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THE NEUMANN PROBLEM ON LIPSCHITZ DOMAINS IN
HARDY SPACES OF ORDER LESS THAN ONE

RUSSELL M. BROWN

Recently, B.E.J. Dahlberg and C.E. Kenig considered the
Neumann problem, Au = 0 in JD, dujdv — f on dD, for Laplace's
equation in a Lipschitz domain D. One of their main results
considers this problem when the data lies in the atomic Hardy
space Hλ(dD) and they show that the solution has gradient in
LMβD). The aim of this paper is to establish an extension of
their theorem for data in the Hardy space Hp(dD), 1-e < p < 1,
where 0 < e < 1/n is a positive constant which depends only on
m, the maximum of the Lipschitz constants of the functions
which define the boundary of the domain. We also extend G.
Verchota's and Dahlberg and Kenig's theorem on the poten-
tial representation of solutions of the Neumann problem to
the range 1 - e < p < 1. This has the interesting consequence
that the double-layer potential is invertible on Holder spaces
Ca(dD) for a close to zero.

The techniques of this paper are a modification of those of Dahlberg and
Kenig [6]. In Lemma 2.10 of [6], Varopoulos's extension lemma and Hι(dD)-
VMO(dD) duality are used to show that a harmonic function with nontan-
gential maximal function in Lι(dD) has normal derivative in Hι(dD). This
argument fails when p < 1, since we cannot realize Hp(dD) as a dual space.
To substitute for the use of their Lemma 2.10, we observe that solutions of
the Dirichlet problem with Hp(<9£>)-data have normal derivative in Hp(dD).
This follows from Dahlberg and Kenig's construction. Then, we need to
prove a uniqueness result in order to know that the functions produced by
the single-layer potential are identical to the functions constructed in their
existence theorem. We remark that we are also able to give a direct proof
that M(Vu) G Lp(dD) implies du/du G Hp(dD) when (n - l)/n < p < 1.
This is done using atomic decomposition techniques of M. Wilson [16]. We
remark that, after seeing a preliminary version of this paper, Wei Cao and
E. Fabes [1] established similar results on the invertibility of the potential
operators using an extension of the techniques in [2].

1. Existence.

We let D C R n denote a connected Lipschitz domain. Thus for every Q £
<9D, there is an r > 0, a coordinate system on R n and a Lipschitz function
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φ : R/1-1 -» R with φ(0) = 0 and such that

Z(Q9100 r) Π 3D = {{X'Xn) : Xn = φ(X')} Π Z(Q, 100 r)

and

Z(Q, 100 r)ΠD = {{X1', Xn) : Xn > φ(X)} Π Z(Q, 100 r)

where

Z(Q, 5) = {(X1, Xn) :\X'-Q'\< s, \Xn - Qn\ < (1 + 2m)s} .

We call Z(Q, s) a coordinate cylinder for dD. We note that since 3D is com-
pact, we may assume that dD is covered by a finite collection of coordinate
cylinders whose radii r are bounded below by r0.

Our results will only be proven for starshaped Lipschitz domains in Rn,
n > 3. This means that, after a translation, 0 £ Ω and if X G Ω, then
rX E Ω for 0 < r < 1. These assumptions are inherited from the work of
Dahlberg and Kenig. It is easier to prove Theorems A and B quoted below
for these special domains. It is not difficult to extend these results to more
general domains, but we do not discuss this extension here.

We let Δ(Q0 ? r) = {P e dD : \P - Qo\ < r} and assume that r is less than
diam(cλD). We let d = n — 1 denote the dimension of dD. We say that a is
an atom for Hp(dD) if for some Qo and r we have

i) suppα C A(Q0,r)

ii) / a(Q)dQ = 0
•/Δ(Qo,r)

in) IMIL»(ΔWO,Γ)) < cr-d(VP-i/2).

When 1 > p > -—-, the space Hp(dD) is defined as the collection
α + 1

for some sequence of atoms a7. The quasi-norm for Hp(dD) given by

We note that the infinite sums appearing here do not exist as functions.
Rather one must view elements of Hp(dD) as linear functionals on spaces of
nice functions. In fact, the dual of Hp(dD), d/(d+l) < p < 1, is the space of
Holder continuous function of exponent a(p) = d(l—p)/p. Thus, the pairing
between an element of Hp(dD) and Ca{p){dD) is defined. We will abuse
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notation by writing this pairing as an integral JdDfudQ for / G Hp(dD),
and u G Ca{p)(dD). We recall that Hp(dD) is not a Banach space since the
triangle inequality fails. However, we may define a metric on Hp(dD) by

()
In studying the exterior Neumann problem, it will be useful to introduce

the space Hp{dD). This is defined in the same manner as Hp(dD), but we
include the atom χdD. We let Ca(dD), 0 < a < 1, denote the collection of
equivalence classes of Holder continuous functions which differ by a constant.
The norm is given by

( » = sup j p _ Q{a

where the / is any representative of /. Finally, we define Ca(dD) as the
space of functions for which the norm ||/||c«(βD) ~ ll/IU~(ai>) + ||/Hc«(0D)
is finite. We let CQ(A) denote the set of functions in Ca(A) which have a
compactly supported representative.

We study the following boundary value problems:

Γ ; (DP, {
= f, ondD [u = /, on ΘD.

ov
Since we will consider boundary values in (NP) which are not functions,
we need to define the sense in which dujdv exists at the boundary. Let
/ G Hp(dD). We say that du/du = f on ΘD if for each coordinate cylinder
Z and compactly supported function φ G Ca(dD ΠZ), a = d(l/p — 1), we
have

lim / φ(Q)^(Q)dQ = / φ(Q)f(Q)dQ
»0+ J OV J

where ue(X) = u(X + een) is defined in a neighborhood of Z Π D. We will
also need to define tangential derivatives at the boundary. Let Z, φ be a
coordinate cylinder. If / is smooth in a neighborhood of Z Π dD, then we
define tangential derivatives by

j | p r , φ(X')) = J^f(X', Φ(X'))> < = 1,. ,n - 1.

If u is smooth in D, we say that Vtαnu exists in the Hp(dD) sense if for
each coordinate cylinder Z, there exists / x , . . . , /„_! G Hp(dD) so that for

9DnZ oli JdD
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An important part of the argument for inverting the layer potentials is the
study of the Dirichlet problem when the data has one derivative in Hp(dD).
We call this space Hl(dD) and give a precise definition by defining atoms.
We say that A is an atom for H{(dD) if for some Qo G dD and r > 0, we
have

i) supp A CΔ(<2o, r)ΠdD

ii) \\VtanA\\LHdD) < r - ^ - 1 ^ )
and then define iff (cλD) as the ίp-span of these atoms. We note that our
definition of H\(dD) is slightly different than the one given in [6]. However,
it is easy to see that the resulting spaces coincide.

We begin by stating Dahlberg and Kenig's existence results for solutions
with atomic data. Their results for Hι(dD) have a little wiggle room so they
also apply to Hp(dD). To state these results, we will use the nontangential
maximum function. For a function v which is continuous on £), this is defined
by

M{v)(P) = sup \υ(X)\
xer(P)

where Γ(P) is the nontangential approach region

Γ(P) = [Y G D : \Y - P\

and δ(Y) denotes the distance from Y to the boundary of D.

Theorem A. Let a be an atom for Hp(dD) and suppose that a is supported
in A(Q0,r). There exists η > 0 such that if p > 2/(77 + 2), then there is a
unique solution of (NP) which satisfies

i) /
JdD

i i ) / ( ) ( ) | |
JdD

iii) We have that u\dD £ Hp(dD) and if we normalize by setting u(0) = 0,
then IMIπf (0£>) < C.

Similarly, if a G Hp(dD), is an atom, then the solution of the exterior
Neumann problem in ~Rn\D satisfies i) and ii). If we normalize by requiring
u to vanish at infinity, then we obtain the estimate of iii) also.

We also quote the corresponding result for Hf (cλD)-atoms.

Theorem B. Let A be an atom for H{{dD) which is supported in A(Qo,r).
There exists η > 0 such that if p > 2/(77 + 2), then the Lf-solution of the
Dirichlet problem with data A satisfies

/
dD
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ii)
JdD

iii) du/dv £ Hp(dD) and \\du/du\\HP{dD) < C

iv) u has tangential derivatives in the Ή.p-sense.

Theorem A and B are established in [6]. The estimates iii) are not ex-
plicitly stated in their paper. However, they follow easily from i) and ii) via
the idea of a molecule (see [4]). The statements for the exterior problems
may be obtained from the interior problems (in a different domain) using
the Kelvin transform.

As immediate corollaries of Theorems A and B, we obtain the solvability
of the boundary value problems with data in Hp(dD) and Hp(dD). In these
theorems and in much of the rest of this article, we will restrict p to the
range 1 — δm < p < 1 where 1/n > δm > 0 is determined by the following
three conditions: 1) δm < 1 — 2/(η + 2) where η is as in Theorems A and
B. 2) If p > 1 — δmi then we must be able to solve the Dirichlet problem
with data in the dual space, Ca^(dD), a(p) — d(l/p — 1), and obtain a
solution in Ca<<p\D) (see Lemma 2.3). 3) The Neumann Green's function
for domains lying above the graph of a function with Lipschitz constant m
must lie in C α ( p ) away from the singularity. See [6] or Theorem 2.8 below
for the construction of this Green's function.

Theorem C. Let 1 > p > 1 - δm and suppose that f £ Hp(dD). Then the

interior Neumann problem with data f has a solution u which satisfies

IMI#f(dD) + \\M(Vu)\\Lv(dD) < C\\f\\HP(dD)

when u is normalized by u(0) — 0. For the exterior problem, we allow f in
Hp(dD) and we normalize by setting u(oo) = 0. This solution satisfies the
estimate

\\u\\H*(dD) + \\M(Vu)\\LP(dD) < C\\f\\fjv{dDy

Furthermore, the normal and tangential derivatives of u exist in the sense

described above.

Theorem D. Let 1 — δm < p < 1 and suppose f £ Hf(dD). Then the
interior Dirichlet problem with data f has a solution in D which satisfies

du < c\\f\\HHdD).

< C\\f\\HP(ΘD).

For the exterior problem, we have

du
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In each case, the normal and tangential derivatives exist in the sense de-
scribed above.

We close this section with a theorem whose proof is due to M. Wilson. We
observe that if u is harmonic in a Lipschitz domain Z), M(Vu) lies in Lp(dD),
p> (n — l)/n, then we may define dujdv as a linear functional on Lipschitz
functions on the boundary. In fact, if -0 is supported in a coordinate cylinder
Z, then

(1.1)

lim / ψ(Q)^(Q + een)dQ= lim / Vφ(Y)Vu(Y + een) dY.
e-*0+ JdDΠZ OV e->0+ JD

Using Lemma 2.1 below, one can see that

/ |V«(Q + ren)\ dQ < r-d^
dDΠZ

Hence, for p > (n — l)/n the integral on the right of (1.1) converges as e -> 0+

(see also the proof of Theorem 2.9).

Theorem 1.2. Let (n — l)/n < p < 1 and suppose that u is harmonic with
M(Vu) E Lp(dD), then we may find an atomic decomposition of dujdv
into Hp(dD) atoms. In particular, du/dv is in Hp(dD). For the exterior
domain, we obtain the normal derivative is in Hp(dD).

This may be proven using the techniques of M. Wilson from [16]. His
argument works without alteration in domains lying above the graph of a
Lipschitz function. We leave the details of general domains to the reader.
We note that this theorem provides a different proof of the estimates for
the normal derivative in Theorem D. It would be interesting to see if the
estimates of the boundary values of u in Theorem C can be obtained this
way.

2. Uniqueness.

In this section, we show that the solutions described in section one are
unique. This also depends on the ideas developed in [6]. However, there
are some technical difficulties in dealing with the case p < 1. Our main
new tool is Lemma 2.2 which allows us to estimate the Z^-norm of M(u) in
terms of the Lp-noτm of M(Vu), p = (n — l)/n. This is a version of the
Hardy-Littlewood theorem on fractional integration. In Lemma 2.2 below,
we prove a sharp version of this result. We will show that for harmonic u,
we can always control \\M(u)\\pd/(d_p) by | | M ( V I A ) | | P , when p < n — 1 = d.
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In our first lemma, we let -fiE f denote the average [E^1 JE f. Similar results
are known for classical Hardy spaces. In [9], Krantz proves a fractional in-
tegration result for atomic Hardy spaces. Earlier, Stein and Weiss observe
that the theorem on fractional integration holds for the Hardy spaces which
they define in [13]. In one dimension, the result dates back to Hardy and
Littlewood.

Lemma 2.1. Let w be harmonic in D and let Z be a coordinate cylinder

and let a be a multi-index with nonnegative entries, then

dXc

Proof. Using interior estimates for harmonic functions, we have

)

J

M{Vw){QY dQ)
A(XyCδ(X)) )

where X denotes a point on dD satisfying δ(X) = \X — X\. D

L e m m a 2.2. Let D be a connected Lipschitz domain and suppose that u is
harmonic in D. Let X* be a fixed point in D and suppose that u(X*) — 0.
For p < d and p* = dp/(d — p) we have

\\M{u)\\LP.{dD)<C\\M{\/u)\\Lv(dD)

where the constant C depends on the distance of X* to the boundary, p and

the Lipschitz character of dD.

Proof. We prove the corresponding result for a domain

D = {(X',Xn):Xn>φ(X')}

which lies above the graph of a Lipschitz function φ. Prom Lemma 2.1, we
have \Vu{X)\ < Cδ(X)-d/p. It follows that l im X n ^ o o ?i(X / ,X n ) exists and
is independent of X1. Thus we may add a constant to u and obtain that u
vanishes at infinity. Also, after replacing u by ue(X) = u(X + een), we may
assume that M(u) G Lp (dD).
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We will need the area integral which is defined by

A{u){Qf = ί \Vu(Y)\2\Y - Q\2~n dY
JΓ'(Q)

where Γ'(<3) D Γ(Q) is a strictly larger cone defined by

eD: δ(X)

To estimate M(u), we use the fundamental theorem of calculus and Holder's
inequality to obtain that for each η > 0,

du ,„,
\u(X',Xn)\< ί ds

r (s - φ(X'))-^1-^\Vu(X',β)|-^ ds)

= B1(X)2ηB2(X)1-2v.

Since BX(X) is essentially the g-function, we have B1(X) < CA(u){Q) for

x e Γ(Q).
To study the function B2{X)1 we let BXιs denote the ball J5((X', s), cm[s—

φ(X')]) where cm is chosen so that Bx>tS lies in D and we let Δχ/,β =
Δ(Q, C[s — φ(X')]). If we choose C sufficiently large, then we have

B2(X)2& < Cη ί°°(s - φ{X'))-η/{1-η)-f \Vu(Y)\^ dYds
Jχn J Bx,iS

< Cη,m Γ(s - φiX'))-""1-"^ M{Vu){P)1-^ dPds.
Jχn J Aχt>s

Changing the order of integration in this last integral, we obtain

dD

xeT(Q).

By the Hardy-Littlewood theorem on fractional integration [12, p. 119], we
have

\\F\\L,*{dD)<C\\M(Vu)\\LHdD)

when p < d, | > r / > 0 and, if p < 1, η > (1 — p)/{2 — p). Combining our
estimates for Bι and B2, we have

\\M(u)\\LP.{dD) < C\\A(u)\\%,{ΘD)\\M(Vu)\\)-22D).
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Now, we may use Dahlberg's estimate [5] for the area integral, ()
< Cf||M(tx)||I/P(ajD), and our a priori assumption that M(u) is in Lp*(dD)

to obtain the estimate of the theorem. D

Our final preliminary result studies the action of the generalized Riesz
transforms on Ca(dD) when D is a Lipschitz domain. We restrict our atten-
tion to domains lying above the graph of a Lipschitz function and introduce
the notation Dφ = {(X',Xn) : Xn > φ{Xf)} with WVφW^ = m.

L e m m a 2.3. Let φ : R n - 1 —> R be Lipschitz. There exists a0 depending
only on m such that for f E Ca(dDφ), 0 < a < α 0 , we may find a harmonic
gradient (it;1, ...,wn) satisfying wn(Q) = f(Q),

dwι dwj . .
l

Awi = 0, z = l , . . . , n .

Furthermore, each of these functions is Holder continuous in Dφ and satisfies

This is fairly standard, thus our proof will be brief.

Proof. We let wn be the solution of the Dirichlet problem in Dφ with data

/. We have ||^n||c«(D^) ^ C\\f\\ca(dDφ)> Next, we apply interior estimates

to the harmonic function wn(-) - wn(X) on the ball B(X, δ(X)/2) to obtain

that

(2.4)
gβwn

<Cδ(X)a-W\\wn\\c*φφh \β\>l.
dX?

The converse also holds for any function which is in C^oc(Dφ):

( 2 . 5 ) I M I c - ( / > , ) < C ^ m s u p { γ \
xeDφ

We can define the conjugate functions by the formula

χn

The estimate (2.4) guarantees that this integral is converges and (2.5) implies
the functions wι are Holder continuous. D
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Lemma 2.6. // (w1,... ,wn) is a harmonic gradient satisfying wn > 0, wn

vanishes continuously on dD \ A(Q0,r), and lim wi(X',Xn) = 0 for each

i then

sup{K(X)| : distpr,Δ(Q0,r)) > r } < CrjM{wn)\\q.

Proof. We first observe that Chebyshev's inequality implies that

K(Qo + ren)\ < Cr\\M(wn)\\LHdD).

Using the boundary Harnack principle (see [8, Lemma 5.4], for example), we
obtain that for some a > 0

(2.7) w"(X)<Cr,a(^^J wn(Q0+ren), X e D \ B{Q0,2r).

Applying the maximum principle in DΦ\B(QO, 2r) yields that wn is bounded
there.

To obtain the boundedness of wι we observe that (2.7) implies that

\Vwn{X)\<Cτ,aδ{X)a-1\\M{wn)\\q, XeDφ\B(Q0,2r).

While Lemma 2.1 gives

\Vwn(X)\ < Cq,mδ{X)-ι-d''>\\M{wn)\\LHdD).

Using these estimates and writing wn as an integral of its derivative,

r°° dwn

w*(X) = - (χ>,s)ds,
Jχn όXi

gives the boundedness of the functions wι. D

We are now ready to give our uniqueness result for the Neumann problem.

Theorem 2.8 (Uniqueness in NP). //1 — δm < p < 1, u satisfies

{M{Vu)

and du/dv vanishes in the Hp-sense, then u is a constant.

Proof We fix a coordinate cylinder {Z,φ) and let X* = {X1\2φ(Xf) - Xn)
be reflection in the graph of φ. We let G(X, Y) be the Green's function
G(X, Y) + G(X, y ) = N(X, Y) be the Neumann kernel for Dφ constructed
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in [6, p. 447]. We have that N(X,Q) G Ca(dD) for 0 < α < a(m). This
follows since G(X, Y) is the fundamental solution in R n of an operator whose
coefficients are bounded and measurable [10, 11].

We let ψ b e a cutoff function satisfying χι/2z <Ψ<Xz We have

φ(X)u€(X)= [ N(X,Y)ue(Y)A<ψ(y)dY[ ( ( )
r

+2/ N(X9Y)Vu€(Y)Vψ(Y)dY
JD

(2.9) + / N(X,Q)ue(Q)ΆQ)dQ
JdD OV

[ ^
JdD OV

= A(X) + B(X) + C(X) + D(X).

To establish uniqueness, we first show that u is bounded in \Z. We
observe that N(X,Y) < C[\X - Y\2~n + \X* - Y\2~n] for X G Γ>, [10].
Thus, we have

\C(X)\ < [ \u€(Q)\dQ dist (x, (\z)C\ . X G \

Next, we observe that Lemma 2.1 implies that

/ \Vue\dX < C||M(Vtx€)||i-
|> / /

JZΠD Jθ Jd

This gives

/
θ JdD

< C | | M ( V t i ) | | p , w h e n p>{d- \)/d.

\B\ < C||M(Vuc)||p dist (X, l/2Zc)2~n.

The term D vanishes as e —>> 0+ because the normal derivative vanishes in
the iϊp-sense. This follows because JV(X, •) is in Ca(dD). The term A is
easy to estimate and we omit the details. The estimates on A through C
and the vanishing of D imply that u is bounded.

To see that u is constant, we choose / in the Hardy space Hι(dD). By
Theorem C, there exists a solution ψ to (NP), with data / and M(\7ψ) in
Lι{dD). We let u€(X) = u((l - e)X) and consider

~Ψη(Q)^(Q)dQ = 0.
3D OV OV

We note that
/ due/dvi
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as e -» 0 + since φη is smooth. Also,

fu€dφη/dv-> ίudφη/dv

since our claim that u is bounded implies that u has nontangential limits
a.e, (see [8], for example). Finally,

f dφη _̂  f dφ
0 = / u-—1 -> / u— dQ

JdD OV JdD OU

as η -> 0 + because u is bounded and \\dvφη — dvφ\\L^{dD) Thus we have
shown that

IdD

for every / G Hι(dD). Finally, we know that bounded harmonic functions in
Lipschitz domains are the Poisson integral of their boundary values. Hence,
u is constant. D

Theorem 2.10. Suppose that Au = 0, M(Vu) G Lp(dD) andp lies between
1 — δm and 1. If the tangential derivatives of u vanish in the Hp-sense and
the nontangential limits of u vanish on dD, then u = 0 in D.

Proof. We will begin by showing that for each nonnegative / G C
we have

(2.11) lim / ^(Q)f(Q)dQ
€-K)+ JdD OVIdD

exists and the limit satisfies
(212> \L dv'

where w is the solution of Aw = 0, w = f on dD. Since | |M(^)| |2 <
the second inequality implies that du/dv is in L2(dD).

Towards establishing (2.11) and (2.12), we fix a coordinate cylinder Z and
let / G C%(dD Π Z) be nonnegative. We choose a smooth cutoff function φ
which satisfies χ2z 55 Φ 5ί X±z For 77, e > 0 we have

dφ dw€

i^+uηφ—

\ Φ1

JdD

Jdl

- I uηweAφ + 2uηVφ Vw€ dX
JD

= / A(Q)+B(Q)dQ- ί C1(X) + C2{X)dX.
JdD J D



THE NEUMANN PROBLEM IN HARDY SPACES 401

We observe that — is supported in (AZ \ 2Z) Π dD hence

A(Q) < M(u)(Q)\\M(w)\\2

by Lemma 2.6. To bound the integrand, C2(X), we note that Vφ is sup-
ported in AZ \ 2Z, hence we may use the observation of Lemma 2.6 that
\Vw(X)\ < Cδ(X)a-ι\\M(w)\\2 inAZ\2Z to estimate

C2(Q + ren)<M(u)(Q)ra'1\\M(wn)\\L2(0D).

The estimate for Cχ(X) is also easy.
This leaves the main term JdDB to be understood. We let wn, wn~1,..., w1

be the harmonic gradient determined by / (see Lemma 2.3) and write

/ ψ(Q)uη(Q)ψ-(Q)dQ
dD OV

/ ψ(X',φ(X'))uη(X',φ(X')) ί-^l

= / φ(X',φ(X'))uη(X',φ(X'))

dD 01 i O±i

[ B1(Q) + B2(Q)dQ.
JdD

By Lemma 2.6, we have

B1(Q)<M(u)(Q)\\M(wn)\\LHdD).

Our hypothesis that du/dTi vanishes implies that J B2 vanishes as e —> 0+.
Thus, we may let e -> 0+ in each of these expressions and then let η go to
zero to obtain (2.11) and (2.12). This uses Lemma 2.2 to bound the Z^-norm
of Af(ιz).

Our next step is to show that the nontangential maximal function of u is
in L2(dD). This and our assumption that u has nontangential limits of 0
a.e. on dD are sufficient to imply that u vanishes identically on dD.

As in Theorem 2.8, we fix a coordinate cylinder Z, a cutoff function φ
and let N(X,Y) be the Neumann Green's function for a graph domain Dφ
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for which D Π2Z = Dφ Π2Z. We let ue(X) = u(X + een) and apply Green's
formula to obtain

φu€(X) = ^

Γ N(X,Y)(ue(Y)Aφ(Y) + Vue(Y) Vφ(Y))dY./
D

We have just shown that we may let e —> 0+ in the term involving due/dv.
Since Lemma 2.2 implies M(u€) G Lι(dD) and as in the proof of Theorem
2.8 we have Vu€ and ue in L1(D), we may let e —> 0+ in the representation
formula for ψu€ and obtain

φu(X)= ί
JddD OV

[ N(X, Y){u(Y)Aφ(Y) + Vti(y) Vφ(Y)) dY
D

As in Theorem 2.8, the term B{X) is clearly bounded in 1/4Z, say. To
estimate -B(X), we use our observation above that du/dv is in L2 of the
boundary. In fact, since N{X, Y) < C\X — Y\2~n in D, it is easy to see that
the nontangential maximal function of A(X) is in L2(D). This establishes
our claim about M(u) and hence the Theorem follows. D

Remark. The calculation used to estimate the term B in the study of
du/dv was used by G. Verchota in [15].

3. Layer potentials.

In this section, we show that the solutions of the Neumann problem con-
structed in Section 2 may also be represented as single-layer potentials. This
representation follows from the estimates of Theorem C and D via an ar-
gument of G. Verchota [14, 15]. Using the potential representation of the
solutions of the Neumann problem, we immediately obtain a potential rep-
resentation for solutions of the Dirichlet problem with data in Ca(dD) (or
Ca(dD) for the exterior Dirichlet problem).

We begin by defining these potentials and recalling their mapping prop-
erties. We let

denote the fundamental solution of Laplace's equation in R", n > 3. Here,
ωn denotes the volume of the unit ball in Rn. We define the single-layer
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potential of / E Hp(dD), by

S(f)(X) = ί Γ(X - Q)f(Q)dQ, XeKn\ 3D.
JdD

Note that we may also define S(f) on 3D as an element of Lpd^d~p\dD).
This is the familiar Hardy-Littlewood theorem on fractional integration
which extends easily to the setting of atomic Hardy spaces. Next, we define
the double-layer potential by

[
JdD

Notice that if X <£ D, then

/
dD

= ί ΔγΓ(X-Y)dY = 0.
JD

Thus the double-layer potential of an equivalence class {/(Q) + r : r £ R}
in Ca(dD) is well-defined. To discuss the boundary values of the potentials,
we introduce the boundary potential operators:

/C (/)(P) = p.v.
JdD

and

JC(/)(P)= p v.
ΘD

The boundedness of /C : Hp(dD) -> Hp(dD) (and on Hp(dD)) is a con-
sequence of the results of Coifman, Meyer and Mclntosh [3] on the Cauchy
integral on Lipschitz curves (see also [7, 14]).

Hence, we let v — v+ denote the outer normal to D and v~ — — v+ denote
the outer normal to D* = Rn \ dD. We let <S+(/) and S~(f) denote the
restrictions of S(f) to D and D* respectively. Similarly, we let V+(f) and
V~(f) denote the restrictions of T>(f) to D and D*. We summarize the
boundary behavior of these operators in our next two results.

Theorem 3.1. Let p > = . Then we have
d+l n

^ = 5/-£*(/),
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||
\\HP(dD)

< C\\f\\HP(dD)

\l - K.Λ (/)[ + ||M(V5-(/))| | ip ( β β )+||5(/)||J ϊ r (β ί ) )
* / \\HP(dD)

<c\\f\\a,lBD).

The normal derivatives and the tangential derivatives exist at the boundary

in the sense described in Section 1.

Theorem 3.2. Let 0 < a < 1 and suppose that f G CCί{dD)7 then we have
that

(f) a.e.

f + lC(f)a.e.

and we may redefine /C(/) so that these equalities hold everywhere. Further-

more, we have

\\V+(f)\\c»(9D) < C\\f\\όa(gD)

and

< C\\f\\c.(βD).

Finally, we have that \I + K : Ca(dD) -* Ca(dD) is the adjoint of \I +

K* : Hp{dD) -»• Hp{dD) and that -\I + K : Ca{dD) -» Ca{dD) is the

adjoint of -\1 + K* : Hp(dD) -> Hp(dD) when a and p are related by

)

The next result uses the ideas of G. Verchota [14, 15] to establish our

main estimate.

Proposition 3.3. Let D be a starshaped Lipschitz domain, then we have

and

^ C|l ί -/ - /C*J
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Proof. We consider the first estimate. From Theorem 3.1, and the uniqueness
results of Theorems 2.8 and 2.10, we see that the estimates of Theorem C
and D apply to S(f) in D and D*. Thus

HP(dD) <
HP(ΘD) HP(ΘD)

C\\S(f)\\H,[βD)

<C"
HP(OD)

The first inequality is the triangle inequality, the second is Theorem C and
the third is Theorem D. The proof of the second estimate of our theorem is
similar. D

We are now ready to give our representation theorem for solutions of the

Dirichlet problem with Ca data.

T h e o r e m 3 . 4 . Let D be a starshaped Lipschitz domain and letl — e<p<l.

Then the maps

/C* : H'(dD)- 7

ij-JC: Hp(dD)

are inυertible.

Proof. The estimate of Proposition 3.3 implies that | / + /C* is injective

and has closed image. Thus, to establish the invertibility, we only need

show that the image of \I + JC* is dense in Hp(dD). But this is easy since

it is known [14, 15] that \I + !C* is invertible on L2

0{dD) = L2{dD) Π

{/:// = 0}. •

Corollary 3.5. The maps

1
+ 2

and

1

2'

are inυertible for 0 < a < de/(l — e) where e is as in Theorem 3-4-

K : Ca{dD) -»> Ca{dD)

--I + fC: Ca(dD) -* Ca(dD)

Proof. This follows immediately from Theorem 3.4 and the duality relations

stated in Theorem 3.2. D
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