.9), (4.4.10) and (4.4.11) proves the Proposition. D

Definition 4.4.3. Let L be a matrix PDO of the form

(4.4.12) L = *dA + θCd°)

for A a diagonal constant matrix with distinct non zero eigenvalues Aa. Let

w(z) be a solution of

(4.4.13) wL
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and introduce the resolvent and lattice resolvent associated to L by (4.4.5)
using w for ww. Then the A -component differential-difference KP hierarchy
is the system of deformation equations for L:

(4.4.14) dtL = [L,(Ki)+],

L{t,a + α<) = (Uai)+ L(t, o) (Uai ) ; x .

Consider the k x k matrix pseudo differential operator

(4.4.15)

Lw(t, a) = tϋV (ί, a)'1 d A tδV(t, α) =
o = l

Then wwLw = zAw\γ and one finds, using that L^, 7£α and ZYαi commute,
that Lw is a solution of the ^-component KP hierarchy, if (ί, α), (ί, a + Oίi)
belong to Γ f̂.

The compatibility equations for (4.4.6) are the "zero curvature equations"
that are also useful:

(4.4.16a)

di(τzrh = ί
(4.4.16b)

{πa{t,a+ (*#)+ -

4.5. An example: the Davey-Stewartson-Toda system. In this sub-
section we discuss a few of the equations that follow from the equations
(4.4.16).

Our starting point is an element W of the Grassmannian Gr and the
choice of a partition n, defining a time flow W f-> W(t, α), see (4.1.3). The
simplest case is obtained by choosing for any positive integer n the principal
partition n — n into one part. The resulting equations form, of course, the
KP hierarchy, discussed extensively in the literature, (see e.g., [SeW]), with
the discrete part (4.4.16b) missing in this case.

The next simplest case occurs when we choose for any n > 0 a partition
n = (nun2) into two parts. Now there will be a doubly infinite set of
continuous time parameters {t\,tι

2), with i > 0 while the discrete parameter
a lives on the rank one root lattice of sl2 with generator aλ: a = moίλ, m G Z.
We will indicate the dependence on the discrete variable by a superscript:-
we write Wm(t) for W(t,raαi), etc. We introduce some new variables

(4.5.1a)
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and the following differential operators:

V / 1 2' 1 2 ' t 1 2 *

Let h = I I. We will need the following resolvents:

(4.5.2)

XLJ 1 6 ) — - ^ 1 V / -^*/2 V / — \ /

The resolvents (4.5.2) are defined iff the corresponding element Wm(t)
belongs to the big cell.

L e m m a 4.5.1. Let Wm(t) belong to the big cell. Then the resolvents (4.5.2)
have the expansion

(4.5.3a)

Rt= dh+[rm{t) o J+θ{d-%

i?™ = V2/ι + *d [ m ° n

 qm^Λ + λm(t)l2 + μm(t)h +

(4.5.3b)

q \{d -

Define Qm — μm + ~qmrm. Then we have the following equations for
qm,rm,Qm:

(4.5.4.a) dtq
m = -hθ2 + B2)qm + (qm)2rm - 2qmQm,

(4.5.4.b) dtr
m = -{d2 + B2)rm - (rm)2qm + 2rmQm,

(4.5.4.c)

(d2 - B2)Qm = d2(qmrm).

The equations (4.5.4) form the Davey-Stewartson system ([DaS, SaA]).

Proof. We write for the wave operator and its inverse

(4.5.5) tϋm(t) = 12 + d ^w™ + d ~2w™ + ...,
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where w™,υ™ are 2 x 2 matrices and where we have ignored the irrelevant
diagonal factor diag(z~Γl,^~Γ2) (see the remark after (4.4.5)). Then we have

(4.5.6) vψ = - < \ v2 = -wψ + (wψ)2.

If we write

(4.5.7) R™ = V/i + 7

m + θCd~ι),

R™ = *d2h + ̂ ~7

m 4- δm + θCd~ι),

then

(4.5.8) 7 m = [h,wψ], δm = [Λ,^] + tϋJι[tϋ7ι,Λ] - 2 9 ^ Λ .

This shows that 7 m is off-diagonal, so that we can write

and this proves (4.5.3.a). Next we consider the zero curvature equation

(4.5.10) [d+(R?)+,dt + (RT)+\ = 0.

Equating the coefficients of powers of d to zero gives the equations

(4.5.11.a)
[h, δm] = -B-ym - dΊ

mh,

(4.5.11.b)
0 = dδm - dδm.h - dtΊ

m + d2

Ί

mh + djm • jm + [jm, δm].

The first equation shows that we can write

which proves (4.5.3.b). Substituting the Ansatze (4.5.9, 4.5.12) in (4.5.11b)

we obtain the system

(4.5.13) 2dλm - 2dμm + d(qmrm) = 0,

-2dλm + 2dμm + d(qmrm) = 0,

-{d2 + B2)qm/2 - 2μmqm - 3tq
m = 0,

(a2 + B2)rm/2 + 2μmrm - dtr
m = 0.
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Now we eliminate the variable λm by imposing on the first two equations of
(4.5.14) the integrability condition Bd(Xm) = dd(Xm). This gives

(4.5.14) <92(2μm - qmrm) = 82{2μm + qmrm).

The last two equations of (4.5.13) combined with (4.5.14) and the definition
of Qm give then the Davey-Stewartson system (4.5.4a-c). D

To derive the discrete equations we need the lattice resolvent

(4.5.15) Um(t) = t ^ ( i ) - 1 ( 9

Q

1 I-) ^m(t).

Lemma 4.5.2. Assume that Wm{t) and Wm+1(t) belong to the big cell.

Then the lattice resolvent (4.5.15) admits a factorization Um = U™U™ where

U™ = 12 + oCd-1) and

Proof. The fact that the factorization exists follows from the proof of Propo-

sition 4.4.2. To calculate the positive factor write

(4.5.17)

Um{t) = *dE22 + [E22,w?) +

+ <d-1{Eιι - dw?E22 + [E22, < ] + wT[w1, E22]} + θCd-2),

( am nm /2\
m /O km )

—r/ΔO J

Then we find from (4.5.9)

( _}_nmrm _ Ofinm βnm _ nmπm \

2q r Zϋa aq a q \
drm __ bmrm l_gmrm J

Combining this with the explicit form (4.5.13) of δm gives

(4 5 19) \hw™}-( ° -l(d + d)q™ + a™q™\
(4.5.19) [h,W2\- y_l{d_B)rm+bmrm Q J-

Since [E^,™™] = —~[h,w^] we find for the lattice resolvent the expansion

(4.5.20) Um = 4dE22+(jrm-*f) +
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A simple calculation shows then that U™ has to have the form (4.5.16).

D

A straightforward but tedious calculation now shows that

(4.5.21) - SUΪiU?)-1 + U™{R™)+{U™)~1 =

_ / *d -4/rmλ

\ V )
Hence, using (4.4.16b), we find

(4.5.22a) qm+1 = - 4 / r m ,

rm

(4.5.22b) r m + 1 = — ((82 - d2) log(r ra) - qmrm).

With um = log(rm) the equations (4.5.23) imply

(4.5.23) hyd2 - d2)um = exp(n m + 1 - um) - exp(nm - u 7 "- 1 ) ,

the 2-dimensional Toda lattice equation. Prom the diagonal components of

the expression -dtUpiU?)-1 + C/™(i?™)+(C/™)-1 we find

(4.5.24) λ m + 1 = λ m

from which follows

(4.5.23c) Q m + 1 - Qm + d2 log(rm).

Note that, for fixed j , Wm(t) will be outside the Hj cell for all t except
possibly for a finite set of integers m. In fact, as in [BtK, Lemma β.l.b], one
can prove that this set is, in the case of the polynomial Grassmannian we
use, an uninterrupted sequence m m i n , ramin + l, ramin+2,..., m m a x , so that we
get from this construction solutions of the finite 2-dimensional Toda lattice
equation. To obtain solutions of the infinite 2-dimensional Toda lattice one
has to choose a suitable W belonging to a bigger space, e.g., the Segal-Wilson
Grassmannian.

5. The calculation of the wave function from Λ^^C 0 0.

5.1. Semi-infinite wedge space and Fermi-Bose correspondence. In
this subsection we collect some results from [tKvdL] on the Fermi-Bose
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correspondence associated to a partition of n ohat we will need later, see
also [DJMK, Ka].

The space C°° is a representation for the group GZoo, but not a highest
weight representation. The fundamental highest weight representations of
GIOQ are contained in the semi-infinite wedge space Λ ^ ^ C 0 0 , the collection
of (finite) linear combinations of semi-infinite exterior products of elements
of C°° of the form

(5.1.1) VQ A v_ι A i>_2 Λ . . . ,

where {i>;}i<o is an admissible set: a set {vi}i<0 of elements of H is called
admissible if there exist integers k £ Z,iV < 0 such that v{ = ek+i for all
i < N. Note that we might as well assume in the construction of a semi-
infinite wedge that the vι belong to C°°. (This is the reason for the notation
^oo/2(£oo i n s £ e a c j of A^Ή.) For later constructions, however, we prefer to
allow elements of H as members of an admissible set. The integer k is called
the charge of the wedge v0 A v_χ Λ v_2 Λ... and the semi-infinite wedge space
decomposes in a direct sum of subspaces of fixed charge:

(5.1.2) Λ^C^φΛfC00.

If in an admissible set {i>i}j<o all the Vi are of the form V{ = ej{ then the
corresponding element

(5.1.3) e.Λ^Λ^...

of Λ 0 0 /^ 0 0 is called an elementary wedge.
The action of a £ gl^, g G Gl^ is given as usual by

(5.1.4)

p(a) • (υ0 A v-i A υ_2 Λ . . . ) = (a υ0) A v_χ Λ Ί>_2 Λ +

υ0 A (a V-ι) A v_2 Λ + . . .

(VQ A υ_i Λ υ_2 Λ . . . ) = (g - VQ) A (g i>_i) Λ (g v_2) Λ . . . .

This does not extend to representations of the algebra gl1^ and the group
Gl1^, because of the infinities that occur (e.g., in the naive action of λ ΣieZ Su
E Gl1^ on Λ ^ ^ C 0 0 , for |λ| > 1). However these infinities are relatively in-
nocuous and after "renormalization" one obtains a projective representation
p of gl1^ and GZ^, or, what is the same thing, a representation of a central
extension of the algebra and group. In terms of the algebra generators it
reads

(5.1.5) β(εi3) = p&j) - δυθOi,
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where θOi = 0 if i > 0 and 1 otherwise. This defines a non trivial central

extension gl^ = gl1^ © C of the Lie algebra gl1^. The corresponding group

will be described in the next section.
Let the fermion operators ̂ (i),^*(i) be the linear operators on Λ

that act on elementary wedges by

(5.1.6)
φ(i) • (eio Λ eh A eh A ...) = e4 Λ eio A eh A eh A ...

ψ*(i) ( e i o Λ e i l Λ e i 2 Λ . . . ) = Σ ( - l ) * 5 « f c c i o Λ e ^ Λ e ^ Λ Λ e ^ Λ . . .

Now fix an integer n and a partition n. Then we have, as in Section 3.1, a re-
labeling of the basis vectors and a corresponding relabeling of the fermion op-
erators: the A -component fermions ^ β (i), ΨZ(i), i 6 Z, 1 < a < k correspond
to ψ(j),φ*(j) whenever eα(i) corresponds to βj. The anti-commutation re-
lations for the relabeled fermions are

(5.1.7) {φb(i),φc(e)} = {φ;(i),φ*c(e)} = 0,

The action of Z^™ on semi-infinite wedge space is given by normal ordered
fermion bilinears: if υ E Λ 0 0/^ 0 0 then p{S^)v =: ψb(i)Ψϊ(m) : v, where the
normal ordering of fermions is defined by

ίr Λ o\ i fβ\ ι*ί \ d e f I Ψb(£)Ψc(m) if m > 0

(5.1.8) : ψb(ί)ψc{m) : = < ) ' V . ' .
I —ψ*(m)ψt,{i) it 77i < 0

Recall the operators (Af)^j Φ 0 of (3.2.1). They generate, via the repre-
sentation p, on Λ 0 0/^ 0 0 a Heisenberg algebra, the generators of which we
will denote by

(5.1.9)

aa(±j) := β{(At)j) = T : φa{ί)φ*a{t± j) :, j > 0,o = 1,... ,k.

It is natural to introduce the operator

(5.1.10) aa(0):=Σ:φa(£)φ*a(£):, a = l,...,k.

One checks that

(5.1.11) [aa(j),ab(£)} = jδj+lfiδab, j , £ e Z , 1 < a,b < k.
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Furthermore we need linear invertible operators Qα> 1 < α < fc, on
that satisfy the following defining relations:

(5.1.12) Qα-V 0 =^α(l) V0,

In (5.1.12) v0 is a distinguished element of Λ^^C 0 0 , the 0 th vacuum. In
general one defines the j t h vacuum by:

(5.1.13) Vj = βj Λ ej-i Λ €j_2 Λ . . . .

We have, for ra the numbers (3.2.1) associated to j ,

(5.1.14) a a ( 0 ) - V j = r a v J 5 a = l,...,fc.

The operators Qα are called fermionic translation operators. They satisfy
the following relations ([tKvdL]):

(5.1.15) {Qa,Qb}=0, foτa^b.

Introduce next fermionic fields, formal power series with operator coeffi-
cients:

(5.1.16) ψa(z):=
£€Z

eez
Now we can express the fermion fields completely in terms of the Heisenberg
generators aa(k) and the fermionic translation operators Qa. The parity
operator on Λ^^C 0 0 is defined by

(5.1.17) χ = ( -

The parity operator acts as (-1)* on the charge k sector ΛJC°° of
It follows from Theorem 1.3 of [tKvdL] that we have the following bosoniza-
tion formulae:

(5.1.18)

ΦΛz) = χ&(-s) ( β (0)+1) exp (- Σ I'-'oait)) exp f- Σ Ίt-'oaV)) ,,

exp (Σ )z'ιaa{l)\ exp

α =
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So the only way the various bosonizations of λ -component fermions are dis-
tinguished is through the zero-modes αα(0), which, by (5.1.14), are able to
detect which partition we are using. One can use this "bosonized" form
for the fermions to express the whole representation of the Lie algebra gl^
in terms of the Heisenberg operators aa(i) and the fermionic translation
operators, [tKvdL]. We won't need this in the sequel.

5.2. Central extension of Gl1^ and group action on Λ^^C00. We have
now defined an action on Λ^^C 0 0 of a central extension of gl1^, described
by an exact sequence

(5.2.1) 0->C->jlV

oo?>gll-+0.

In this subsection we sketch the construction of the corresponding group and
its action on Λ^^C 0 0 , following the approach of [SeW, PrS], to which we
refer for more details.

The reason that the usual action of g € Gl1^ on v0 Λ υ_ι Λ υ_2 Λ . . . by
gv0 Λ gv-ι A gv_2 Λ . . . does not work is that the set {gvi}i<o is, in general,
not admissible, even if {vi}i<0 is. Now an admissible set {^}i<0 in C°°, if
the Vi are linearly independent, is the basis for the finite order part Whn for
some (unique) W E Gr. In the same way {gVi}i<0 is a basis for (gW)nn,
(not necessarily admissible). The idea is now to replace the possibly non
admissible basis {g.vi} by an admissible one, say {wi}, and to replace the

wedge VQAV-X Λ... by w0 Λw-ι Λ Because of the ambiguity in the choice

of this admissible basis, we obtain in this way a projective representation of
Glι£, or, equivalently, a representation of a central extension of this group.
Below we will make this precise.

Denote the group of invertible matrices of size Z<0 x Z<0 with a finite
number of nonzero lower triangular diagonals by:

(5.2.2)

Gl(H0)
ιΐ = < a = ^2 aijβij \ a^ = 0 if i — j » 0, a invertible

[ iJ<0

A subgroup of Gl(H0)
lί is

(5.2.3) T={te Gl(Hof I < = 1 + finr}.

Here and in the sequel "finr" denotes a finite rank matrix. A finite rank
matrix in Gl(H0)

ιί is one with only a finite number of nonzero columns.
Every W £ Gr has an admissible basis for Wήn, for instance the canonical

basis of (2.2.4). It will be convenient to think of an admissible set as a
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matrix y_ = ( V-2V-ιVQ) of size Z x Zj<0, with the v{ as columns. On
such matrices we have a right action of Gl(H0)

ι{. It is easy to see that if v_
and y! are admissible bases of Wήn then v; = v • ί for ί G T. We will use
frequently that v_ and 2/ are bases for the finite order part W f in of the same
W iff the corresponding wedges v and v' differ by a constant. Moreover if
y_ is any basis for Wήn then we can find a n o G Gl(Ho)u such that v_ α" 1 is
the canonical basis. In particular if, for admissible v, g v_— {gVi}i<0 is not
admissible, then we can find an a G Gl(H0)

l{ such that g-v-a~ι is admissible.
This leads to the introduction of

(5.2.4) £ = {(g,a) \ g G GPJ,ae G/(J5T0)
lf,i7- - α =

Here we write # G G/^ in block form with respect to the decomposition

(5.2.5) g =

The subgroup of g G G/̂ > such that g : Ho —> Ho is a Fredholm operator
of index 0, is denoted by Gl^ and is the called the identity component
of Gl1^. One checks that {guaλ) {g2,a2) = {g\g2,axa2) gives 8 a group
structure. Suppose (#, a) G Gl^ιf x Gl(H0)

ι{ and let v be an admissible basis
corresponding to a wedge of charge 0. Then gυa"1 is admissible iff (3, a) G £.

The inclusion ί E T ^ ( l , ί ) G f gives us an exact sequence:

(5.2.6) 1 -> T -¥ 8 -> G/^z/ -> 1.

Note that every t £T has a determinant.

L e m m a 5.2.1. Let

(5.2.7) 71 - {t G T I det(t) = 1},

£i = { ( i , t ) e f | ί e T i } .

TΛen 7i is normal in Gl(H0)
ιf and 8χ is normal in 8.

Proof. We must check that for all a G Gl(H0)
u ata~~ι belongs to 7ί if ί

does. Since t = 1 + /, / = finr we have ata~ι = 1 + afa~ι G T, so it
remains to check that det(ata~ ι) — 1. Since α might not have a determinant
we need a little argument for this. It runs as follows: write t — 1 + / as
above and choose a basis {vi,v2, } of Ho such that for k > k0 all basis
elements υk belong to the kernel of / and put V = θ*=1Vfc. Then V is a finite
dimensional subspace of Ho and we get by restriction and projection a map
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t\y ' V —> V. One checks that det(£|F) is independent of the choices made
here, so we can define det(t) = det(t|v). Define then V = a V, V = ata~ι,
so that det(t') = άet{t'\y). Since a\v : V -> V is an isomorphism of finite
dimensional vector spaces we see that det(t) = det(ί'), as we wanted to
prove.

For the second part we must check, for all (g, a) in £ and (1, t) in £1 ? that
(#,α) (1,£) {g~ι >cb~ι) = (^αtα" 1 ) belongs to £ l 5 but this follows from the
first part. D

Taking quotients we obtain from (5.2.6) the exact sequence:

(5.2.8) 1 -> T/Tι ~ C* -> £/<?! -> G/^z/ -> 1.

This gives us a central extension G/^ := Ej£\ of the identity component of

Gil-
To get a central extension of the whole group Gl1^ we need the shift

automorphism given by

(5.2.9) a(g)=A-g'A-K

The semi-direct product Gl^ κ σ Z (with multiplication (g,A;) (/ι,Z) =
{gσk(h),k + I)) is isomorphic to Gl1^ by the map (^,k) H* ^ Λfc. The
shift automorphism σ lifts to an automorphism σ of S/εl as follows: an
element of £/£i can be written as (g,α7ί), with ^ G Gl^7 a G GL(H0)

ιΐ,

such that # — α = finr. Then let σ((ρ,α7ί)) := (σ(#),σ(α)7i) where σ(α)
is obtained by adding to a a row and column of zeroes and a diagonal 1:

(5.2.10) σ(a)=fc°λeGl(Hoy
(.

One checks that this is independent of the representation of the coset aT\
To see that this indeed defines an automorphism note that the fiber of the
projection £/£χ -> Gl^f over g is C* and that σ defines a homomorphism
from the fiber over g to the fiber over σ(g) with kernel 1. Therefore this
homomorphism has to be an isomorphism and hence σ is an automorphism.

Next one defines Gl^ := Gl^ t<ά Z and we get an exact sequence

(5.2.11) i _> c -> < ? £ - > G/£-> 1,

and this is the central extension of Gl1^ we were looking for. One checks
that this exact sequence corresponds to the Lie algebra extension (5.2.1).

Next we have to define an action of Gl^ on \°°/2([yo. It suffices to establish

an action on wedges υ0 A v_i Λ υ_2 Λ . . . , since as soon that is known we can
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extend to all of Λ ^ C 0 0 by linearity. We first discuss wedges in some more
detail.

To a non zero wedge v = v0 Λ v_x Λ i>_2 Λ . . . we can associate (non
uniquely) a linear independent admissible set {^i}i<o If v is a wedge of
charge k then the corresponding matrix v_ is of the form

(5.2.12) v = A~k lυ- ) , v_ = 1 + finr, υ+ = finr.

Here the subscripts ± refer to the decomposition of a Z x Z< 0 matrix into
blocks induced by the decomposition H — H0®H^, cf. (5.2.5). Denote by A
the collection of all matrices of the form (5.2.12) with linearly independent
columns. On A we have an action from the right of the group 71 of (5.2.7).
We can identify, in a bijective manner, a non trivial wedge v with an orbit

of 71 in A via v «-» υj[. In order to define an action of Gl^ on Λ ^ ^ C 0 0 it
therefore suffices to define an action on the orbit space A/T\.

Let Q G Gl^ — ((e, eTi), 1) be the canonical lift of the shift matrix Λ" 1 =

]C£ι+ii £ Gllίo- J u s ^ a s a n y element of Gl1^ can be written as g Λ~*, with

g e Gl^ίf we can write an element of Gl^ as (g,a%) Qk, (g,aTι) 6 Gl^ .

The action of Q reads in terms of elements of A/71:

(5.2Λ3) O '

Next we define the action of (g',a'Ti) G Gl^ . We should have

(5.2.14)

Λ 0 If

Now note that Q~k(g',a'Ti)Qk is an element of Gl^ , so it is of the form

(#, α7i). To complete the definition of the Gl^ action we put

(5.2.15) (0,071) • {"Λ %=g

We leave to the reader the easy verification that these definitions make sense,
i.e., are independent of the choice of representatives for the coset aT\ and for

ίυΛ
the orbit 7ί, and that the right hand side of (5.2.15) indeed belongs

W
to Λ/Tx.
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5.3. The projection π : Gl^ —>• Gl1^ and the translation group. In
Λ If

the previous subsection we have constructed the central extension Gl^ of

y With the help of the fermions that act on Λ 0 0 ' ^ 0 0 we will describe

the projection π : Gl^ -> Gl1^ very explicitly. Using this we show that the
fermionic translation operator Qa (5.1.10) that occurs in the bosonization

formula (5.1.16) belongs to the group Gl^ and projects to the shift operator
Qa of (3.2.4). The fermionic translation operators Qa are the ingredients for

Λ ιfthe lift of the translation group T - C GV^ to the central extension Gl^.

Proposition 5.3.1. Let g = Σgij£ij G Gl1^ and let g be any lift of g in

Gl^. Then, for all i G Z ; we have, as operators on A

Proof. We write as before {g,aTι) Qk for an element of Gl^, with Q the
canonical lift of the shift matrix Λ"1, see (5.2.13). It is clear that

(5.3.1) Q φ(i) Q'1 = φ(i + 1), ie Z.

Λ If Λ

Hence the proposition holds for elements of Gl^ of the form g = Qk, k G Z.
- o,z/

It remains to prove the theorem for (g,aTi) G Gl^ .
If we represent a wedge v G Λ ^ ^ C 0 0 by an orbit υ_TΊ then the action

(5.1.6) of φ(i) amounts to adding the vector e* on the right to m

(5.3.2) ΦW vT^ivleJTi.

This is independent of the choice of m If t G 7i then (υ< | et)7i = (u \

ei) \ n I ̂ ί ~ (- I 6*)7i The proposition then states that the endomorphism

<7 φ(i) g~λ acts on an orbit vl\ by adding on the right the column vector
g €{. This is a small calculation:

(5.3.3)
{g.aZ) φ{%) - (^- 1,α- 1T 1) υTi = (&,αTi) ^(i) ^"VαJTi

= {g:aTι) ( g " 1 ^ I €i)7I

- Q ( Q - 1 ^ , α7ί)Q) Q-1 - (g-ιva \ c<)7ί

= Q ^

- Q (Av I Kg • 6,
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D

On Λ ^ C 0 0 there exists a unique positive definite Hermitian form (. | .)
such that the elementary wedges (5.1.3) are orthonormal. With respect to
this form the adjoint of ψ(i) is ψ*(i) and the adjoint of p(Sij) is /$(££•) =

Λ If

p(Sji). To discuss the adjoint action of Gl^ on ψ*(i) we need a concrete
description of this Hermitian form.

L e m m a 5.3.2. Let v, w be wedges in Λ ^ ^ C 0 0 with charge k, I respectively.
Let vj[ and wT\ be the corresponding orbits in Λ/Tι. Then

(5.3.4) (v I w) = δkl det{υ*w).

Proof. Let us define for the moment by i ϊ(v, w) = δki det(υ}w) a Hermitian
form on Λ ^ C 0 0 . To show that H coincides with the standard Hermitian
form we must check that the elementary wedges are orthonormal for H. To

this end let, for i 6 Z and λ E C, A^X) = (exp(λ^), 171) € 01°^. Then we
have

(5.3.5)
X)vyw) = δkl det(y*Ai(\*)w) = ί ί(v,^(λ*)w).

For an elementary wedge v = eioAei_1 Λ e ^ Λ.. . , with i0 > i_i > i_2 > . . . ,
we have

(5.3.6) Λ(λ) v = { e λ v ^ 1 ^ ^ ]

Let w = ejo Λ e^ Λ eό_2 Λ . . . , with j 0 > j-i > 3-2 > , be another
elementary wedge and let i = max(io,.?o) If ô > jo we have

(5.3.7) exp(λ)fΓ(v, w) = i7(Ai(λ*)v, w) = H(v, Λ(λ)w) = H(v, w)

and hence iϊ(v, w) = 0, whereas when i0 < JΌ w e have

(5.3.8) exp(λ)tf(v,w) = if(v,^(λ)w) = i f ^ λ ^ v , w ) = fΓ(v,w)

and also in this case H(v, w) = 0. Repeating this argument for all other pairs
(i_i,j_i), (i_2,.7-2)5 . . . , we find that H(v,w) φ 0 implies v = w. Finally
let v = eio Λ €<-1 Λ Λ e<-JV_1 Λ e-N-k Λ e_τv-A:-i A . . . be an elementary
wedge of charge A;, with the first — TV exterior factors different from those of
the kth vacuum. Then i/(v,v) = det(M f M), where M is the Z x TV matrix
with columns ei_N_ι,..., €<_x, eio. It is clear that M^M = 1, proving that i ί
makes the elementary wedges orthonormal. D
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If g 6 Gl1^ then the necessary and sufficient condition for the Hermitian
conjugate matrix g* also to belong to Gl1^ is that g contains only a finite
number of nonzero upper triangular diagonals. If this condition is satisfied
we say that g has finite width. Suppose now that g has finite width and let
9 — (g>aTi) be a lift of g. Then a G Gl(H0)

ι{ automatically also has finite
width (and α* G GI(HQ)1{). We calculate the adjoint of g with respect to the
Hermitian form of Λ

(5.3.9) (#v I w) =

= ( v I <7 t w)>

with

(5.3.10) 9*:=(g*,i

So we see that the adjoint of g with respect to the standard Hermitian form

of Λ^^C 0 0 is a lift of the Hermitian conjugate matrix g*.

Let now g be the lift of a finite width element. Then we have the following

analogue of the Proposition 5.3.1

(5-3.11) 9 P(i) 9-l

Indeed

(5.3.12)

We have derived here (5.3.10) under the assumption that g has finite width,
the only situation in which we will use this formula. We leave it to the reader
to prove this result for general g.

Recall now the elements Qa of Gl1^ defined in (3.2.4). These act on the
relabeled basis introduced in Section 3.1 by

(5.3.13) Qa eh(j) = eb(j + ίβ 6), α, 6 = 1,2,..., fc, jeZ.
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Denote by Q'a any lift of Qa to Gl^. Then by proposition 5.3.1 and equation
(5.3.10) we find

(5.3.14) Q'aψb

Comparing this with (5.1.10) we see that Q'a has the same adjoint action
on the fermions as the fermionic translation operators introduced in Section

Λ If Λ

5.1, that had a priori no relation to Gl^. To compare the action of Q'a and
Qa on Λ 0 0 /^ 0 0 we need a lemma.

Lemma 5.3.3. Let Q'a be a lift of Qa. Then

(5.3.15) Q'α v 0 = ^

Proof. The 0 t h vacuum v 0 — e0 Λ e_χ Λ e_2 Λ . . . corresponds to the orbit
VQTI, where we can choose v$ — ( e_2e_ieo). The columns for this matrix
VQ form an admissible basis for

k

j<0 6=1 z<0

Now if Q'a is any lift of Qa then the wedge Q'a v 0 corresponds to the orbit

Ϊ / 7 I , with the columns of v! an admissible basis for (Qa H0)
nn. Since Qa =

Σhφa 1& + Λ~, and A~eb(i) — eb(i + δab), we see that

k

(5.3.17) {Qa-Hof
n = Cea{l)®($($£eb{ϊ).

6=1 z<0

Hence a particular simple admissible basis for (Qa H0)
ήn is {eα(l)} U {eb(i) \

b = 1, 2, . . . , k i < 0}, corresponding to the orbit (VQ | eα(l))7i and to the
wedge φa(l)ΎQ. Any two admissible bases of (QaΉ0)

hn correspond to wedges
that differ by at most a non zero factor. D

This lemma, combined with (5.3.13) and (5.1.10), shows that for any lift

Q'a °f Qa we have Qa ~ vQ'a for some v G C*. Hence

Proposition 5.3.4. Let Qa be the fermionic translation operators on Λ0 0/2^?0

defined in (5.1.10). Then Qa G Gl^ and Qa projects to Qa G Gl1^.

Next we turn to the translation operators Ta responsible for the discrete
time evolution on the Grassmannian. Since in the central extension the Qa
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no longer commute (as the Qa do) we have to make a choice here. We
think of the root lattice R — Θ ^ Z α j as a sublattice of the rank k lattice
Θi=1Zδi through the identification a{ — δ{ — δi+u i = 1, 2,..., k. The δj are
orthogonal for a symmetric bilinear form ( | ). We can then write uniquely
for any a E R

t k

(5.3.18) <* = Σ f t A + Σ n*A>
3 = 1 j=l+l

with the pi:ι non negative and the n^ strictly negative. We make then a
choice of the ordering in the two sets of subscripts:

(5.3.19) ix <i2 < ..Af, ii+ι > > ik.

Let F — (Qi, i = 1,2,..., k) be the group generated by the fermionic trans-
lation operators. We then define, using the ordering (5.3.19), a map R —» F,
a h-> fa by

(5.3.20) fα == QΓ;1 QT2

2 ... QT/ c ; : r QZk

Clearly Ta is then a lift of the translation operator Ta (defined in Subsection
3.2) and the group T- generated by the Taτ is a central extension of the
Abelian group T- by Z2, defined by a cocycle e : R x R -* Z 2 given by

(5.3.21) fafβ = e(a,β)fa+β.

So 6 satisfies the cocycle properties e(α, β)e(a + y0,7) = e(α,/3 + j)e(β,j)
and e(α, 0) — e(0, α) — 1. The choice (5.3.19) was made to ensure simple
properties of the cocycle 6, as described in the following Lemma.

Lemma 5.3.5. The cocycle e satisfies for all a, β £ R:

1. e(α,-α) = l,

2. 6(α,/3)6(/3,«) = (-l)H^),

3. c(-α,- i 9) = (-l)W«€(α, i9).

The proof of the Lemma consists of simple computations using the fact

that the Qτ satisfy the anti-commutation relations (5.1.15) and the fact that

the sum of the coefficients p^, nh is zero. Note that part 1 of the Lemma

implies the useful relation T~ι = T_α for all a G R.

5.4. Group decomposition and r-functions. In this section we will study
the Gauss decomposition in Gl1^ by means of the action of the central

extension Gl^ on Λ^^C 0 0 . In fact we will need a slight refinement: if
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g G Gl1^ with Gauss decomposition g = g_Pg+ then we can write (uniquely)
g+ = h gs

+, with h a diagonal matrix and g+ a upper triangular matrix with
ones on the diagonal to get a decomposition

(5.4.1) g = g.Phg%.

Note that in the Gauss decomposition the factors g_, g+ are in general not
uniquely defined. However, the element h here is uniquely determined; later
on we will see that its entries are essentially the r-functions of W — gHj
(when W is in the Hj cell), to be defined in Definition 5.4.3 below. For
any lift g of g we can find elements #_, P, h and gs

+ projecting to the
corresponding elements without a hat to get

(5.4.2) g = g_Phgs

+.

This decomposition is however not unique: each of the factors can be multi-

plied by a non zero complex constant as long as the product of these factors

is one. The following lemma fixes a normalization.

Lemma 5.4.1. Let g = g-Phg+ be a fixed factorization (5.4.1). Assume
that PHj = Hj. Then, for any lift g of g there is a unique factorization as
in (5.4.2) such that

2. j ,
3 ( v j I 9-Vj) = I-

Proof. For the first part note that for any lift g+ of g+ the wedge g+Vj cor-
responds to an admissible basis for g+Hj = Hj, since g+ is upper triangular.
As before we use that two wedges corresponding to two admissible bases of
the same point of Gr differ by a non zero factor, so that g+Vj — Wj. By
changing the lift we can make v — 1. The proof for the second part is the
same. For the third part we note that <?_ has finite width, and gl_ is an

upper triangular element of Gl1^ that by (1) has a unique lift gl_ G Gl^ such
that gl_Vj = Vj. Then the adjoint of g\_ is the unique lift of #_ that satisfies
(3). D

To decide whether or not PHj = H3 one can use the following Lemma.

Lemma 5.4.2. Let P be any lift of a permutation matrix P. Then

j) φ 0

Proof. The wedge Pvj corresponds to some admissible basis for PHj. Since

P is a permutation matrix it is clear that PHfn has a basis consisting of
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basis vectors {tσP(i)}i<ji where σP is the permutation associated to P. Let
SJ

P = {crp{i) I i < j} and order the elements of SJ

P as i0 > i_x > i_2 >
Then {υiτn }m<0 is an admissible basis of PHfn and we have

(5.4.3) Pvj = veio Λ c i . 1 Λ e ^ Λ . . . , 1/ 6 C .

Since elementary wedges are orthogonal we have

(5.4.4)

( v j I PVJ) Φ 0 «=» -Pvj = *T,., ^ G C*

<Φ=>> σp restricts to a permutation of {i \ i < j}

<=^ PHj = Hj.

Ώ

Consider next the following lift to Glι<L of tι^(t, α):

(5.4.5) ώ?(ί, α) - exp ( £ ]Γ <αα(i)) • fβ G G/£.
\i>0 o=l /

Let g e Gl1^ be any lift of g G GI&. Then we define

(5.4.6) g(t, a) = w%(t, a)~λg.

Definition 5.4.3.Fix an integer jί, a positive integer n, a partition n of n

and let W — gHj G Gr. Fix a lift g of g. The τ-function of type j,n of W

is the function on Γ- given as "vacuum expectation value":

(5.4.7) τ ^ ( t , α ) : H * i I $(*>«) *>i>

Note that if g' is another element of GlιL projecting to g the r-function
calculated with g' will differ from (5.4.7) by a constant. This will be irrel-
evant in the sequel. Also note that the r-function is defined for all values
of (ί, α), also when W(t,a) does not belong to the big cell. In fact the r-
function of type j , n determines whether or not W(t, a) belongs to the Hj
cell:

Proposition 5.4.4. Let j , n, W be as above. Let Γ- be the group of evo-
lutions of type n on Gr and let Γ^f be the subset of (t, a) G Γ- such that
pr : W(t,a) = g(t,a)Hj -> Hj is an isomorphism. (See Section 2.2). Then
for all (£, a) G Γ- the following two statements are equivalent:
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Proof. We use the Gauss decomposition of g(t, a) G Glι<L We suppress for

simplicity the reference to (ί, a) and write g = g_Phgs

+, with the normaliza-

tion as in Lemma 5.4.1. Then, writing τ for τ^r(ί, α):

(5.4.8) τ = {vj\g-.P h.ga

+ vj)

= ((g_γ.Vj\P.h Vj)

= exp(λj)(vj \P Vj).

Here we have used Lemma 5.4.1, and the fact that v7 is an eigenvector
of elements of lifts of diagonal matrices: h Vj = exp(λJ)vJ, for some
λj (depending on (t,α)). Using Lemma 5.4.2 we see from (5.4.7) that
7#r(t,α) Φ 0 iff PHj = Hj. But PHj = Hj iff W(t,α) = g-(t,α)Hj. Now
WΓ(ί,α) = g-(t,α)Hj, for #_(£,α) strictly lower triangular, is equivalent to
PF(t, α) belonging to the Hj cell. D

Note that from the proof of this proposition it follows that for (£, α) G Γ̂ jf

we have, if <?(£, α) = #_ PΛ, $j_,

(5.4.9) P%+ v7 = r^r(ί, α)v i ?

a fact that will be used in the calculation of the wave function in terms of

τ-functions.

5.5. Relation between wave function and τ-function. In the construc-
tion of the wave function of a point W of the Grassmannian the lower tri-
angular part gL of the Gauss decomposition adapted to Hj occurs (see Defi-
nition 4.4.1). It is a rather trivial observation that one can calculate matrix
elements of gL by lifting it to the central extension Gl1^ and using the semi-
infinite wedge space (see the introduction for the finite dimensional situa-
tion). First note that there is a unique lift of gL such that (v, | gLvj) = 1.
The proof is as in Lemma 5.4.1. To find the coefficient of the matrix 8pq in
gL we observe that Epq is represented on Λ^^C 0 0 by the operator ψpψ* (if
p φ q). The following Lemma is then, maybe, not too surprising.

Lemma 5.5.1. Fix an integer j and a positive integer n and a partitiort n
of n. Let g G Gl1^ and let g(t,a) be given by (4.1.4). Assume that g(t,a)
belongs to the Hj cell, see section 2.2. Let gL(t,ά) G Gl1^ be the minus
component of the Gauss decomposition of g(t,a) of Lemma 2.2.2 adapted
to j. Write gL(t,a) = ^gpq(t,a)8pq. Let g(t,a) be an arbitrary lift of
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g(t,a) and lift gL{t,ά) to the unique element gJ_(t,a) G GlιL that satisfies
(VJ I g°_(t,a)vj) — 1. Then for all p G Z,g < j we have

gpq{t,a) = ((φpψ*q) vά I gί(t,a) v, ),

^r(£,α) is ίΛe τ-function of type (j,n) ofW =

Proof. For simplicity we will mostly suppress the dependence on (£, a). If

p φ q, and p < j , then, by definition of g i , we have gP9 = 0, but also

(ΨpΦq) ' v j — 0> s o m ^hat case (5.5.1a) is true. In case p — q < j we have

gpp = 1, (ψpψp) - Vj = Vj and (5.5.1a) holds because of the normalization of

the lift pΐ.

Assume next that p > j . Then we use Lemma 5.3.1 to calculate the right

hand side of (5.5.1a). The elementary wedge {φp

/φ*q) Vj = βj Λ e7_i Λ Λ

e ς +iΛepΛe 9_i Λ... corresponds to the orbit υ*>97ί, where ^ ' ρ is the Z x Z<0

matrix with columns (... eq-ιβpeq+ι . . . e7). The wedge gLvj corresponds to

an orbit vT\, where we can take 21 to be

(5.5.2) , - 1

.0,

for a the identity matrix. With this choice υ_ is a Z x Z< 0 matrix of the form

(... υ_2V-ifo) with for all i < 0

(5.5.3) Vi=gL-ej+i.

Therefore

(5.5.4)

= det

= det

9pq 9pq~l

0 1

0 0

9PJ

0

\

proving (5.5. La) also in this case.
Now gt (t, a) is a factor in the decomposition

(5.5.5) 9(t,a)=gL f' P-g+=gί.fi-P-h g'+,
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where fj is defined in (2.2.4) and we have decomposed g+ in a diagonal part

h and an upper triangular part gs

+ with ones on the diagonal. Since gJ__ fj

is the factor p_ in the Gauss decomposition and (£, a) G Γ^T1 we can apply

Lemma 5.4.1 to get for any lift g(t,a) a unique factorization

(5-5.6) 9(t,a)=gL fi P-h-g'+,

such that

(5.5.7) Pv, = V j , g%vά = v i ? (v, | gL /V, ) = 1.

Now /^'flj = Hj so we have fjVj = i/Vj, with ẑ  G C*. But because of the
normalization of gL we must have in fact v — 1 and JPVJ = Vj. This implies
that

(5.5.8) gL • v, - g(t,a) ( f t ) " 1 h-1 P - 1 (p)-1 • v,

using (5.4.8). D

Note that only because we have assumed that #ί is the minus part of
the Gauss decomposition adapted to j we are able to calculate its matrix
elements gpq in a simple way in the semi-infinite wedge representation: if we
had used the ordinary Gauss decomposition of (2.2.2) the finite matrix in
(5.5.4) would not have had zeroes below the diagonal.

In Lemma 5.5.1 we calculated the coefficients of gL in an expansion in
terms of the standard basis 8pq. After the relabeling of type n, so that
gL — Σgb

r

c

s£ζci w e find °f course for the new coefficients an expression in
terms of the relabeled fermions: if ec(s) corresponds to eg, with q < j , then

(5.5.9) gb

r

c

s = ((Mr)PΛ*))'V, I »(ί,α) - v ^ / r ^ ^ α ) ,

for all 1 < b < k, r G Z. In particular the columns of type c of gL that
occur in the definition of the wave function of type j , n have s — τc so
that the coefficients that occur in the wave function are of the form gb

r

c

rc for
c = 1, 2,. . . , k. This will be used in the next Theorem.

Λ If

Theorem 5.5.2. Fix g G Gl1^, a lift of g to g G Gl^, an integer j , a positive
integer n and a partition n of n into k parts and let W = gHj G Gr. Let
wl£r(z;t,a), r ^ r ( ^ α ) be the wave function and the r-function associated to
these data. Then, if we write w]j(r(z]t,a) — Y^k

b c=ιwbcEbc, we have for all

(5.5.10) wbc = (ψ*c(rc)Vj I ΰ%{t,a)-ιφl(z)g)lrff{t,a).
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More explicitly we have

(5.5.11) wbc(z;t,a) = {-

where

(5.5.12) τLR(t(b),a + β) = exp ( - Vs ^— —r ) τ^r(£,α +/?),

where β = δb — δc £ R is the root corresponding to the root vector Ehc G

s/(fc,C), and e is Λ̂e cocycle defined in (5.3.21).

Proof. For simplicity we suppress the reference to (t, a) and mostly also to

z in the proof. Now by definition of the wave function we have for the cth

column

(5.5.13) wbc = el wo(z; ί, α) ^ ( p i e c(r c)),

\i>0

Hence by (5.5.9) we have

(5.5.14)

v, I p(ί,α) vΛ /τ&a(t,α),
/

Here we have implicitly extended the Hermitian form (• | •) on A°°/2<C?° to a
map ( I )i : Λ 0 0 / 2 ^ ! ^ ^ 1 ] ] x Λ ^ C 0 0 -> Q ^ z " 1 ] ] such that {zu | v)j =
z- χ(u I v). There is a similar map ( | )2 : A0 0/2!?0 x A*/ 2 ^ 0 ^,^- 1 ] ] ->
C[[z, ^ "1]] such that (u | 2v)2 = ^(u | v) and we have

(5.5.15) (ψb(z)u I v>χ = (u I φ*b(z)v)2.

In (5.5.14) we have dropped the subscripts 1,2, as we will continue to do in1"

the sequel. Now, g{t,a) — wf(t,a)~ιg and

(5.5.16) ψ Wυftfaa)-1 = exp
\i>0
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as follows from (see (5.1.12, 5.3.20)),

(5.5.17) Taψ Wf-1 = *<

Using this, and the explicit form (4.3.5-6) for WQ(Z), in (5.5.14) gives part

(5.5.10) of the theorem.

We next continue with the calculation of w'bc (z) := (il>*c{rc)'Vj \ ψl(z)g(t,Cί)

Vj). The fermion operator ψ*(rc) is the coefficient of z~Tc in the field ψ*(z),

so using (5.1.14), (5.1.17) and the bosonization formula (5.1.18) we get

(5.5.18) pe(re) • v, = ( ^ ( - l ) ' ' - " v,.

This gives, also using the fact that the fermionic translation operators Qc

are unitary,

(5.5.19) w'bc(z) = (-ly-'-tvj I Qcψ*b(z)g(t,a) • V j ) .

In the fermion field φl{z) the operator {—z)~ab(a) occurs. We need to move

this to the left to let it act on Vj. We have in general

(5.5.20) [c*a(0

so

(5.5.21)

This gives

(5.5.22)

' e x P (
\/>o

\e<o

~ / W I § ( t )

where t(b) is as in (5.5.12) and we have used that ab(ί)vj = 0 if I > 0.
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Finally we have by (5.3.20) and Lemma 5.3.5:

(5.5.23) QcQ 'f-1 =fβXf-\

Putting this all together gives then the rest of the theorem. D

Note that in approach of, say, [DJKM] the formula (5.5.10) would be the

definition of the wave function, while in the approach of [Di3] the r-function

would be defined by a formula like (5.5.11).
The relation between the wave function and the r-function given by The-

orem 5.5.2 allows us also to express the coefficients of resolvents, lattice
resolvents, etc. in terms of τ-functions. For instance for the example of the
Davey-Stewartson-Toda system discussed in Section 4.6 we find that the first
coefficient wψ of the expansion (4.6.6) of the wave operator is given by

(For simplicity we use the j> = 0 part of the Grassmannian and write τm(t)
for r^-(ί,mαi), see Section 4.6, and suppress the time dependence.) From
(4.6.9-10) we then see that

(5.5.25) qm = - 2 τ m - 7 τ m ,

rm = 2 τ m + 1 / τ m .

A small calculation using the diagonal part of # m , see (4.6.9), then proves
that the expression of the variable Qm in terms of r-functions is given by

(5.5.26) Q m = d2log(τm).

6. Multicomponent KP equations in bilinear form and Plϋcker
equations.

6.0. Introduction. In the previous section we have found a relation be-
tween the wave function of a point of the (polynomial) Grassmannian and r-
functions, matrix elements of the fundamental representations of gl^. These
wave functions are solutions of the linear equations (4.4.6). In this section
we will reformulate the linear equations (4.4.6) in terms of bilinear equations
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of Hirota type: any (formal) solution of the linear equations is at the same
time a solution to the bilinear equations (Proposition 6.1.1). This allows us
to make the connection with the Plucker equations of the embedding of Gr
in PΛ^^C0 0, which are equations for the τ-function. So we get, just as in
the one component case, three equivalent descriptions of the multi compo-
nent KP hierarchy: the wave functions of the multi component KP hierarchy
satisfy both the linear equations and the bilinear equations and they can be
expressed in terms of r-functions that satisfy their own, equivalent, system
of equations.

6.1. Dual Grassmannian and Plucker equations. The equations (4.4.6)
for the wave function ww(t, a) can be formulated in terms of a bilinear equa-
tion involving also the so called dual wave function iί;ĵ (£, α). This bilinear
equation amounts to an orthogonality relation between W G Gr and W*, an
element of the dual Grassmannian Gr*, as was explained in [HP] in an ana-
lytic context for the KP-hierarchy. So we start out this subsection by briefly
discussing the dualization of all our constructions. Then we derive, for com-
pleteness sake, the bilinear equations, show that the bilinear equations for
the wave function and its dual are equivalent to the differential difference
linear equations (4.4.6) and give the connection to the Plucker equations of
the embedding Grό -* ΨkfC°°.

The starting point of the theory developed until now was the space H of
infinite column vectors, see (2.1.2). The dual notion is

(6.1.1) H* = \Σ c& I * G C, m

where e* is the linear function on H given by (e*,e^) = δij,i,j G Z. We
can think of H* as consisting of infinite row vectors and the natural bilinear
pairing H* x H -ϊ C is then just matrix multiplication between a row and
column vector.

On H* we have the action of g G Gl1^ given by

(6.1.2) g • e* = e*g~ι =
k=m

Define, cf. (2.2.1),

(6.1.3) H; = { Σ ckel } C H*.

Then Gr* is the collection of W* C H* of the form g H* = H*g~ι for some
g G Gl'^, j e Z. There is a natural 1-1 correspondence between points of
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Gr and Gr*: W = gHj corresponds to W* = g - H*. One checks that such
W and W* are orthogonal with respect to the pairing (,), since Hj and if*
are.

We define also, given a partition n, a relabeling on H*: put e* = e*a{i) if
€j = eα(i) in H. Then we have a map to fc-component row vector Laurent
series, cf. (4.2.1):

(6.1.4) f* : H*-+H«k\ j*(eUi)) = z'^el

where e*,α = 1,2, ...,& is a basis for the Λ -component row vectors and
JJ*W __ QC((z))e*a. The bilinear pairing between H* and H then translates
into the residue pairing on H*W x

(6.1.5) (/*,<?) - Resz(Γ(z)g(z)), /* G

where Res2 is the coefficient of z~ι in a formal power series.
On the dual Grassmannian we have the time evolution of type n given by

W* *-> W*(t,a) := tufrfoa)-1 Ŵ* = W*tt;^,a), with ti^(t,a) given by
(4.1.1). An element VF of Gr belongs to the Hj cell iff the corresponding
element W* of the dual Grassmannian belongs to the H* cell. In particular
the set Γ(jr of elements (t, α) of the evolution group such that W(t, a) belongs
to the Hj cell is equal to Γ^*.

The wave function ww of type j , n was defined using the columns gί_
€&(r6(i)), with rb(j) given by (3.2.1). The analogous dual numbers are
r*(j) = rb(j) + 1, with the following interpretation: e£(r&) is the basis vector
of type b occurring in H* with smallest argument. Note that

(6.1.6) / a ( € ; w ) ) = ^ - 1 e ; = ^ e : .

Now we define the dual wave function using the rows of {gΐ.)~ι and the
numbers r£: for (ί, α) G Γ f̂

(6.1.7) ^ ( ί , α ) : = / a

The dual wave function can be written in terms of the dual wave operator,
acting now from the left (cf. (4.5.1)):

(6.1.8)
Ww(t,a) = ~ϋϊw(t,a) -wo(t,a) \

= (l
kxk
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Denote by W*W the image of W* in H*(k\ Then the rows of w^(t, a) belong
to W*^k>} for all (t, a) G Γ^f, just as the columns of ww(£, <*) belong to VF(Λ).
Because VF*(Λ) and W^ are orthogonal for the residue pairing we find the
bilinear identity:

(6.1.9) Resz(w*w(t,a)ww(t',a')) = 0, (ί,α), (ί ',α') GΓJf.

Both the linear equations (4.5.6) for the wave function and the bilinear equa-
tions (6.1.9) are derived in apparently different ways from the geometry of
the Grassmannian. In fact these equations are equivalent. Indeed, consider
two matrix PDO's acting from the left and right:

(6.1.10) ?

Then we define the dual operators to act in the opposite direction:

(6.1.11) (?y := ]>>(-V)\ (£)• := ^(-3)%.

Proposition 6.1.1. Let

w(z\t,a) = wo(z;t,a) • t/7,tύ = diag(z~r\... ,z~Tk) I l f c x f c + ^ <9 " ^
\ i>0

*~3~Ί ' diag(zr\... ,zrk

with Wi, and w* matrices of size k. If w, w* are both defined and infinitely

differentiate for {t,a) and (t'^a + 'y), then the bilinear equations

(6.1.12) Resz(w*{z; t, a)w(z; t',a + 7)) = 0

are equivalent to the equations

(6.1.13a) Ίί = (tZΓ"1)*,

(6.1.13b) dlw = w(Kl)+,

(6.1.13c) w{z] ί, α + 7) = w{z] t, a) (UΊ)+ι,

where TVh = tu~l ^^ t ΰ , ZY7 = t i J " 1 ^^ 1 tt7.

We omit the proof, which is rather similar to the one for the KP hierarchy^
cf. [Di2].

In Theorem 5.5.2 we found an expression for the wave function in terms
of matrix elements of the semi-infinite wedge space. There is, as one might
expect, a similar expression for the dual wave function in terms of some
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dual semi-infinite wedge space. However the situation is simpler than that.
Note that w^ consists essentially of rows of gZ1, and since ρ_ — 1 + X,
with X G glio-, we have gl1 = 1 — X, because X2 = 0. Hence we can
calculate the matrix elements of gZ1 and thus w^ in terms of the standard
semi-infinite wedge space. Writing w^ = Σlc wlcEbc we find by essentially
the same calculation as in Theorem 5.5.2 that

(6.1.14) < = z-'iΦKr;)^ I wUt,a)-^c(z)gVj)/r^(t,a).

Λ 0 If

Consider the orbit Oj of the group Gl^ through the vacuum Vj in
projectivization of Oj can be identified with the component

Grj of Gr. It is well known ([KP]) that the points of Oj are characterized

as follows: Tj E Λ^"C°° belongs to Oj iff

(6.1.15) 2 φ{i)τj ® ̂ * (i)T j = 0.

So the equation (6.1.15) might be called the Plucker equation for the em-

bedding of Grj in PΛ/"C°°. Note that if we use the bosonization formulae

(5.1.18) we obtain differential-difference equations for the r-function. We

refrain from writing down explicit equations.

Using the relabeled fermionic fields of (5.1.16) we can write this as

(6.1.16) Resz \z'1 Σψc(z)τj ® φ*c(z)τA =0.
c = l

Multiplying this by w^(t, a) ® Wo-(t',a')/τ^r(t,a)τ^r(t',a') and taking the

inner product with the element (ψb(rl)vj \ ®('0d(r'd)vj I gives

which is, using (5.5.10, 6.1.14), the bilinear identity (6.1.9). In other words

the Plucker equation for the embedding of Grj in PΛ^~C°° is nothing but

the bilinear equation for a point W of the component Grj.

7. Reduction to loop groups and KdV type equations.

7.0. Introduction. In the previous sections we have found for every W
in the Grassmannian and for every choice of partition of n into k parts a
solution of the differential-difference A -component KP hierarchy.
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In the classical 1-component KP case one can for every integer n impose
constraints on solutions of the KP to obtain solutions of the n-KdV hierarchy,
related to Glίf(n,C), the loop group of G7(n,C). This procedure is called
n-reduction and amounts to considering G?Z (̂n,C) in a natural way as a
subgroup of Gl1^. This gives rise to a subspace Grn of Gr, called the n-
periodic Grassmannian. The embedding of Glίf(n, C) in Gl1^ and Grn are
discussed in Section 7.1.

In the general case that we are studying we can similarly impose for every
partition n of n into k parts constraints on the A -component KP to obtain so-
lutions of what one might call the n-reduced KP-hierarchy. This is discussed
in section 7.2.

In Section 7.3 the n-reduced KP hierarchy is rewritten in terms of n x n
matrices depending on a variable λ, so as to make the relation with the loop
group Glιf(n, C) and the n-periodic Grassmannian explicit. The n-reduced
KP hierarchy rewritten in this way will be called the n-KdV hierarchy. Every
conjugacy class in the symmetric group is determined by a partition n and
determines a gradation of #Z^(n, C). In [Wi2] Wilson proposes to construct
for every gradation of gllf(n, C) a hierarchy of differential equations. We show
that our n-KdV hierarchies are essentially the equations Wilson had in mind
for the gradation corresponding to n. (He was dealing with the modified
equations, related to the infinite n-periodic flag manifold in a similar way as
our n-KdV hierarchies are related to the n-periodic Grassmannian. Also he
didn't discuss the discrete part of the hierarchies.)

7.1. n-periodicity. Recall from Section 4.4 the map j- from the space H
of infinite column vectors to H^, the space of A -component formal Laurent
series in the variable z, constructed using the partition n. Here we will
consider the space H^ of n-component formal Laurent series in the variable
λ: let e i5 1 < i < n be a basis for Cn, define

(7.1.1) H{n) :=®i=1C{(λ))ei7

and introduce the isomorphism H -» H^ by

(7.1.2) e3 π-> λ-p-ιeq,

where j = np + q,l < q < n. This corresponds to the construction of H^ of
section 4.4 for the partition of n into n parts. Let ^/^(n, C) be the collection
of formal loops of the form Σm ^Ai with Aτ G gl(n, C) and m some integer.̂
This forms in the natural way a Lie algebra and we can define a (Lie) algebra
homomorphism glιf(n, C) —» gl1^ by

(7.1.3)
έez
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where E^ is the element of the natural basis of n x n matrices with its only
nonzero entry a 1 on the ijth place. (In general we will use a tilde ~ to
indicate that an object is related to the loop algebra, loop group or anything
"of size n".)

The image of this homomorphism consists of the n-periodic elements, i.e.,
those X in gl1^ such that

(7.1.4) X = ΛnXΛ~n,

where Λ = ΣSu+i is the shift matrix in Gl1^. If we expand X as X =
Σ XijSij then the condition (7.1.4) implies for the coefficients Xi+nj+n — X{j

for all i,j G Z. In the same way we get a surjective homomorphism from
the formal loop group Glιf(n, C) (consisting of the invertible elements of
glιf(n, C)) to the subset of n-periodic elements of Gl1^.

Since H^ and H^ are both isomorphic to H there is an isomorphism
jntk : H(k) -> H^ given explicitly by

(7.1.5) eaz
λ p ιeu

where i = nap + q1 1 < q < na and t = n\ + + nα_i + ς. Using this
isomorphism we can translate, of course, the action of k x k matrices on
H^ into an action on H^nK In particular the diagonal matrix zEaa acting
on H^ corresponds to the action of the n x n block diagonal matrix

(7.1.6) Va = diag(Oni,... ,0 n β . 1 ,P n β ,0 f l β + 1 , . . . ,0 n J

where 0nc is the zero matrix of size nc x nc and PUa is the nα x na matrix

/ 0 1 0 ... 0 0\
0 0 1 . . . 00

(7.1.7) Pn =
0 0 0 . . . 10
0 0 0 . . . 0 1

V λ o o . . . o o/
Since we have seen in Subsection 4.4 that the generator Λ+ of the pre-
Heisenberg algebra Ή.- of type n corresponds in H^ to zEaa we find that the
action of the positive part of the pre-Heisenberg algebra in H^ is generated
by the elements Va- The action of the pre-translation group is similarly
generated by the elements fQi = V~} + Vni+1 + Σ ^ M + i ln i ? 1 < i < k.

We have seen that the shift matrix Λ does not correspond under j - to an
element of the formal loop group of size fc, leading to the introduction of the
numbers rb of (4.3.1). Now, when we use the map (7.1.2), the situation is
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much simpler: the element Pn of GΪ(n,C) is the image of the shift matrix
Λ. This means in particular that, if we denote by Hj the image of Hj in
tf<n>, we have, cf. (4.3.3),

(7.1.8) Hf = p-ίH™ = P~j ΘΓ=1 C[[A]]e,.

Let g E G/^ be n-periodic and let W = gHj. Since AnHj = i ϊ -n C Hj we
have ΛnVF = AngHj = gAnHj C W. Conversely, elements of Gr satisfying
AnW C W can be obtained from Hj by an n-periodic group element (see
[PrS]) and are called also n-periodic. The collection of n-periodic elements
in Gr is denoted by Gr n, and Grn is called the n-periodic Grassmannian.

7.2. The n reduced fc-component K P hierarchy. The infinite shift ma-
trix Λn E Gl1^ corresponds to multiplication by diag(^rni,..., znk) in H^
and to multiplication by λ = λ l n x n in H^nK For simplicity we also write
often λ for diag(zn i,..., znk) in H{k). So if W E Grn we have for the image
Ww in HW the relation \W{h) C W{k). In particular for the wave function,
the columns of which belong to W^ when (ί, a) E Γ f̂, we have

(7.2.1) \ww(t,a)cW(k\

where we say that a matrix belongs to W^ if its columns do. Now by

Proposition 4.4.2 this means that there is for every positive integer ί a unique

A; x A; matrix differential operator M^, such that

(7.2.2) λeww{t,a) = ww

Just as ww also M^ is defined for (t, a) E Γ ^ .
One sees that the resolvent (4.5.5) satisfies

(7.2.3) ww - TZa = zEaaww,

so we have, using that λ = diag(zn i,..., znk),

(7.2.4) ww ί AfW - Σπa

tna J = 0.

By the proof of Proposition 4.4.2 this means that

k

(7.2.5) M^=^C°, >̂0.
α = l

So in the linear combination of resolvents on the right hand side of (7.2.5) the

negative powers of d that might occur cancel to give a differential operator.
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Introduce now the derivation

k

(7.2.6) ^ > n = ΣS*?nβ ' ί > 0 '
0=1

Then we have

(7.2.7)

M«>.

On the other hand, writing ww = w0 • ^ww^ with tΰV the wave operator,
we have

(7.2.8)

= ^ 0 I JTzln«Eaa\ tϊw+w0- d

Comparing (7.2.7) and (7.2.8) we find that the wave operator tϋw and hence
all resolvents 7£α, lattice resolvents Uaι ((4.7.5)) and the multi-component
KP operator L of (4.5.11) are independent of the variables corresponding
to d*1-, i > 0 (in the n-periodic case). Conversely if W G Gr produces a
solution of the multi-component KP hierarchy that is independent of these
variables it belongs to the n-periodic Grassmannian.
Definition 7.2.1.The n-reduced A -component differential-difference KP hi-
erarchy is the system of deformation equations for the k x k matrix PDO L
of the form L — Ad + O( d °) given by

(7.2.9a) $ L = [£,(ftj)+],

L(ί,α + αi) - (Z4J+ L(t,a) • (Uai)^

together with the condition

(7.2.9b) de^L = 0, ί > 0.

So we get for every n-periodic element W € Grn a solution Lw =
^A d Ww of the n-reduced ^-component KP hierarchy.
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7.3. The n-KdV hierarchy. In this section we want to give an alterna-
tive description of the n-reduced fc-component KP hierarchy. In the case
k = 1 there are (at least) two other descriptions available of the n-reduced
hierarchies: the scalar Lax equation approach, involving n t h order scalar
differential operators, and the approach using first order matrix differential
operators (see, e.g., [DS]). We discuss both methods in the general case of
an arbitrary partition. It will turn out that the scalar Lax operator method
does not generalize in a satisfactory way.

The k x k matrix differential operator M^ introduced in (7.2.2) satisfies
the same equations as the pseudo-differential operator L (4.5.11):

(7.3.1)

M«> (ί, α + α<) = (Uai)+ MW (t, a) (Wβ.

If we consider the partition of n into 1 part (the principal partition), then
we have for M := M^ the relation M — Ln and L is the n t h root of the
operator M. (We take A — \ here.) As is well known in this case the
equations (7.3.1) form the generalized n-KdV hierarchy (the discrete part
is now, of course, absent) and this hierarchy is equivalent to the n-reduced
1-component KP hierarchy, cf., [SeW]. So the matrix M seems to be the
natural generalization of the Lax operator in the principal case.

However, in general the equations (7.3.1) are just a consequence of the
equations (7.2.9) and not equivalent to them, since the operator M contains
less information than L. In fact in the extreme case where n is the partition
of n into n parts (the homogeneous case) M is just d l n x n . This is so
because then the differential operator M is the sum of the pseudo differential
operators Έ,a that are of the form d Eaa + [Eaa, wχ\ + O( d ~~ι). So the scalar
Lax operator formulation of n-reduced KP does not seem to generalize simply
to the general case, cf., [Dil], Therefore we now sketch how the n-reduced
A -component KP hierarchy (7.2.9) fits in the framework of n x n matrix
differential operators.

Recall the construction of the A -component KP hierarchy: we started with
a W in the Grassmannian, mapped it to W^ in H^ and considered the
natural flow W^ ^ tuoίt,**)"1 W^. Then we considered the subspace
Wfa of elements of W^ of the form wo(t,a) times a finite order (in z)
A -component vector. The space W^ was stable under the action of d and
we proved in Proposition 4.4.2 that W^n was in fact a free rank k module
over C[ 9], with basis the columns of the wave function ww> This lead in
Proposition 4.5.2 to linear equations for the wave function and this in turn
produced the A -component KP hierarchy.

Now, in the n-periodic case, W^n is not only invariant under the action
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of d but also under the action of λ = diag(;zni,;zn2,... ,znk), i.e., W$ is a
C[λ] module. It turns out that W^ is free of rank n and we can give an
explicit basis. Then the time evolution of this basis will as before lead to
linear equations and we will obtain in very much the same way as before a
collection of differential difference equations, the n-KdV hierarchy. In the
Λ -component KP case the objects one deals with are k x k matrices over d
(since W^ is rank k over C[ d ]) whereas in the n-KdV case we deal with
n x n matrices over λ (since now we think of W^J as a rank n module over

Now we turn to some of the details of the construction. Fix an integer j
and consider an n-periodic element g of Gl1^ and the corresponding element
W = gHj of Grn. We embed W in ίf(n) using the map (7.1.2), so that we
now deal with n-component vectors depending on λ.

We say that an element g £ Glιf(n, C) is in the Hj cell if

(7.3.4) 9=~gί 9i,

where

(7.3.5)

9l(n,C),g0 € Gl(n,C).

This is called the j-Birkhoff decomposition of g. An element g is in the Hj cell
iff the corresponding (under the map (7.1.3)) n-periodic element of Gl1^ is
in the Hj cell. The image of gL (resp. g+) in Gl1^ does not quite coincide
with the minus component gΐ_ (resp. g\.) of the Gauss decomposition of g
adapted to ί/j, since gL (g+) is not n-periodic, in general. So in case g is
n-periodic we have two natural decompositions adapted to Hj. However the
columns j — n + 1 , j — n + 2,..., j of the n-periodic elements corresponding to
gL and g\. are equal to the same columns of the original factors gL and g\. of
the Gauss decomposition of g adapted to Hj (the other columns will differ,
in general). Since this are the only columns that play a role it is irrelevant
which decomposition of g we use. Besides the Birkhoff decomposition in -
the loop group we will need in the sequel also the following corresponding
decomposition of the formal loop algebra:

(7.3.6) gl(n, C) - gl(n, C)L Θ gl(n, C){,
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with (cf. (2.2.3) and (7.1.8)):

(7.3.7) gl(n,Qί = P " ' (gl(n,Q

gl(n, CY+ = P~i (gl(n, C)

Fix also a partition n of n and consider the time flow from the correspond-
ing Heisenberg algebra H- on iί(n)generated by

(7.3.8) wf(t, a) = exp fc £ t°v{) fa.

The n x n loop group wave function of type j, n, associated to W and defined
for (£, α) G Γ^r, reads:

(7.3.9) ώ 1 y(t,α)=iϊ^(ί,α) 5i(t,α) 1

where gi is the minus component in the Birkhoff decomposition for Hj of
g(t, a) = wfi"(t, a)~ιg. We can also describe g{_ by noting that the zth column
gL eτ is the unique element of WM(t, a) of the form P~j{ent + O(\-χ)). So
the loop group wave function consists essentially of n columns of #_(£,α),
whereas the wave function contains only k columns.

The point of the introduction of the loop group wave function is that its
columns form a basis for W^ , the image of W^ in H^n\

Proposition 7.3.2. Let W be n-periodic. Fix (t,α) € Γ ^ . Then W$ is a
free rank n module over the ring C[λ], with basis the columns of ww(t,a).

The proof of this Proposition is very much the same as that of Proposition
4.3.2 and is omitted.

Next we define n x n loop resolvents and lattice resolvents by

(7.3.10) TZa := ww{t, a)'1 Va • ww(t, a)

,a)-1 -f-1 ww(t,a).

So the resolvent ΊZa belongs to the loop algebra and the lattice resolvent Uai

to the loop group. We use the convention that subscripts on 7£α will refer to
the Lie algebra decomposition 7.3.7 for j = 0, while subscripts on Uai, when
it is in the Ho cell, refer to the Birkhoff decomposition of type 0.

Then the analogue of Proposition 4.4.2 is

L e m m a 7.3.3. Let W G GTJ and suppose that ( ί ,α), (ί,α -f c*j) belong to
Γ"^. Then the loop lattice resolvent Uai is in the HQ cell and we have:

(7.3.11) 0fbώtv(t,α) =ww(t,a)'{ni)+

,a + ai) = ww(t,a) (Z4J71.



PARTITIONS, VERTEX OPERATOR CONSTRUCTIONS,... 81

The proof is the same as that of Proposition 4.4.2.
Note that the derivations with respect to the times (7.2.6) act trivially on

the ww, i.e., dί'~ww = ww ΣV1™* — X£ww.
The analogue of the operator Lw that solves the fc-component KP hier-

archy is the resolvent L = w'1 ΣAaVa • ww. We could now define the
n-reduced KdV hierarchy in terms of deformation equations for L. However
in our situation it turns out that all information of L is already contained
in the in the positive part L+ and it is convenient to formulate the theory
in terms of this.

To proceed we need a little digression on finite order automorphisms and
twisted loop algebras associated to a partition n. (For more details and
proofs see [tKvdL].) We associate to every partition n a diagonal matrix in
gl(n,C):

(7.3.12) HR = J2H«' Ha = ̂ -Σ(na-2j + l)E^a.
α=l Z n " j=l

We use Hn to define an automorphism of g/(n, C):

(7.3.13) On = exp(2πiad(Hn)) : gl(n,C) -> gl(n,C).

If N' is the least common multiple of the parts of the partition n then the
order N of aR is equal to 2N' in case ^ ' ( ~ + ~~) is °dd for some pair of parts
nα, nb and N is equal to N' otherwise. Then σ^ defines a Z/7VZ grading of
gl(n,C):

(7.3.14)

9l(n,C)=®l^Qi,

0i = {x e gl(n,C) I σn(x) = ωιx}, ω = exp(2πi/N).

Next we define the twisted loop algebra:

(7.3.15)

Write μ = exp(iθ/N) and put Φ ^ = exp(-iθad(Hn)). Then Φ ^ : L(β, σ j
-> gl(n, C) is an isomorphism between the twisted loop algebra L(Q, σE) and
the untwisted loop algebra gl(n,C), with λ = μN — exp(z^) as loop variable.^

Define a Cartan subalgebra ίĵ  of gl(n,C) associated to n with basis Eι

a,
α = 1,2,..., fc and i = 1,2,... ,nα, where Ea = E^1 + Σ ^ 1 #&+ 1- Under
σ^ the Cartan subalgebra [)„ is mapped to itself and so the decomposition
(7.3.14) induces a decomposition of ίja. We can then define as in (7.3.15)
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the twisted loop algebra L(Jjw σ^). The image of L(f)n, σ^) under the iso-

morphism Φjjn is precisely the Heisenberg algebra Ήn generated by Va and

Qa :=V~λ. In particular the element μN/naEa corresponds to Va- For differ-

ent n one obtains distinct Heisenberg algebras in pZ(n, C) and one proves also

that all Heisenberg algebras of gl(n, C) (up to isomorphism) are obtained

in this way.

The decomposition gl{n, C) = ^ θ l ) ^ where f)̂  is the direct sum of the

root spaces with respect to ()„,, induces a decomposition

(7.3.16) L(g, σn) = Lfta, σ j θ L(f)^ σa).

We also need the twisted loop group £ ( 0 , ^ ) , the collection of units in

L(g, σ j . The image of L(<5, σa) under the isomorphism Φ#n is the untwisted

loop group GZ(n,C). If g G p/(n,C), or j G GZ(n,C), then we write gσ± for

the inverse image in the twisted loop algebra or twisted loop group.

Lemma 7.3.4.

1. If§_ = ln + Oiλ'1) then gl± = ln + O^" 1 ) .

2. Let g_ as above. Then there exist two formal loops uσ^ =

Proo/. The element H^ induces a Z grading of fir£(n, C) as follows: if y G £Jm5

then

772

(7.3.17) [fla,y]=*V, S = N + i '

for some ^ G Z, m = 0 , 1 , . . . , iV - 1. We put then

(7.3.18) deg(λry) = (r + s)ΛΓ = (r + £)JV + m.

This is the grading that corresponds to the grading by powers of μ in L(g, σ^)
under the standard isomorphism: we have: Φ^(λ r y) = μ^r+i^N^my. One
calculates that the eigenvalues of f/̂  are of the form

(7-3.19) 2- - *L + - i - - - L

where 1 < p < nα and 1 < q < rif,. Prom this one sees that the absolute value
of the eigenvalues of H^ is strictly less than 1, and that the only possibilities
in (7.3.18) are m = 0, / = 0 or 0 < m < N-l and / = 0, - 1 . This means that
a homogeneous element of the form λ~ιy, i > 0, has strictly negative degree
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and maps to an element of L(g, σ^) containing a strictly negative power of
μ. This proves part 1. The proof of part 2 is similar to that of Lemma 5.1
in [BtK]. D

We return to the formulation of the n reduced KP hierarchy in terms of
n x n matrix operators. Let dy = ΣAadq and Vy = ΣAaVa Then one
considers the operator

(7.3.20)

Dy(ί,α)= d y-ww(t,aY1dy{ww{t,a))^ dy-L(t,a)+,

for some matrix q(t, a). The components of q(t,ά) are then considered the
fundamental fields of the theory. Note that Vy + q is the polynomial part
(in λ) of an element in the adjoint orbit through Vy of the group of elements
of the form g = 1 + (^(λ"1), and hence q is constant in λ. In particular the
degree (7.3.18) of the homogeneous components of q is strictly less than the
maximum of —, a = 1,..., k. The most general form for q is obtained if one
chooses the constants Aa such that Vy = ΣAaVa is regular, i.e., such that
the centralizer of it is just HR. However the theory would work also if Vy is
not regular: then some of the components of q would be zero.

Lemma 7.3.5. Let Dy(t,a) as above and denote by Dy~ the inverse image of
this operator in the twisted loop algebra L(g, α j : Dy- = d y — Σ Aaμ^Ea —
gσ2-. Then there exists a unique formal power series υσ^ = Σi<olJi%vij w*th
Vi G (f)n)τ> such that

(7.3.21)

expM^))(Z^) = K - Σ Aaμ*Ea + ]Γ Kμ\ k, G (()„),.
i<ma.x(N/na)

The components ofvi andki are y-differential polynomials in the components
of qσ£- and hence in the components of q(t,a).

Proof. First note that trying to construct vσΊL directly from (7.3.21) by ex-
panding in powers of μ seems not to lead in the usual way (cf. [DS]) to
a simple recursion scheme for the Vi because of the inhomogeneity of Vy.^
Therefore we break up Dy in pieces corresponding to the homogeneous com-
ponents of Vy.

Indeed, let Vy + q{t,a) - [Ad(g-){Vy)]+ for p_ = 1 + O{\~1). Define Va +

qa = [Ad(gJ){Va)]+ and Da = ̂ f . -Va-qa. We have Dy = ΣLi AaDa, and
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q = Σa=i Aaqa> We will write as in Lemma 7.3.4 gσjr = exp(uσ±) exp
Define w = wog~<, so that wσ^- = w0 exp(uσ^) e x p ( t ^ ) and we have

(7.3.22) wσz-Da- = 0.

Prom this one easily sees that for all a:

(7.3.23)

and hence also that exp(αd(υσ2-))(JD2/~) is of the same form, proving therefore
the existence of a υσ± such that (7.3.21) holds, cf. [BtK]. Now fix an a
between 1 and k. Comparing the coefficient of μN/na~J on both sides of
(7.3.23) we obtain an equation of the form

(7.3.24)

[υ-j,Ea] + k^jna_j = polynomial in qa~ and in

v_/, —/ > — j , and t\ derivatives.

Using the partition n we decompose v_j in blocks: write υ_j = Σα,6=i v-j,abi
where the matrix v_j,α6 is zero outside the block with index ab of size
n α x nb. Then the commutator in the left hand side of (7.3.24) becomes
Σ*=i Aa[υ-jtbaCna - Cnaυ-.jiab], where Cp = Epl + Σ Eu+ι i s a cY c l ic matrix
of size p. Now Cp acts from the left (right) as an invertible linear trans-
formation on the space of p x q (q x p) matrices for any q. Furthermore
the adjoint action of Cp is an invertible linear transformation on the or-
thogonal complement of the linear span of the powers in Cp in the space of
p x p matrices. Using these facts one can express the blocks V-j,ab, v..^ba

for b — 1,. . . , k and k^\n uniquely in terms of qa~ and the v_/, —I > —j,
and their tj derivatives. Letting now also a run from 1 to k we express all
blocks of V-j in terms of these variables. Note that to find i>_j,a& according
to this method one can consider the diagonalization (7.3.23) of Da or of Db.
These must give the same result, since the consistency of the procedure it
ensured by the existence of at least one solution vσ^. Induction leads now
to the conclusion that vσ^ and Σ^Φ1 (with k{ — ΣAak\a)) are polynomials
in qa~ and ίj derivatives, α = 1,. . . , k. Next we use the fact (which follows
from (7.3.22)) that

(7.3.25) 0 = [Dy, Da) = fdy -Vy-q, *B"tf - Va - qa].

This gives us an expression for dt« (q) in terms of derivatives of qa with respect
to y. Since the projection q »-> qa is just differentiation with respect Aa we



PARTITIONS, VERTEX OPERATOR CONSTRUCTIONS,... 85

find that we can express all tf derivatives of qa in terms of y derivatives and
the Lemma follows. •

Prom the proof of the last Lemma it follows that all resolvents, being of
the form R(p) = w~λ p w = gZ1 p cj- = exp(—ad{υ)){p), are differen-
tial polynomials of the fundamental field q(t, a). This makes the following
definition reasonable:
Definition 7.3.6. The n-KdV hierarchy is the collection of deformation
equations of the operator Dy (of the form (7.3.20) with Vy + q(t, a) =
[Ad(g-)(Vy)}+ for some g_ = 1 + O(\-χ)) given by

(7.3.26) dtbiDy

Here (1ll

b)+ and (WαJ+ a r e the positive parts of the resolvents (7.3.10), using
w = ώoff- instead of ww>

Note that we have made here the simple choice dy — Σ Aadt* to determine
the "spatial variable" y in our system of equations (7.3.6). It will be clear
from the construction that we can make much more general choices for this
spatial variable and still get a reasonable set of equations, cf. [FNR].

As an example of a n-KdV hierarchy consider the 2-reduction of the
Davey-Stewartson-Toda system of Section 4.6, for the partition 2 = 1 + 1.
The resulting system is the AKNS-Toda system: the field Qm, being the
second x derivative of the r-function, see (5.5.32), is in the 2-periodic case
identically zero, since the τ-function is now independent of x. Furthermore,
in the resolvents and lattice resolvents the operator d can be effectively
replaced by the variable z\ this is because

(7.3.27) ww d = w0 ww 9 = zw0 ww + wo9(ww) —

since also the wave operator is x independent in the 2-periodic case. This
gives the theory described in [BtK].
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