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GENERALIZED FIXED-POINT ALGEBRAS
OF CERTAIN ACTIONS ON CROSSED PRODUCTS

BEATRIZ ABADIE

Let G and H be two locally compact groups acting on a
C*-algebra A by commuting actions λ and σ. We construct
an action on A XχG out of σ and a unitary cocycle u. For A
commutative, and free and proper actions λ and σ, we show
that if the roles of λ and σ are reversed, and u is replaced by
u*, then the corresponding generalized fixed-point algebras,
in the sense of Rieffel, are strong-Morita equivalent. This
fact turns out to be a generalization of Green's result on the
strong-Morita equivalence of the algebras CQ{M/H) X\G and
Co{M/G) xσ H. Finally, we use the Morita equivalence men-
tioned above to compute the K-theory of quantum Heisenberg
manifolds.

Introduction.

Given two commuting actions λ and σ of locally compact groups G and i ϊ ,

respectively, on a C*-algebra A, we study the action ησ'u of H on A x λ G

defined by

(Ί

σ

h>
uΦ)(x)=u(x,h)σh(Φ(x)),

where Φ (Ξ CC(G, A), h £ H, x E G, u(x, h) is a unitary element of the center

of the multiplier algebra of A, and u satisfies the cocycle conditions

u(xιX2,h) = u(xuh)λXl(u(x2,h)) and u(x,hιh2) = u(x,hι)σhl(u(x, h2)).

The study of this situation was originally motivated by the example of quan-
tum Heisenberg manifolds ([Rf5]), which can be described as the generalized
fixed-point algebras ([Rf4]) of actions of this form, when A = C0(R x T),
and G = H = Z.

This work is organized as follows. In Section 1 we define the action j σ ) U

and show that for G and H second countable, and A separable, the crossed
product A xxG xΊσ,u H is isomorphic to a certain twisted crossed product
of the algebra A by the group G x H.

In Section 2 we assume that the algebra A is commutative and show
that for free and proper actions λ and σ, the generalized fixed-point algebra
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of A x λ G under 7σ 'u and that of A xσ H under jx>u* are strong-Morita
equivalent.

In Section 3 we apply these results to show that the K-groups of the
quantum Heisenberg manifolds do not depend on the deformation constant.
This enables us to compute them, by calculating them in the commutative
case.

In what follows, for a C*-algebra A, M(A) denotes its multiplier algebra,
Z(A) its center, and U(A) the group of unitary elements in A. All actions
of locally compact groups on C*-algebras are assumed to be strongly con-
tinuous. All integrations on a group G are with respect to a fixed left Haar
measure μG with modular function AG.

1. Actions on crossed products.

For locally compact groups G and H acting on a C*-algebra A by commuting
actions λ and σ, respectively, and a cocycle on G x H, we define an action
7 σ ' u of H on A x λ G. We show in Proposition 1.3 that, when A is separable,
and G and H are second-countable, the crossed product A X\G x7*,u H is
a twisted crossed product of A by G x H.

Proposition 1.1. Let G be a group acting on a C*-algebra A by an action
X, and let υ : G —>> UZM(A) verify the cocycle condition

v{xy) = υ(x)Xx(υ(y)).

Let σ G Aut(Λ) commute with λ, and, for Φ E CC{G,A), define

(Y'vΦ)(x)=υ(x)σ(Φ(x)).

Then j σ ' v extends to an automorphism on A x λ G .

Proof. Let (Π, V) be a covariant representation of the C*-dynamical system
C*(G, A, λ) on a Hubert space Ή, and let Π x U denote its integrated form.
Let Πσ denote the representation of A on Ίί defined by Πσ(α) = Π(σ(α)),
and let V be the unitary representation of G on H given by Vx — Il(y(x))Vx,
where Π also denotes its extension to M. Then (Πσ, V) is a covariant rep-
resentation of C*(G, A, λ): for x 6 G, and a G A we have

VxU
σ{a)Vx-i = U{v(x))VxU(σ{a))U(v(χ-ι))Vx-i

= Π(v(a;))Π(λίBσ(α))Vr

xΠ(t;(χ-1))Vς-i

;(rr-1)) = Uσ(λx(a)).
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We now show that for Φ in CC(G,A) we have that (Π x V)('yσ>vΦ)
= (IF7 x K)(Φ), which ends the proof: for any ξ in Ή, we have

[(π x v)(Ί

σ>vΦ)](ξ) = ί n[(γ>υΦ)(x)]vxξdx
JG

= I U(v(x))U[(σ(Φ(x)))Vxξdx
JG

= ί Uσ[Φ(x)]Vxξdx = [(IF x V)(Φ)](ξ).
JG

D

Proposition 1.2. Assume that G, λ; and A are as in Proposition 1.1
and that H is a locally compact group acting on A by an action σ commuting
with λ. Let

u.GxH -> UZM(A)

be continuous for the strict topology in Λ4(A), and satisfy

u(xy^h) — u(x,h)λxu(y,h) and u(x,hg) — u(x^

for x,y eG and h,g G H. For h G H and Φ G CC(G, A), let

Then h Y-> ηh is a {strongly continuous) action of H on A X\G.

Proof. By Proposition 1.1 we have that j£u G Aut(A x λ G ) , for all h G
H. Besides, the cocycle condition implies that 7^2Φ(rr) = J^[UJ^Φ(X).

Finally, h »-> j^uΦ is continuous for any Φ G CC(G,A):

= / \\u(x,h)σh(Φ(x)) - u(x,ho)σhΰ(Φ(x))\\Adx <
JG

< ί \\σh(Φ(x))-σh0(Φ(x))\\A
./supp(Φ)

+ \\{u{x,h) - u(x,ho))σho(Φ{x))\\Λdx,

which converges to 0 when h goes to /ι0) because u is continuous, and σ is
strongly continuous. D

Next Proposition shows that the double crossed product AxλG x7<r,u H is
isomorphic to a twisted crossed product. Since twisted crossed products are
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defined for separable algebras and second-countable groups, we add these
conditions.

Proposition 1.3. Let G, H, A, u, \, σ andjσ>u be as in Proposition 1.2.

If A is separable and H and G are second-countable, then AxχG x7<r,u H is

isomorphic to the twisted crossed product A X(λ,σ),c/ {β x H), where

(λ,σ) ( 3. ϊ Λ )(α) = λxσh(a) and U({xQihQ),(xuhι)) = \Xo(u(xuho)).

Proof. First notice that ((λ,σ),{7) is a twisted action of G x H on A:

conditions a), b) and c) in [PR, Def. 2.1] are easily checked, and, for (x0, h0),

(rz i,/ii), and (x2,h2) in G x ϋf, we have

(λ,σ) { X Q i h o )[U((xuhι), (x2, h2))]U((x0, Λo), (^1^2, hxh2))

We now construct maps

iΛ : A -> M(A x λ G x7σ,u H)

and

ioxH G x H -> ZYM(A x λ G x7σ.* if)

satisfying

),/i0), (#l,^l)))«Gx/J<

for all Xi eG.hiβ H, and a G A.

If a is an action of a group K on a C*-algebra B, 6 6 .M(i?), and μ is a
bounded complex Radon measure with compact support on G, , let M(6, μ)
denote the multiplier of B xa K defined by

(M(6,μ)f)(t) — b / as(f(s~ιt))dμ(s),
JK

for feCc(K,B).
Now define

iΛ{a) = M(M(a,δΪG),δlH) and iGχH{x,h) = M(M(lA,δx),δh),
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where δt denotes the point mass at t.
For / G C c ( G x ί ί , i ) , explicit formulas are given by:

(iA(a)f)(x,h) = af(x,h), and

(ioxH(xo, ho)f)(x, h) = u*{x0, ho)u{x, ho)\Xoσho(f(x~1x, h^h)).

It follows that

(iGχH(χθ:ho)f){x,h) =u(x,h-1)σh-i\x-i(f(xox,hoh)).

The pair {IA^GXH)
 ιs covariant:

(ioxH (no, ho)iA(a)i*GxH(xo, ho)f)(x, h)

= u*(xo,ho)u(x,ho)λxoσho [αtί (^o"1^,^1) σh-ιλx-ι(f(x,h))]

and
i,hι))(x, h)

— u*(xo,ho)u(x,ho)

• Ko<Tho [u*(xuhi)u (xoxx, Λi) λXlσΛ

= λxou(xlih0)u*(x0xi,hohι)u{x,hoh1)λxoxiσhohl

= i7((x0,ho), {xuh1))iGxH{{xoxuhoh1)f){x,y).

We next show that for any covariant representation (Π, V) of

on a Hubert space Ή there is an integrated form TίxVonAxxG xΊ*,u H.
Let VG and VH be the restrictions of V to G and H, respectively. Then
(Π, VG) is a covariant representation of (A, G, λ) and, if Π x VG denotes its
integrated form, then (TIXVG,VH) is a covariant representation of (A x λ

G,iϊ,7σ 'u). So Π x VG X VH is a non-degenerate representation of A x λ

G x7σ,u H and

Π = Π x VQ x Vjy o iA and V = Π x VG x VH o i

Finally, the set {i^ x %GXHU)
 : / ^ LX(G x H,A)}, where
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is a dense subspace of A XχG xΊσ,u H, which ends the proof. •

Remark 1.4. Iain Raeburn pointed out to me how a simple proof of a
weaker version of Theorem 2.12 can be obtained by using Proposition 1.3.
If in Proposition 1.3 the roles of λ and σ are reversed and u is replaced by
ΐx*, then we have that A xσ H x7λ,u* G is isomorphic to the twisted crossed
product A X(λ>σ),w (G x H), where W{(xo,ho),(x1,h1)) = σho{u*{xQ,h1)).

Now, a straightforward computation shows that the twisted actions
((λ, σ), U) and ((λ, σ), W) of GxH on A are exterior equivalent ([PR, 3.1]),
the equivalence being implemented by the cocycle u.

Thus, under the assumptions of Proposition 1.3 the algebras

A xxG xΊ<τ,u H

and

A xσ H xΊχ,u* G

are isomorphic ([PR, 3.3]). This proves Theorem 2.12 when A is separable
and G and H are amenable second countable groups.

2. The generalized fixed-point algebras.

With the example of quantum Heisenberg manifolds in mind, we now discuss
the situation described in Section 1 in the case of some particular actions
λ and σ on a commutative C*-algebra C0(M). We prove that if the action
σ is proper, then so is ησ'u (in the sense of [Rf4]), and that if σ is also
free then ησ*u is saturated ([Rf4]). Besides, for λ and σ free and proper,
the generalized fixed-point algebras under j σ ' u and ηx'u* respectively are
strong-Morita equivalent.

More specifically, we show that the space CC(M) can be made into a
dense submodule of an equivalence bimodule for the generalized fixed-point
algebras. Part of this is done by adapting to our situation the techniques of
[Rf3, Situation 10].

Assumptions and notation. Throughout this section M denotes a locally
compact Hausdorff space, and βM its Stone-Cech compactification. The
groups G and H act on M by commuting actions λ and σ, respectively. In
this context, if T denotes the unit circle, the cocycle u of Section 1 consists
of continuous functions u(x, h) : M —> Γ, for (x, h) G G x if, such that, for
any / E C0(M) the map (x,h) -> u(x,h)f is continuous for the supremum
norm. As in Section 1 we require the cocycle conditions:

u(x2i h) and u(x,hιh2) = u(x,
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for x,xι G G and h, hi G H. Notice that if these conditions are satisfied for
u they also hold for u*. We denote by ησ>u and 7λ)U* the actions of H and G
on Co(M) X\G and C0(M) xσ H respectively, as defined in Proposition 1.2.

Proposition 2.1. In the notation above, if σ is proper, so is the ac-
tion 7 σ ' u of H on CQ(M) xλ G. The generalized fixed-point algebra Dσ'u of
C0(M) x λ G under jσ>u consists of the closure in M(C0(M) x λ G ) of the
linear span of the set {Pσ^u(E* *F) : E,F G CC(M x G ) } ; where Pσu denotes
the linear map Pσ,u : CC(M x G) -> M{C0(M) X\G) defined by

(PσtU(F))(m,x) = / (<γσ

h>
u(F))(m,x)dh9

JH

for F e CC(M x G), and (m, x) <E M x G.

Furthermore, Pσu satisfies

ii) Pσ^u(F) > 0, for F > 0, where F and Pσ^u(F) are viewed as elements
ofM(C0(M)xxG).

Hi) Pσ,u(F * Φ) = P σ , u (F) * Φ and P σ, u(Φ * F) = Φ * Pσ,n{F),
for any Φ G ̂ ( C o ί M ) x λ G ) carrying CC(M x G) into itself and such that

= Φ for any h G H.

Proof We check conditions 1) and 2) of [Rf4, Def. 1.2]. Let B = Cc{MxG).
Then 5 is a dense *-subalgebra of C0(M) x λ G , and it is invariant under

We now show that, for E,F G B, the map h -> # * 7£'"(^*) is in
Lι(H,C0{M) xχ G). For (m,x) G M x G we have

]

= / E(m,y) [u{y~ιx,h)] {\y-ιm)F (\x-ισh-ιrn,x~ιy) ΔG(χ-ι

JG

Since σ is proper and supp(£7) and supp(F) are compact, then the set

{h G H : σh-ιλx-im G suppM(F)

for (m,x) G suppM(E) x supp^J^supp^F)- 1 }

is compact. Therefore h -^ E * 7^'U(F*) and h -> Δ~H

ι/2(h)E * 7ΓU(F*) are
in Cc(ff,B) C Lι{H,M{C0(M) x λ G)).

For F £ B and m0 G M, let iV be a neighborhood of m0 with compact
closure. Then there exists a compact set K in H such that

P σ,M(F)(m,a;)= / (7
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for all (ra, #) E N x G, which shows that PσjU(F) is continuous. Since
supp G (P σ w (F)) is compact, then PσiU(F) is bounded on supp M (F) x G.
Besides, for all (m,x) E M x G and /ι E J3", we have |Pσ > 1 iF(ra,α;)| =
| P M % m , a ; ) | , and supp M (P σ , w (F)) C σj/(suppM(F)).

Therefore Pσ,u(F) E CC(/3M x G ) C Λί(C 0(M) x λ G ) , and, as a multiplier,
Pσ,u(F) carries B into itself.

Notice now that the fact that h -> E * τ£' n (F) is in Lι(H,C0(M) x λ G)
implies that the integral JH

/y^u(F)dh makes sense as an integral in the
completion of M{C0(M) x λ G ) , viewed as a locally convex linear space, for
the topology induced by the set of seminorms {|| \\p ' F E B}, where

| | Φ | | F = \\F * Φ||co(M)xλG + IIΦ * F\\CO(M)XXG

for Φ G M(C0(M) xχG).
A straightforward application of Fubini's theorem shows that

[
H

for any E, F e B, (m, x) E M x C, and it follows that

/ Ί

σ

h'
u{F)dh = Pσ<u(F),

H

in the sense mentioned above.
Also, since the positive cone is closed, and involution and the extension

of 7σ > u are continuous for the topology of M.(C0(M) x λ G ) defined above,
Pσ,u satisfies i), ii), and iii) stated above.

Set now {E,F)σ = Pσ,u(E* * F), for E, F E B. We have shown that
7 σ ' u is proper. The generalized fixed-point algebra Dσu ([Rf4, Def.1.4]) of
C0(M) xλG under ησ^u consists of the closure in M(CQ(M) X\G) of the
linear span of the set {(E, F)σ : E, F E B}. D

L e m m a 2.2. Assume that σ is proper and let {ΦN,€,K} be a net in
CC(M x G x H), indexed by decreasing neighborhoods N of IGXH, decreasing
e > 0, and increasing compact subsets K of M, satisfying

i) suppGxH(ΦN^^κ) C N
ιι) I IGXH ΦN,e,κ(m, z, h)dxdh — 1\ < e, for all m E K
iii) There exists a real number R such that

I \ΦN€ K^I^-, h)\dxdh < iϊ,
JGXH
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for all m E K, and for all K, e and N.

Then {Φiv,€,κ} is an approximate identity for CC(M x G x H) C
Co(M) x λ G x7<χ,u H in the inductive limit topology.

Proof. Let ψ e CC{M x G x H) and δ > 0 be given. Then

<\ ί [u*(y,k)(m)u(x,k)(m)-l]
I JHXG

^N^.K^iV^k)^ (σk-iλy-ιm1y~1x,k~1h) dkdy

L
+

HxG

N^κ(m,y,k) [Φ (σife-iλ^-im^"1^,^"1/!) -

for appropriate choices of e and N. D

Proposition 2.3. If the action σ is free and proper, then ησ*u is saturated.

Proof. Let J denote the ideal of C*(H^C0(M x λ G ) ) consisting of maps
h H-> Δ-H

ι/2(h)E * 7fcft4(F*), f o r ^ F € CC(M x G). In order to show that
J is dense in C*(H^ Co(M) XxG) we prove that J contains an approximate
identity for CC(M xG x H).

Let iV, 6, and K as in Lemma 2.2 be given. We assume without loss of
generality that the closure of N is compact. Fix an open set U with compact
closure such that K C U. Choose neighborhoods NQ and NH of 1G and 1#,
respectively, such that NG x NH C iV, |Δ G (x) - 1| < eλ for all x e NG and
|ΐ/*(y, h)(m)u(x,h)(m) — 1| < e2, for all Λ G NH,m € U, x,y €V,V being a
fixed open set with compact closure containing NQ, and for some βι and e2

to be chosen later.
The action of G x H on M x G defined by (x, h) (m, y) = (\xσhm, xy) is free

and proper, so for each (m,y) G K x NG we can choose
([R£3, Situation 10]) a neighborhood E/(m,y) C ί/ x V of (m,y) such that

{(x,Λ) : {x,h)(U(m,y)) Π £/ ( m ι y ) 7̂  0} C NG x NH.

Take a finite subcover {UuU2,...,Un} of {U(miy)}{my)eKxj^ and, for each
i = 1, ...,n, let F{ E C+(M x G) be such that supp(i^) C Uu and
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for all ra G K.
Now we can find ([Rf3, Situation 10]) functions Gi G C+(M x G) such

that supp(Gj) C supp(F ), and

ί(m, y) - Gi(m, y) I Gi(λx-iσh-im, x~λy)dxdh
JGxH

for all (ra, y) G M x <?, and some e3 to be chosen later.
Now set

Then,

1/ *"-
\JHxG

ι,x,h)dxdh — 1

= Σ I Δσ(χ-1

1/)[ii (y,Λ)tι(a?,Λ)](m)Gi(mJy)
, JGxGxH

• G(\x-iσfl-im,x~~1y)dxdydh

Σ

+

f ( [ti (y,Λ)(m)u(a;,Λ)(m)Δ
σ
 (χ-

2
y) -

Gi{m,y) I Gι (λ
x
-iσ

h
-im,x~

1
y) dxdh) dy

JGxH J

/ Gi{m,y) / Gi(\
x
-iσ

h
-ιm,x~

ι
y) dxdh - Fi(m,y)dy

JV JGxH

< € ,

for appropriate choices of e1? e2, and e3.
Besides, supp(Φ^,e,/<:) C iV^ x NH C JV. Finally, a similar argument shows

that from some JV0 and e0 on we have

/
JHHxG

for some real number R, and all m G K. D

Assumptions. We next compare the generalized fixed-point algebras ob-
tained when the roles of σ and λ are reversed. That is why we require
symmetric conditions on these two actions. So, we assume from now on that
both λ and σ are free and proper actions.
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Notation. Let Cσ>u denote the subalgebra of M(C0(M) x λ G ) consisting of
functions Φ G Cc(βM x G) such that the projection of suppM(Φ) on M/H
is precompact and 7^'WΦ = Φ for all h G H.

Remark 2.4. When the cocycle u is the identity, then Cσ'u can be iden-
tified with CC(M/H x G), as a subalgebra of C0(M/H) xxG.

Remark 2.5. Notice that, for F G CC(M x G), we have that

F) C

and therefore Cσ'u contains the image of Pσ ? 1 i.

Lemma 2.6. Let {Φjv,e} be a net in Cσ'u, indexed by decreasing neighbor-
hoods N of 1G, increasing compact subsets K of M, and decreasing e > 0,
and such that

1) suppG(Φ;v,€,*:) C N.

2) | /G A1J2(x)ΦN)€(m, x)dx - 1 < e for all m e K.

3) There is a real number R such that fG\ΦNi€(m,x)\dx < R, for all
m G Kj and for all N and e from some No and e0 on.

Then {ΦN,€,K} is an approximate identity for Cσ'u.

Proof. Let Φ G C σ ' u and δ > 0 be given. Fix a neighborhood Nf of 1G with
compact closure, and let K' C M be a compact set such that Π#(supp M Φ) C
Tin(Kf), where HH denotes the canonical projection on M/H.

As in Lemma 2.2, we can find No C iV', e0, and Ko such that, from No,
e0, and Ko on, we have

Therefore, if m G supp(Φjv,e,κ*Φ — Φ), then we have that σhm G \N'(K'),
for some h G H. On the other hand we have that

|(Φiv,e,κ * Φ - Φ)(σΛm,a;)| - \(ΦN^κ * Φ - Φ)("i,a;)|,

for all h G H, m G M, and x G G, because Φ^c,* and Φ G C σ ' n . This
shows that \(ΦN,€,K * Φ - Φ)(m, x)| < 5 for all m e M. Therefore Φiv,e,Λ: * Φ^
converge to Φ in the multiplier algebra norm. D

Remark 2.7. Notice that Lemma 2.6 above also holds, with a similar
proof, if condition 2) is replaced by

2') I fG ΦNte,κ{m, x)dx - 1| < 6 for all m G K.
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Proposition 2.8. The generalized fixed point algebra Dσ>u is the closure
inM(C0(M) xχG) ofCσ>u.

Proof. In view of property iii) in Proposition 2.1, it suffices to show that the
span of the set

{Pσ,u(E* *F):E,Fe CC(M x G)}

contains an approximate identity for Cσ'u.
For a given compact set K C M, let us fix an open set U of compact clo-

sure containing K. Then the set L — {h E H : σhm £ U for some m E K}
is compact.

Let N be a given neighborhood of 1G and e > 0. As in
[Rf3, Sit. 10, first lemma], we can take an open cover {Uι,U2, ..., Un} of K,
such that UiCU and Ui Π XxUi Φ 0 only if x e N. For each i = 1,..., n, let
Hi G C+(M x G) be such that supp(ffi) ClIiXN, and £\ ίί^ is strictly pos-
itive on i ί x lcr. Then J] JHxG Hi(σh-im, y)dhdy > 0 for all m E K. There-
fore, we can find functions Fι £ C+(M x G) such that supp(i^) C supp(ίίj)
and JHxG Fi(σh-im,y)dhdy= 1 for all m e K. Now, the action of G on
M x G given by ax(m,y) = (\xm,xy) is free and proper, so the second
lemma in [Rί3, Situation 10] applies and for each z = l,...,n we can find
Gi e C+(M x G) such that supp(G ) C supp(Ff) and

/
JG

λ y)dx < δ/n,

for all m £ M, y £ G, and some positive number <5 to be chosen later. Set
now $N,e,K = ΣiίΓ-Pσ.uίGi* Ji), where Ji(m,x) = G i(λx-im,^~1). We have

ΦN,e,κ{m,x) = V / u(x,/z) / Gi(σh-im,y)Gi(σh-iλx-im,x ιy)dy,
, JH JG

so, since supp(G ) C supp(Fj), it follows that snppG(ΦM,e,κ) Q N.
Besides, if m E K,

r

JG

 N'€'K

Σ \u(x,h)Gτ(σh-ιm,y) / G{ (σh-i\x-ιm,x~ιy) dx
i JH JG L JG

- Fι(σh-im,y)\dydh

for a suitable choice of δ, if N is chosen to have \u(x, Λ-) — 1| small enough
for all a; £ TV and h £ L.
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Finally, from some e0 and No on, JG |ΦΛτ,e,A:( ,̂x)\dx < i?, for some real
number R and all m G K.

Then, by Remark 2.7, {ΦN,€,K} is an approximate identity for Cσ'u. D

We will later make use of the following variation of the construction in
the proof of Theorem 2.8.

Remark 2.9. The span of the set

{Pσ,u(F) : F(m,x) = ^G

ι/2{x)ei{m)ei{\x^m),e G CC(M)}

contains an approximate identity for Cσ 'u.

Proof. In the notation of Proposition 2.8, let {/;} C C+(M) be such that
supp(/i) C E/j, and fH Σi fii^h-1^) > 0, for all m E K. Since the action
λ is proper we can get g{ G C+(M) such that supp(^) C supp(/i) and
\fί{m) — <?i(^) Jo 9i(^x-irn)dx\ < δ for all m G M and a given positive
number δ. Then, if we let L^m^x) = AQ1^2 (x)gi(m)gi(λx-im) we have that,
for an appropriate choice of δ in terms of e, the function ΦN,€,K

 = Σ i Pσ,u{Li)
can be shown (by an argument quite similar to that in Proposition 2.8) to
satisfy the hypotheses of Lemma 2.6. D

Notation. We denote by Λ( , ) and ( , )Λ the CC(M x G)-valued maps
defined on CC(M) x CC(M) by

λ(/,j)(m,x) = Ac1/2(x)f(m)g(\x-ιm)

and (f,g)x(m,x) = Δ^1/2(z)/(m)ίKλx-ira),

where /,#G CC{M).

Remark 2.10. It is a well known result ([R£3, Situation 2]) that CC(M)
is a left (resp. right) CC(M x G)-rigged module for λ ( , ) (resp. ( , )λ) and
the actions given by:

(Φ /)(m) = / A1J2(y)Φ(m,y)f(Xy-1m)dy
JG

and (/ Φ)(m)=

for Φ G CC(M x G) It is easily checked that, by taking Φ G Cc(βM x G)
in the formulas above, one makes CC(M) into a Cc(βM x G)-module with
inner product. Of course it is no longer a rigged space because the condition
of density fails.
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Proposition 2.11. Let C σ ' u C Cc(βM x G) act on CC(M) on the left
and on the right as in Remark 2.10. For f,g £ CC(M) define

(f,g)D^=P*,u((f,g)x) and D°.4f,9)=P*Mf,9))-

Then CC(M) is a left (resp. right) Cσ>u-rigged space with respect to Dσ^{ , )
(resp. ( , )D~,u).

Proof The density condition follows from Remark 2.9. All other properties
follow immediately from the fact that λ ( , ) and ( , ) λ are inner products and
from Remark 2.5 and properties i), ii), and iii) of Pσu shown in Proposition
2.1. ' D

We are now ready to show the main result of this section.

Theorem 2.12. Let λ and σ be free and proper commuting actions of
locally compact groups G and H respectively on a locally compact space M.
Let u he a cocycle as in Proposition 1.2. Then the generalized fixed-point
algebras Dσu and Dx>u* of the actions ησ"u and 7λ 'u* on C0(M) xλG and
C0(M) xσH, respectively, are strong-Morita equivalent.

Proof By Proposition 2.11, CC(M) is a left Cσ'u-rigged space and a right

Cλ'u* -rigged space under

(Φ /)(m)= ί AιJ2(y)Φ(m1y)f(λy-1m)dy , D.M
JG

/
H

and

where f,ge CC(M), Φ e Cσ^u and Φ G Cx^.
Then CC(M) is an Cσ'u-Cλ'u* bimodule: for Φ, Φ and / as above we have

[(Φ /) Φ](m)

H JG

= ί [ AH
JH JG
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Besides, for e , / , # G CC(M), we have

(r>-.«(e,/> 3)(m) = / / u(y,h)e(σh-ιm)f(λy-iσh-im)g(λy-im)dhdy =

We now prove the continuity of the module structures with respect to the
inner products.

Fix a measure μ of full support on M. Then, by [Ph, 6.1] and [Pd, 7.7.5],
we have faithful representations Π of Cσ'u on L2(M x G) and Θ of Cχ'u* on
L2(M x H) given by

(nΦξ){m,x)= /
JG

and (Θφ7/)(m, Λ) = / ty(σhπι,k)η(m,k~ιh)dk,
JH

where Φ <E CYσ'u, Φ € C^"*, ξ E L 2 (M x G) and 77 G L2{M x fΓ).

Now, for / 6 CC(M) and r? G £ 2 ( M x ff)

/ σh-i(u*(y,k))AH

1/2(k)7(\y-iσhm)
MxGxHxH

1/2(k)7(

, h)dkdhdydm

where ξ(f,η) € L2(M x G) is given by

(ξ(f,η))(m,x)= j
/if

Then, if Φ e C σ "

= ίf u*(x,h-ι)A-H

1/2(h)A1J2(y)Φ(Xx-1σhm,y)
JG JH

f(λy-ix-iσhm)η(m,h)dhdy =
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where U denotes the unitary operator on L2(M x G) defined by

Thus we have

= \\uπΦUξ(f,η)f

and it follows that

as elements of Dx'u'. Analogously, one shows that, for / G CC(M) and
ξ € L2(M x G)

for some η(f,ξ) € L2(M x H), and that, for Φ £ C λ u* one has

where V denotes the unitary operator in L2(M x H) defined by
(Vη)(m,h) = Aff1/2{h)η{m,h-1). It follows that

as elements of Dσu.
Thus, we have proven that CC(M) is a Cσ'u — C λ ? u * equivalence bimodule.

Now, if we define on CC(M) the norms

it follows from [Rfl, 3.1] that || \\D<τ,u = II \\DX>»*
 a n d that the completion

of CC(M) with respect to this norm gives, by continuity, an equivalence
bimodule between Dσ'u and DXu*. D

Remark 2.13. In view of Remark 2.4, when the cocycle u is the identity,
Theorem 2.12 becomes Green's result: the algebras C0(M/H) x λ G and
C0(M/G) xσ H are strong-Morita equivalent.

Corollary 2.14. Under the assumptions of Theorem 2.12, the algebras _
C*(H,C0{M) x λ G) and C*(G,C0(M) xσ H) are strong-Morita equivalent.

Proof. The proof follows from Proposition 2.3, Theorem 2.12, and [Rf4, 1.7].

D
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3. Applications to quantum Heisenberg manifolds.

In this section we apply the previous results to the computation of the Re-
groups of the quantum Heisenberg manifolds. We recall the basic results
and definitions concerning those algebras. We refer the reader to [R£5] for
further details.

For each positive integer c, the Heisenberg manifold Mc consists of the
quotient G/Dc, where G is the Heisenberg group

G = < 0 1 x for real numbers rr, y, z

and Dc is the discrete subgroup obtained when #, y and cz above are integers.
The set of non-zero Poisson brackets on Mc that are invariant under the

action of G by left translation can be parametrized by two real numbers μ
and z/, with μ2 + v2 φ 0. A deformation quantization {Dc^}heR of Mc in the
direction of a given invariant Poisson bracket Kμv was constructed in [Rf5].

The algebra Dff can be described as a generalized fixed-point algebra as
follows. Let M = RxT and Xh and σ be the commuting actions of Z on M
induced by the homeomorphisms

\h{x,y) = (x + 2hμ,y + 2hv) and σ(x,y) = (x - l,y).

Consider the action p of Z on C0(R xT) xXh Z given by

(pkφ)(x,y,p) = e(ckp(y - hpu))Φ(x + k,y,p),

where e(x) — exp(2πix) for any real number x. The action p defined above
corresponds to the action p defined in [R£5, p. 539], after taking Fourier
transform in the third variable to get the algebra denoted in that paper by
Aft , and viewing Aft as a dense *-subalgebra of C0(R x T) X\κ Z via the
embedding J defined in [Rf5, p. 547].

Notice that, for M = R x T, G = H = Z, and h φ 0, the actions \h

and σ satisfy the hypotheses of Section 2 and that the action p defined
above corresponds, in that context, to the action we denoted by 7σ 'u, where
u\Z xZ -* ZUM(C0(R x Γ)) is the cocycle defined by

u(p,k) = e(ckp{y-hpv)),

for p,k e Z. Besides, [Rf5, Theorem 5.4] shows that the algebra Dffl is the
generalized fixed-point algebra of C0(R x T) xλ* Z under the action p, and
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it follows from the proof of that theorem that Dc

μ^ is the algebra that we
denote, in the context of Section 2, by Dσu.

Remark 3.1. We will also use the fact that the algebra Dc

μ^ consisting
of functions Φ G Cc(β(R xT) x Z) satisfying ρk(Φ) = Φ for all k G Z is a
dense *-subalgebra of Dμ^. This follows from Remark 2.5, Proposition 2.8,
and from the fact that (R x T)/σ is compact.

Theorem 3.2. For hφ 0 the K-groups of Dμ^ do not depend on h.

Proof. It follows from Theorem 2.12 that, for h φ 0, Dμ^ is strong-Morita
equivalent to the generalized fixed-point algebra Effi of C0(R x T) xσ Z
under the action 7Λ of Z defined by

(7* Φ)(x,y,k) = e(—ckp(y — hpu))Φ(x — 2phμ,y — 2phv,k).

Now, by Proposition 2.3, ηχh is saturated, so we have
([Rf4, Corollary 1.7]) that Dff is strong-Morita equivalent to C0{RxT)xσ

Z X \h Zl .

Besides, h h-* \h is a homotopy between the λa's, which shows
([Bl, 10.5.2]) that the K-groups of C o (RxT)x σ Zx j X n Z do not depend on h.
On the other hand, since strong-Morita equivalent separable C*-algebras are
stably isomorphic ([BGR]) and therefore have the same K-groups, we have
proven that the K-groups of Dμ^: for h φ 0, do not depend on h. D

Notation. Since the algebras Dffi and Dc

h'μhι/ are isomorphic, we drop from
now on the constant h from our notation and absorb it into the parameters
μ and v.

Remark 3.3. Notice that, since for any pair of integers k and I the
algebras Dμi/ and Dc

μ+ku+ι are isomorphic ([Ab]), the assumption h φ 0 in
Theorem 3.2 can be dropped.

Theorem 3.4. K0{Dc

μι/) ^ Z3 + Zc and Kx{Dc

μj/) ^ Z3.

Proof. In view of Theorem 3.2 and Remark 3.3, it suffices to prove the
theorem for the commutative case where Όc

μv — C(MC).
After reparametrizing the Heisenberg group we get that Mc = G/Hc where

G = < 0 1 x :x,y,z G R
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and

1 mp/c^
Hc= { I 0 1 q I :m,p,qeZ

0 1

We first use [Ro, Corollary 3] to reduce the proof to the computation of the
K-theoryof C*(HC).

The group C*-algebra C*(HC) is strong-Morita equivalent to C(G/Hc)xG,
where G acts by left translation [Rf2, Example 1]. Now, G is nilpotent and
simply connected so we have

= Rx\RxR

as a semi-direct product.
Therefore

C{G/HC) x G - C(G/HC) xRx\Rx R,

and Connes'-Thom isomorphism ([Bl, 10.2.2]) gives

x G) = K^

So it suffices to compute Ki(C*(Hc)). The computation was made in
[AP, Prop. 1.4] for the case c=l, and the general case can be obtained with
slight modifications to their proof. We first write Hc as a semi-direct product,
so its group C*-algebra can be expressed as a crossed product algebra. Then,
by using the Pimsner-Voiculescu exact sequence ([Bl, 10.2.1]), we get its Re-
groups.

Let

(flmp/c\ )
N = < 0 1 0 : m,p, <E Z } and K =

U o o i J I
Then Hc — NxacK, where ac is conjugation. If we identify in the obvious

way TV and K with Z2 and Z respectively, we have that Hc ~ Z2xac Z, where
ac(q)(m,p) — (m,p — cmq). Then the Pimsner-Voiculescu exact sequence
yields:

K0(C(T2))ιd^' K0(C(T2)) -±> KO(HC)
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It was shown on [AP, Prop.1.4] that id = c*u on K0{C(T2)) and, since
α c, = oι[m it follows that id = aCφ on K0(C(T2)) for any c. Thus we get the
following short exact sequences:

0 —•> Z2 —•> KQ{HC) -A Ker(id - acJ —> 0

0 —+ Jfί1(C(Γ2))/Ker(^ - αc J —> ϋfi(JΪ"c) -A Z 2 —• 0,

where id — αc+ is the map on Kι(C(T2)).
Let us now compute id - ac^ on ifi(C(T2)). We have identified C(T2)

with C*(Z2) via Fourier transform, so the automorphism ac on C(T2) be-
comes (acf)(x,y) = f(x-cy,y). Now, i ί^CίT 2 )) = Z 2 if we identify [uι)Kl

and [̂ 2]κ:2 w ^ h (1,0) and (0,1) in Z2, respectively, where Uχ(x^y) = e(x),
u2(x,y) = e(y) for all (x,y) G T 2 Then, for (α,6) G Z 2 we have

(id — aCψ)(a, b) = (α, b) — (α, 6 — αc) = (0, ac).

This shows that

Ker(id - α c j = Z θ {0} C Z2, Im(id - α c J = {0} θ c Z C Z 2.

So the exact sequences above become:

0 —* Z2 —> #o(#c) —> Z —> 0

0 —^ Z + Zc —> ϋΓi(ffc) —> Z 2 —> 0.

Therefore

ί Γ i ( ^ ) - Λfo(ίΓc) = Zz and ϋ Γ 0 ( ^ ) = KΛHC) = Z3 + Zc.

D
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