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PERMUTATION MODEL FOR SEMI-CIRCULAR SYSTEMS
AND QUANTUM RANDOM WALKS

PHILIPPE BIANE

We give an approximation model for semi-circular families
of non-commutative random variables, which is based on the
permutation group. This model is compared to the random
matrix model of Voiculescu, and a common refinement of the
two approximations by explicit matrices with 0 - 1 entries is
exhibited.

Introduction.

The recent theory of semi-circular systems, introduced by D.Voiculescu [16]
has proved to be a very efficient tool in the theory of free group factors
(see e.g. [13] and the references therein), mainly due to the fact that semi-
circular systems can be approximated by gaussian random matrices [17]. It
is thus an interesting problem to try to find other simple approximations of
semi-circular systems. In this article we introduce such an approximation,
which is based on permutation groups.

Let us describe briefly the key fact which is at the basis of this approxima-
tion. Let Θn +i be the permutation group of {0,1,... , n}, and for 1 < k < n,
let τk £ Θ n + i be the transposition which exchanges 0 and fc, and denote again
by τk the corresponding left translation operator on L2(Θn+χ), then the trace
of the spectral measure of the operator -7̂ (τχ + . . . + τn) converges, as n goes
to infinity, towards the semi-circle distribution. This fact is a consequence
of Theorem 1 below.

In the second part of the paper, we show how this permutation model is
related to the gaussian random matrix model of Voiculescu. We first describe
a convenient way of obtaining a gaussian hermitian matrix, which is to let
a brownian motion evolve on the set of hermitian matrices. This brownian
motion was first studied by Dyson, after Wigner's work on the semi-circle
law. We show that the evolution of the spectrum of a brownian hermitian
matrix is very much linked to the theory of tensor product representations-
of the unitary groups. This enables us to approximate in law a hermitian
random matrix by explicit finite dimensionnal matrices. This gives us a
family of finite dimensionnal matrices depending on two integer parameters
n and d. The random matrix model of Voiculescu is obtained when we let
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n go to infinity first and then d go to infinity. The permutation model is
obtained when d goes first to infinity, and then n does.

1. A permutation model for semi-circular systems.

1.1. Preliminaries. We first recall some definitions from Voiculescu [16].

1.1.1. Definition. A •-non-commutative probability space (A^φ) is
composed of A a unital •-algebra and φ a state on A.

Elements of A are called (non-commutative) random variables.
In what follows, traces on matrix algebras will be normalized to be equal

to 1 at the identity.

1.1.2. Let / be an index set, and C(yL,y*)LeI be the free •-algebra with
generators (yL)ιei F° r every family (XL)Lei of elements of A there is a unique
•-homomorphism h : C(yL,y*)Lei —> A which sends yL and y* to XL and X*
respectively.

Definition. The law of the family (XL)iei is the map φ o h on C(yL,y*)L€[.

Convergence of a sequence of laws is defined as simple convergence on

1.1.3. Definition. A family of •-subalgebras {AL)LeI of A is called free
if, for all n > 2, φ(aιa2 .. an) = 0 whenever a,j G AL^) with L(J) Φ L(J + 1)
for 1 < j < n — 1 and φ(dj) — 0 for 1 < j < n. A family of random
variables (XL)Lei is free if the family of •-algebras (AL)LeI is free, where AL

is the •-algebra generated by Xb for L E I.

1.1.4. Definition. A family of random variables (XL)Lej is a semi-circular
system if it is a free family, the {XL)Lei are self adjoint (XL = X*) and
ψ (Xfn) = ̂ C ? n , φ (XW) = 0 forn G N.

1.2. Permutations and semi-circular systems.

1.2.1. Let E be a countable set, and let 6(E) be the group of permutations
of E which fix all elements of E except a finite number. The group &(E) is
the inductive limit of permutation groups of finite subsets of E.

Let L(E) be the von Neumann algebra generated by the left regular rep-
resentation of &(E). It is a hyperfinite IIχ factor, and its canonical trace is
caracterized by tr(e) = 1, tr(σ) = 0 for e Φ σ G &(E) (e is the unit element
of ©(£)).

We consider elements ofθ(E) as random variables in the non-commutative
probability space (L(E),tr).

1.2.2. Let E = {δ} U (\Jι€l EL) be a partition of E such that cardi?t=oo for
all cel.We put E1 =



PERMUTATION MODEL 375

For i G /, let e*, e2

L,... , e™,... be an enumeration of the elements of EL,
and let r™ , for n G N be the element in L(E) which corresponds to the
transposition (J, e™).

Let α™ = -4= Σ ^ = i T* £ ^ ( - ^ ) J
 a n ( l 1^ (αJ*e/ be a semi-circular system in

some non-commutative probability space (A,φ).

1.2.3.

Theorem 1. TΛe law of the family of random variables (a™)tej in (L(E),tr)
converges towards the law of (at)LeI as n goes to infinity.

1.2.4. Before we proceed to the proof of the theorem in Section 1.3 we shall

make some comments on this result.

For each ε G E' let Gε be a copy of the group Z/2Z, let vε be the non
trivial element of Gε and let G — *εeE>Gε be the free product group. There
is a surjective morphism G -ϊ&(E) which sends vε to the transposition (5, ε).
The elements vε in the factor generated by the left regular representation of G
form a free family and if we replace in the definition of an

L the transpositions
(#, ε) by vε the Theorem 1.2.3 remains true, as follows from Voiculescu's
central limit theorem ([15]).

More generally, let if be a group with generators (θε)εeEι satisfying θ2 — e
and such that there are surjective morphisms ξ : G —)> H and ζ : H -ϊθ(E)
with ξ(v£) = θε and ζ(θε) — τe, then the theorem remains true if we replace
rε in the definition of an

L by θε considered as a left translation operator on
L2(H). This means that, in some sense the relations between the transpo-
sitions (5, ε) for ε G E' "do not commute too much". This sentence may be
clarified by the following remark. The transpositions (0, k) for 1 < k < n
form a system of generators of the permutation group of {0,1,... , n}. Ob-
serve that, if we take as generators of this permutation group the transposi-
tions tk — (&, k + 1), for 0 < k < n — 1, then the limit as n goes to infinity
of the trace of the spectral measure of the operator ~τ=(£i 4- . + tn) is the
gaussian law.

1.3. Proof of the Theorem 1.

1.3.1. Let us first recall how to evaluate moments of semi-circular systems.

Definition. A partition p — (Vi,... , Vι) of the set {1,... , m} is called

crossing if there exists 1 < fci Φ k2 < I and Ui^Vx G Ϊ4 1 5 ^25^2 £ Vk2

 s u c h

that Uι < u2 < Vι < v2, and non-crossing in the opposite case.

This definition occurs in Kreweras [8], see also Speicher [14] where non-

crossing partitions are called admissible.

For 7τι G N, let Vnc{m) be the set of non-crossing partitions of {1,.. . , ra}

which consist of y pairs, and for any p G Vnc{rn), choose a sequence

fci,... ,fcm in {!,... ,ra} such that p = ({ku k2},... ,{fcm-i>&m})
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Let (ac)ιei be a semi-circular system in (A, φ), and (/>(1),... , ί(m)) be a
sequence of elements of /.

For p G Vnci put

Vp ( α 4 ( 1 ) , . . . , α t ( m ) ) = (̂  {aL(kl)aL{k2)) ...φ (α^.o^C*™))

(the expression for Vp (α t(i),... , α t(m)) depends only on p not on the choice
of ku... ,/cm).

According to Speicher [14], for each sequence p = (&(1),. . , t>(m)) £ / m

one has </? (αA(i)... α4(m)) = 0 if m is odd and

if m is even. Furthermore, for every ό,κ G / one has φ(aLaκ) = 1 if 6 = K
and ψ{aLaκ) = 0 if 6 ̂  K.

This implies that

^ K(i) α.(m)) = card{p G PnC(m)|^(Λi) = ι[k2),.. , ̂ (Λm-i) = ^(fcm)}

for m even.

1.3.2. We shall prove the Theorem 1 by showing that for each sequence

^(1),... , t(m) G / one has

Jiin tr ( < ( ! ) . . . < ( m ) ) = ψ ( α l ( i ) . . . o t ( m ) )

In order to evaluate the quantity tr («Γ(i) αΓ(m)J w e w ^ ^ ̂ r s t P r o v e a

sequence of lemma.
Let Eι,... , ε m be a sequence of elements of £?', and τεk be the transposition

(<$,£*) for 1 < fc < m.
The sequence (εfc)i<fc<m determines a partition of {1,.. . , m} through the

equivalence relation k ~ / if and only if εk = Si.

L e m m a 1. //£Λe permutation τεir€2... τ ε m is the identity then the associated
partition of {1,... ,ra} contains only sets of cardinal greater than 2.

Proof. Suppose that for some η G E\ there exists exactly one k such that
ek — 77, then the image of 77 by the permutation τεiτε2... r£rn is not equal
to η (because rεi ... τεk_1 and τεje+1 ... r£m leave 77 fixed), so that τεi ... r£ m

cannot be the identical permutation. D

L e m m a 2. // the partition associated to ε l 7 . . . , ε m zs composed of sets of
cardinal 2 then τεi . . . τ ε m = e if and only if the partition is non-crossing.

Proof. First suppose that the partition of {1,... ,ra} is non-crossing. Let
k be such that εk = £*+i (such a k exists because of the properties of the
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partition), then r£lτ£2 . . . τ£rn — r£lτ£2 ... τ£k_1τ£k+2 ... τ ε m , and the partition
associated to the sequence ε i , . . . , εk_ι, ε f c + i , . . . , ε m is again noncrossing and
composed of sets of cardinal 2. From this observation, it is easy to prove by
induction on even m that r£lτ£2 ... r£rn = e (since this is obviously true for
m = 2).

For the Only if part of the lemma, let I be the greatest number such

that εm_/,... , ε m are all different elements of E' (one has / < ψ be-

cause the partition is composed of pairs), and suppose εm_/_i = εr with

r > m — /, then the permutation r£rn_ι_1r£τn_ι .. .r£τn does not leave ε r

fixed (because it sends ε r to ε r_χ). Since the permutation r£ιr£2 ... τ£rrι_ι_2

does not contain any factor τ£r it leaves ε r invariant, and so the prod-

uct τεiτ£2.. .τ£rn cannot be the identity. We deduce from this that nec-

essarily if r£lr£2 ... τ£m = e then εm_/_i = εm_/, so that τ£lτ£2 . . . τ£m =

τεiτ£2... τ£rn_ι_2τεrn_ι+1 . . . r£rn — e. Now, if the partition associated to the se-

quence S\,... , εm_/_2, ε m _ ί + i , . . . , ε m is non crossing, then so is the partition

associated to ε i , . . . ,εm_/_2,εm_j_i,εm_/,εm_ / +i, . . . , ε m because εm_/_i =

εm_/. The proof follows now by induction on even m. D

1.3.3. We are now ready to finish the proof of the theorem. Let p =

(^(1),... , i(m)) be a sequence in /. We compute the expectation

tr (αΓ(i) ^(m)) by expanding the product. We find that

tr(a:(1)...a:(m))=n-Iϊ Y tr(τ£l .. .rεj (1)

where the sum is taken over all sequences S\,... ε m such that

oΐl <k<m.

We call such a sequence a p-sequence.
Recall that the quantity tr(r£l ... r£rn) is equal to 1 if τεi . . . r ε m = e and

0 in the other cases.

To each sequence ε\,... , ε m in E' let us associate a partition of {1,.,. , m}
as in 1.3.2. Let p be a partition of {1,... ,ra} such that in each set there
are at least 2 elements and in at least one of the sets there are strictly more
than 2 elements, this partition is composed of at most wγ^- sets, so that the
number of p-sequences ε i 5 . . . ε m whose associated partition is p, is less than
n 1 2 ^". The contribution of such sequences to the expression (1) is therefore
negligible as n goes to infinity.

On the other hand, by Lemma 1 and 2, the p-sequences for which the
associated partition contains at least one singleton, or which are crossing,
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give a contribution equal to 0, so that it remains to count the contribution

of the p-sequences whose partitions are non-crossing and composed of sets

of cardinal 2.

Let p = ({&i, &2},... , {fcm-i5 &m}) be a non-crossing partition of {1 . . . , m}

composed of pairs. If there exists an I such that i(k2i-i) φ ι>{k2\) then there

is no p-sequence ε x , . . . , ε m such that ε& G J5A(Λ) for 1 < k < m and whose

associated partition is p. If *>(&2/-i) = (̂&2/) for 1 < / < y then for n > ψ

the number of sequences S\,... ε m with associated partition p, such that

6fcG eί(jψ 5 Γ̂(fe) [ for 1 < A; < 772 is comprised between the two numbers

( n - f ) ? andn?.
From this we deduce that

tr (αj ( 1 ) . . . α£m)) -> card | p G PncMltίfei-!) = t{k2l) for 1 < Z < y |( j ( 1 ) . . . ) |

as n goes to infinity. In view of 1.3.1, this proves the Theorem 1.

2. Relation with the gaussian matrix model.

We will now show how the permutation model introduced in the preceding
paragraph is related to the gaussian matrix model of Voiculescu. For this we
will firstly describe a dynamic way of obtaining a random gaussian hermi-
tian matrix, by letting a brownian motion evolve on the space of hermitian
matrices.

2.1. Brownian motion on hermitian matrices.

2.1.1. The brownian motion on hermitian d x d matrices was studied by
Dyson [5] after the work of Wigner on gaussian matrices and the semi-circle
law ([18]). This is a stochastic process X(t) = (Xjk(t))1<:j k<d for t e IR+
such that for 1 < j < k < c?, (X^k(t)) R are independent complex brownian
motions, Xjk(t) = X(t)hi, the processes Xjj(t) are independent real brown-
ian motions for 1 < j < d, and the variances are given by £?[|Xjfc(ί)|2] = t
for l<j,k<d.

Dyson investigated the stochastic process (λi (ί),. . . , λ d (t)) ί e R + whose com-
ponents are the eigenvalues in increasing order of the matrix X(t), and
showed that it behaves like "a gas of brownian particles subject to repulsive
Coulomb forces". This means, as shown by Mac-Kean [9], that this process
satisfies a stochastic differential equation of the form

the processes Bj being independent brownian motions, or equivalently, that
it is a diffusion process with generator | Δ -J-gradLog W , Δ being the usual
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Laplacian, V the gradient operator and h the function h(λ) = Πi<Λ<j<d(λ, -
λfc) (cf [6]). If we observe that the function h is positive, harmonic on the
domain Ω = {λ € Rd|λj > λk for j > k} and vanishes on its boundary, (see
Lemma 3 below), then this generator can be put in the form ^Δ(/ι.) where
Δ is the Laplacian on the domain Ω with Dirichlet boundary conditions.
Probabilistically, this means that the process (λ(t)) ί G R + is obtained from
brownian motion on Rd by a killing at the boundary of Ω followed by taking
an /i-process in the sense of Doob (cf [4]) with respect to the positive har-
monic function h. Furthermore, one can show that this harmonic function is
minimal, and corresponds to the unique Martin boundary point at infinity
of the domain Ω.

Lemma 3. The function h is harmonic.

Proof. This proof comes from [1] Proposition 3. For every permutation σ
of {1 . . . ,d} let σ(λi , . . . ,λd) = (λ σ ( i ) , . . . ,λσ( r f )), then hoσ = sgn(σ)h and
every polynomial which verifies this identity is a multiple of h. Since Δ
commutes with every σ, one has again Ah o σ = sgn(σ)Δ/ι, and Ah is a
polynomial of lower degree than /ι, so that Ah = 0. D

As a corollary of the above remark, we can give an explicit expression of
the semi-group of the process (λ t) t €R+ . Let Qt(x,y) be the density of this
semi-group with respect to Lebesgue measure in the cone

, >Xk for j > k }

and Pt(x,y) be that of the brownian semi-group in

Proposition 1.

Σ
σewd

Proof. The semi-group of brownian motion killed at the boundary of the
cone is given by the formula Σσ€Wd sgn(σ)Pί(x,σ(y)), (here Wd is the Weyl
group, that is the permutation group on d letters acting on the coordinates
of Rd) as follows from the reflection principle, and the result is a consequence
of Doob's definition of /i-processes. D

2.1.2. For our purposes, it will be more convenient to deal with brownian
motion on traceless hermitian matrices. This is the orthogonal projection of
the process (X(t))te^+ on the set of d x d matrices with zero trace.
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The process of eigenvalues of such a brownian motion is the orthogonal
projection of the process (λ t ) ί G K + on the set of elements of Rd which verify
Σj Xj = 0. It is again obtained from brownian motion on the cone domain

jλ G Rd \λj > Xk for j > k and £ \ λ̂  = θ} by a killing at the boundary of

the cone, followed by an /ι-transform with respect to the harmonic function

h restricted to this cone.

2.2. Quantum random walks.

In this section we shall describe a discrete non-commutative approxima-
tion of brownian motion on hermitian matrices, with the help of quantum
random walks. More details about these processes can be found in [2, 10].

2.2.1. Let G be a compact group, and υN(G) be the von Neumann al-
gebra generated by its left regular representation. For g G G call Xg the
corresponding element of vN(G).

Let φ be a continuous positive type function on G, with φ(e) = 1 where
e is the identity element in G. This function defines a state μ on vN(G)
caracterised by μ(Xg) = φ(g), and a completely positive map T : υN(G) ->
vN(G) by the formula Q(X9) = φ{g)Xg.

Let W be the von Neumann algebra generated by the GNS representation
of the infinite tensor product υN(G)®°° with respect to the infinite product
state ω = μΘo°, and j n : vN(G) ->Wbe the morphisms defined by jo{X9) =
Idw and jn{X9) = Xfn ® Id ® . . . ® Id ® . . . for n > 1. The family of maps
(in)nGN is called a quantum random walk. They form a dilation of the
semi-group of completely positive maps (T n) n G^, which means that for each
n G N there is a conditionnal expectations En from W onto the von Neumann
subalgebra generated by the image of jo?ii? >im a n d these conditionnal
expectations satisfy the "Markov property" Em ojn = jmoTn~m for m <n.

The semi-group (Tn)n€N is a non commutative analogue of a Markov semi-
group. It is a convolution semi-group for the Hopf-von Neumann algebra
structure of υN(G) and the dilation (jn)neN is the analogue of a Markov
process associated to this semi-group, which is a "non-commutative process
with independent increments" (see Schύrmann [12]).

2.2.2. Let Z(υN(G)) be the center of vN(G). By Peter-Weyl theorem, this
algebra is isomorphic to L°° (Γ) where Γ is the set of equivalence classes of
irreducible representations of the group G. The restrictions of the maps j n

to Z(vN(G)) take value in a commutative von Neumann subalgebra X" of
W.

If the function φ is central, then the maps Tn send Z(υN(G)) into itself.
Since they are completely positive maps, using the Peter-Weyl isomorphism
X : Z{υN(G)) -> I/°°(Γ) we see that they give rise to a Markovian semi-group



PERMUTATION MODEL 381

(<2n)neN on the set Γ, by the formula Qn = χ o Tn o χ- 1 . For n G N, let
Λ"n be the von Neumann algebra generated by the images jk(Z(vN(G))) for
1 < k < n, then the conditionnal expectation En maps X onto Λ*n. Since the
algebra X is abelian there is a probability space (Ω, T, P) with a filtration
( ?Γn)nGN and random variables Xn with values in Γ, adapted to the filtration
Tn which form a Markov process on Γ with semi-group (Qn)neN5 there is an
isomorphism U : X°°(Ω, ̂ , P ) -> A' such that C/(L°°(Ω5^n,P)) = Afn, the
restriction of En to Λ* is equal to {7oJS[.|.7:

n]o[/~1 (£J[.|jFn] is the conditionnal
expectation on the σ-field Tn), the maps j n satisfy U~ι o j n o {/ = X n where
£ n : L°°(Γ) -> L°°(Ω, J",P) is the morphism determined by Xn.

We can summarize this by saying that, in the case of a central function
0, the construction in 2.2.1 of a quantum random walk gives a (commuta-
tive) Markov process on the set of classes of irreducible representations by
restriction to the center.

2.2.3. Let d be a positive integer, we specialize the preceding discussion to
the case where G — SU(d) and φ is the normalised character of the basic
representation of SU(d) (i.e. φ(g) = tr(g) where g £ SU(d) is considered as
a d x ύ ! matrix). By the Cartan-Weyl theory of representations of compact
semi-simple Lie groups, the set Γ of classes of irreducible representations
of G can be identified with the set of dominant weights of the Lie algebra
su(d). A dominant weight of su(d) can be identified with an integer vector
λ = ( λ l 5 . . . , Xd) such that Xx < . . . < \d modulo an integer multiple of the
vector ξ = ( 1 , . . . , 1), or equivalently with its projection on the orthogonal
oΐξ i n R d .

The Markov chain on Γ which has been associated to φ in 2.2.2 can now be
described in the following way (see [2]). First consider the random walk on Έd

whose jumps have a law which is uniform on the vectors e^—ei+1, i = 1,... d—

1 and ed — ex ί where (βi, . . . , ed) is the canonical basis of 7Ld j . Since the

jumps are orthogonal to the vector ξ this random walk gives rise to a random
walk on the orthogonal of ξ. Now kill this random walk at its first exit time
of the Weyl chamber {λ G Z d | λi < . . . < λd} modulo £Z, and then take the
/i-transform associated with the harmonic function h(\) — Πi<j<fe(^i + i ~
Xk — k), the resulting process has the same transition kernel as the Markov
chain obtained by restriction of the quantum random walk (jn)neN to the
center of υN(SU(d)), when Γ is identified with the set of dominant weights.
(Remark: the integer h(λ) is the dimension of the irreducible representation
with highest weight λ and it is a harmonic function of λ for the transition
operator of the random walk killed at the boundary of the cone.)

It is not difficult to prove, using standard weak convergence arguments
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(see Pitman [11] for the case of SU(2)), that the process ( ^ ) (where

[x] denotes the integer part of x) converges in law (on the usual Skorokhod
space cf Jacod, Shyriaev [7]) towards the law of the motion of eigenvalues of
the brownian motion on traceless hermitian matrices, which was described
in Section 2.1.2. We shall state below (Sect. 2.2.4) a result which extends
this convergence to include the whole quantum random walk, at the cost of
obtaining only convergence of moments.

2.2.4. The finite dimensionnal representations of SU(d) and sl(d, C) are in
one to one correspondance, so we will use the Lie algebra sl(d, C) instead of
the compact group SU(d) in what follows.

Let (Ejk)ι<k<d be a family of matrix units in Md(C) and let H*k =
Ejk, for 1 <j φ k < d and Hjj = Eάά - \ Id for 1 < j < d, then

{HJk)ι<j,k<d,{j,k)ί{d4) f o r m a b a s i s o f t h e L i e a l S e b r a sl(d> C )

Let U(d) be the universal envelopping algebra of su(d). An element P of
the center Z(U(d)) of U(d) acts by a constant P(λ) on the space of an irre-
ducible finite dimensionnal representation of sl(n, C) with highest weight λ,
and P(λ) is a symmetric polynomial function of λ on j λ G Rd | ΣjLi λj = 0 J.
In this way we identify Z(U(d)) with an algebra of symmetric polynomials.

If P is a polynomial function, and α E R, let Pa be the polynomial
function obtained by scaling the variables by a factor a.

Let 7 be a non zero finite dimensionnal representation of sl(d, C), of di-
mension r, and 7 Θ n the Lie algebra tensor product representation

The representations η®n are extended as representations of the algebra U(d).
Let v = tr (7 (Hjk) 7 {Hkj)) for 1 < j < k < d, then the value of υ does

not depend on (kj) and υ = ̂ tr (7 {Hjj) 7 (Hjj)) for 1 < j < d (here tr
is the normalized trace on Mr (C)).

Let (y,ω) be the infinite product von Neumann algebra Mr(C)®°° (with
respect to the normalized trace on Mr(C)) with the infinite product state ω,
and define sn : U{d) -> y by sn{u) = -y®n{u) ® Id ® . . . .

Theorem 2. The law of the family of random variables on (y,ω)

converges as n goes to infinity towards the law of
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where ίX{t) = (Xjk(t))ι< . k<dj is a brownian motion on hermitian trace-

less matrices as defined in 2.1.2, and λ(t) is its eigenvalue process.

2.2.5. We shall not need the full strength of this result in the sequel, so
we will only prove a weaker statement, namely, the following Proposition 2.
The Theorem 2 can be proved by similar arguments.

Proposition 2. The law of the family of random variables on (y,ω),

(-^sn(Hjk)j converges as n goes to infinity towards the law of

{X (1) = (X (l)jk) I with the notations of Theorem 2.
\ V v ' /i<j,k<dl

Thus, the Xjk (1) for j φ k are complex, centered, independent gaus-
sian variables such that Xjk (1) - Xkj (1), and E [\Xjk (1) |2] = 1, and the
variables Xjj (1) for 1 < j < d are real, centered, gaussian variables with
covariance E [Xjj (1) Xkk (1)] = -\ if j' φ k and = 1 - \ if j - k.

The proof of this result is essentially the same as the Proposition of 4) in
[3] and relies on the following two simple lemma.

Lemma 4. Let L G sZ(2,C) be a self adjoint element, then the law of
-j^sn(L) converges towards the law of a centered gaussian random variable
of variance tr(j(L)2).

Proof. One has

sn(L) - 0 1

The proof of the lemma is just an application of the usual central limit
theorem to the commuting, self-adjoint centered random variables j(L) <S>
Id® Id. . . , Id<g>7(£) <g> I d ® . . . , . . . , Id 0 7 1" 1 <g>7(L) (g) I d 0 . . . . D

Using a polarization argument, we have the following corollary of Lemma
4.

Corollary. For any sequence fP'1*1,... :H
jmkτn the symmetrized moments

(the sum is over permutations o/{l,... , m}) have a limit as n goes to infinity
which is E [Xj*kί (1)... Xi™k™ (1)].

We now only have to prove the following lemma to finish the proof.
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L e m m a 5. For any sequence Hjlkl,... ,Hjmkrn, one has

( m Λ m

j

Proof. Let σ be the transposition (Z,/ + 1). One has the following identity

inW(d).

l-l

q f = l ς f = l

where c?*jfk' for 1 < u.v^j.k^j'^k1 < d are the structure constants of the
Lie algebra sί(rf,C). We thus find that

\ V V

now, using the corollary of Lemma 4 and an easy induction argument (com-
pare [3]) we conclude that the expression between {} remains bounded as n
goes to infinity, and so have the proof of Lemma 5. D

2.3. A two parameter family of matrices.

2.3.1. With the notations of 2.2.4, let us consider the drn x drn matrix

M2«= Σ E j k ® ±

By Proposition 1, when n goes to infinity, the law of this matrix, considered
as a non-commutative random variable in (Mdrn (C), tr) converges to that of

a hermitian gaussian traceless matrix with variance | ί namely the law of

X (\) as in Theorem 2 J .

Furthermore, if (7j t e / ιs a family of commuting representations of sl(d, C)
on Mr(C), the law of the family of matrices (M^7 JιeI converges towards the
law of a family (MdyL)LeI of d x d hermitian gaussian traceless matrices with
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independent entries and variance ~ When d goes to infinity, by Voiculescu's
theorem [17] (here the matrices are traceless, but this is a minor modification
with respect to [17], which is negligible as d goes to infinity), the law of the
family of random variables {Md^)teI converges towards the law of a semi-
circular system.

2.3.2. Instead of making n go to infinity first we will make d go to infinity
first. Let us now take 7 to be the contragredient representation, then r = d,
and one gets the following matrices

( n

/ y Ejk ® Id m ®Ek« ® Id n m — Id
l<j,k<dm=l

These matrices operate on the Hubert space (Cd)®n+1. The permutation

group of {0,1,... , n} operates on ( C r f ) Θ n + 1 by σ(x0 ® . . . ® xn) = xσ(0) ®

. . . ® xσ(n), and a simple computation shows that the matrix ^ K j K d E j k ®

Id 0 7 7 1 " 1 ®Ekj ® Id n ~ m is just the matrix t^ of the transposition (0, m) acting

on ( C d ) Θ n + 1 . We conclude that Md

n is equal to ^= (ίd + . . . +t£ - \ Id).

For 1 < m < n let τ m be the image of the transposition (0, m) in the von
Neumann algebra generated by the left regular representation of the symmet-
ric group of {0,1,... , n}. This von Neumann algebra is a non commutative
probability space, when equipped with the canonical trace.

L e m m a 6. When d goes to infinity the family of random variables ( t^) i< m < n

converges in law towards the law of the family (τm)ι<m<n.

Proof. It is enough to prove that for any non trivial permutation σ the

normalized trace of its action on the space (C r f)®n + 1 goes to zero as d goes

to infinity. But this trace is just ^ r where c(σ) is the number of cycles of σ,

as can be verified using the basis (eiλ ® . . . ® ein)ι<iu..^in<d (where (ek)ι<k<d

is the canonical basis of Cd) to compute the trace, and so the lemma is

proved, since c (σ) < n + 1 for a non-identical permutation σ. D

There is no difficulty in constructing a family M£ for ι G / if / is finite,

just take the Hubert space Cd ® ((Cd)®n) and construct a copy of the

matrix M% on the component Cd ® ( C d ) Θ n corresponding to 1 G /. The

family of random variables \M^L j will converge in law as d goes to infinity,

towards the law of the family (α^G/) with the notations of Theorem 1.
We can summarize the convergence schemes that we have just seen in the

following diagram
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independent gaussian
matrices

permutation model semi-circular system
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