ON MODULI OF INSTANTON BUNDLES ON $\mathbb{P}^{2 n+1}$

Vincenzo Ancona and G. Ottaviani

Let $\mathrm{MI}_{\mathbb{P}^{2 n+1}}(k)$ be the moduli space of stable instanton bundles on $\mathbb{P}^{2 n+1}$ with $c_{2}=k$. We prove that $\mathrm{MI}_{\mathbb{P}^{2 n+1}}(2)$ is smooth, irreducible, unirational and has zero Euler-Poincaré characteristic, as it happens for \mathbb{P}^{3}. We find instead that $\mathrm{MI}_{\mathbb{P}^{5}}(3)$ and $\mathrm{MI}_{\mathrm{P}^{5}}(4)$ are singular.

1. Definition and preliminaries.

Instanton bundles on a projective space $\mathbb{P}^{2 n+1}(\mathbb{C})$ were introduced in [OS] and $[\mathbf{S T}]$. In $[\mathbf{A O}]$ we studied their stability, proving in particular that special symplectic instanton bundles on $\mathbb{P}^{2 n+1}$ are stable, and that on \mathbb{P}^{5} every instanton bundle is stable.

In this paper we study some moduli spaces $\mathrm{MI}_{\mathbb{P}^{2 n+1}}(k)$ of stable instanton bundles on $\mathbb{P}^{2 n+1}$ with $c_{2}=k$. For $k=2$ we prove that $\mathrm{MI}_{\mathbb{P}^{2 n+1}}(2)$ is smooth, irreducible, unirational and has zero Euler-Poincaré characteristic (Theor. 3.2), just as in the case of $\mathbb{P}^{3}[\mathbf{H a r}]$.

We find instead that $\mathrm{MI}_{\mathbb{P}^{5}}(k)$ is singular for $k=3,4$ (theor. 3.3), which is not analogous with the case of $\mathbb{P}^{3}[\mathbf{E S}],[\mathbf{P}]$. To be more precise, all points corresponding to symplectic instanton bundles are singular. Theor. 3.3 gives, to the best of our knowledge, the first example of a singular moduli space of stable bundles on a projective space. The proof of Theorem 3.3 needs help from a personal computer in order to calculate the dimensions of some cohomology group [BaS].

We recall from $[\mathbf{O S}],[\mathbf{S T}]$ and $[\mathbf{A O}]$ the definition of instanton bundle on $\mathbb{P}^{2 n+1}(\mathbb{C})$.
Definition 1.1. A vector bundle E of rank $2 n$ on $\mathbb{P}^{2 n+1}$ is called an instanton bundle of quantum number k if
(i) The Chern polynomial is $c_{t}(E)=\left(1-t^{2}\right)^{-k}=1+k t^{2}+\binom{k+1}{2} t^{2}+\ldots$
(ii) $E(q)$ has natural cohomology in the range $-2 n-1 \leq q \leq 0$ (that is $h^{i}(E(q)) \neq 0$ for at most one $\left.i=i(q)\right)$
(iii) $\left.E\right|_{r} \simeq \mathcal{O}_{r}^{2 n}$ for a general line r.

Every instanton bundle is simple [AO]. There is the following characterization:

Theorem 1.2 ([ST], [AO]). A vector bundle E of rank $2 n$ on $\mathbb{P}^{2 n+1}$ satisfies the properties (i) and (ii) if and only if E is the cohomology of a monad

$$
\begin{equation*}
\mathcal{O}(-1)^{k} \xrightarrow{A} \mathcal{O}^{2 n+2 k} \xrightarrow{B} \mathcal{O}(1)^{k} . \tag{1.1}
\end{equation*}
$$

With respect to a fixed system of homogeneous coordinates the morphism A (resp. B) of the monad can be identified with a $k \times(2 n+2 k)$ (resp. $(2 n+2 k) \times k)$ matrix whose entries are homogeneous polynomials of degree 1. Then the conditions that (1.1) is a monad are equivalent to:

$$
A, B \text { have rank } k \text { at every point } x \in \mathbb{P}^{2 n+1}, A \cdot B=0
$$

Definition 1.3. A bundle S appearing in an exact sequence:

$$
\begin{equation*}
0 \rightarrow S^{*} \rightarrow \mathcal{O}^{d} \xrightarrow{B} \mathcal{O}(1)^{c} \rightarrow 0 \tag{1.2}
\end{equation*}
$$

is called a Schwarzenberger type bundle ($S T B$).
The kernel bundle Ker B in the monad (1.1) is the dual of a STB.
Definition 1.4. An instanton bundle is called special if it arises from a monad (1.1) where the morphism B is defined in some system of homogeneous coordinates $\left(x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n}\right)$ on $\mathbb{P}^{2 n+1}$ by the matrix

$$
B=\left[\begin{array}{ccc}
x_{0} & & \\
\vdots & \ddots & \\
x_{n} & & x_{0} \\
& \ddots & \vdots \\
& & x_{n} \\
y_{0} & & \\
\vdots & \ddots & \\
y_{n} & & y_{0} \\
& \ddots & \vdots \\
& & y_{n}
\end{array}\right]
$$

Example 1.5. Take
$E=\operatorname{Ker} B / \operatorname{Im} A$ is a special instanton bundle.
Property (iii) of the definition 1.1 can be checked by the following:
Theorem 1.6 [OS]. Let $E=\operatorname{Ker} B / \operatorname{Im} A$ as in (1.1). Let r be the line joining two distinct points $P, Q \in \mathbb{P}^{2 n+1}$. Then

$$
\left.E\right|_{r} \simeq \mathcal{O}_{r}^{2 n} \Leftrightarrow A(P) \cdot B(Q) \quad \text { is an invertible matrix. }
$$

Example 1.7. Consider the special instanton bundle E of the example 1.5. Let $P=(1,0, \ldots ; 0, \ldots, 0), Q=(0, \ldots, ; 0, \ldots, 1)$. Then

$$
A(P)=\left[\begin{array}{ccc}
& & \\
& \cdot & -1 \\
& \cdot &
\end{array}\right] \quad B(Q)=\left[\begin{array}{ll}
& \\
1 & \\
& \ddots \\
& \\
& \\
&
\end{array}\right]
$$

and $A(P) \cdot B(Q)=\left[\begin{array}{c} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ -1\end{array} \quad . \quad . \quad\right.$ is invertible. Hence E is trivial on the line $\left\{x_{1}=\ldots=x_{n}=y_{0}=\ldots=y_{n-1}=0\right\}$.

Proposition 1.8. Let E be an instanton bundle as in (1.1). Then

$$
H^{2}\left(E \otimes E^{*}\right)=H^{2}\left[(\operatorname{Ker} B) \otimes\left(\operatorname{Ker} A^{t}\right)\right]
$$

Proof. See [AO] Theorem 3.13 and Remark 2.22.
Remark 1.9. If $E \simeq E^{*}$, then

$$
H^{2}\left(E \otimes E^{*}\right)=H^{2}\left[\left(\operatorname{Ker} A^{t}\right) \otimes\left(\operatorname{Ker} A^{t}\right)\right]=H^{2}[(\operatorname{Ker} B) \otimes(\operatorname{Ker} B)]
$$

Remark 1.10. The single complex associated with the double complex obtained by tensoring the two sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ker} A^{t} \rightarrow \mathcal{O}^{2 n+2 k} \xrightarrow{A^{t}} \mathcal{O}(1)^{k} \rightarrow 0 \\
& 0 \rightarrow \operatorname{Ker} B^{t} \rightarrow \mathcal{O}^{2 n+2 k} \xrightarrow{B^{t}} \mathcal{O}(1)^{k} \rightarrow 0
\end{aligned}
$$

gives the resolution

$$
\begin{aligned}
0 \rightarrow\left(\operatorname{Ker} A^{t}\right) & \otimes(\operatorname{Ker} B) \rightarrow \mathcal{O}^{2 n+2 k} \otimes \mathcal{O}^{2 n+2 k} \\
& \rightarrow \mathcal{O}^{2 n+2 k} \otimes \mathcal{O}(1)^{k} \oplus \mathcal{O}(1)^{k} \otimes \mathcal{O}^{2 n+2 k} \xrightarrow{\alpha} \mathcal{O}(1)^{k} \otimes \mathcal{O}(1)^{k} \rightarrow 0
\end{aligned}
$$

where $\alpha=\left(A^{t} \otimes \mathrm{id}, \mathrm{id} \otimes B\right)$.
Hence

$$
H^{2}\left(E \otimes E^{*}\right)=\operatorname{Coker} H^{0}(\alpha)
$$

and its dimension can be computed using [BaS]. For the convenience of the reader we sketch the steps needed in the computations.
A, B^{t} are given by $k \times(2 n+2 k)$ matrices whose entries are linear homogeneous polynomials.

$$
A \otimes \operatorname{Id}_{k}=\left(a_{1}, \ldots, a_{k(2 n+2 k)}\right)
$$

and

$$
\mathrm{Id}_{k} \otimes B^{t}=\left(b_{1}, \ldots, b_{k(2 n+2 k)}\right)
$$

are both $k^{2} \times(2 n+2 k) k$ matrices. Let

$$
C=\left(a_{1}, \ldots, a_{k(2 n+2 k)}, b_{1}, \ldots, b_{k(2 n+2 k)}\right)
$$

We will denote by $\operatorname{syz}_{m} C$ the dimension of the space of the syzygies of C of degree m. Then

$$
\begin{aligned}
h^{2}\left(E \otimes E^{*}\right) & =h^{0}\left(\mathcal{O}(2)^{k^{2}}\right)-(4 n+4 k) h^{0}\left(\mathcal{O}(1)^{k}\right)+\operatorname{syz}_{1} C \\
& =k(n+1)[k(2 n-5)-8 n]+\operatorname{syz}_{1} C \\
h^{1}\left(E \otimes E^{*}\right) & =h^{2}\left(E \otimes E^{*}\right)+1-k^{2}+8 n^{2} k-4 n^{2}+3 n k^{2}-2 n^{2} k^{2} \\
& =1-6 k^{2}-8 k n-4 n^{2}+\operatorname{syz}_{1} C
\end{aligned}
$$

Note also that $h^{0}(E(1))=\operatorname{syz}_{1} B^{t}-k$ and $h^{0}\left(E^{*}(1)\right)=\operatorname{syz}_{1} A-k$.
Remark 1.11. In the same way we obtain

$$
\begin{gathered}
h^{1}\left(E \otimes E^{*}(-1)\right)=\operatorname{syz}_{0} C \\
h^{2}\left(E \otimes E^{*}(-1)\right)=2 k(n k-2 n-k)+\operatorname{syz}_{0} C .
\end{gathered}
$$

2. Example on \mathbb{P}^{5}.

Let (a, b, c, d, e, f) be homogeneous coordinates in \mathbb{P}^{5}.
Example 2.1. $(k=3)$ Let

$$
\begin{aligned}
B^{t} & =\left[\begin{array}{cc}
a b c & d e f \\
a b c & d e f \\
a b c & d e f
\end{array}\right] \\
A & =\left[\begin{array}{cc}
f e d & -c-b-a \\
f e d & -c-b-a \\
f e d & -c-b-a
\end{array}\right] .
\end{aligned}
$$

The corresponding monad gives a special symplectic instanton bundle on \mathbb{P}^{5} with $k=3$. With the notation of remark 1.10 , using [$\mathbf{B a S}$] we can compute $\operatorname{syz}_{0} C=14, \mathrm{syz}_{1} C=174$. Hence $h^{2}\left(E \otimes E^{*}\right)=3$ from the formulas of Remark 1.10. Moreover $h^{0}(E(1))=4$.
Example 2.2. $(k=3)$ Let B^{t} as in the Example 2.1 and

$$
A=\left[\begin{array}{ccr}
f e d & -c-b-a \\
e d & 2 f-b-a & -2 c \\
d & f e-a & -c-b
\end{array}\right]
$$

We have syz $C=10, \operatorname{syz}_{1} C=171$. Hence $h^{2}\left(E \otimes E^{*}\right)=0$. We can compute also the syzygies of B^{t} and A and we get $h^{0}(E(1))=4, h^{0}\left(E^{*}(1)\right)=3$, hence E is not self-dual.
Example 2.3. $(k=4)$ Let

$$
\begin{gathered}
B^{t}=\left[\begin{array}{cc}
a b c & d e f \\
a b c & d e f \\
a b c & d e f \\
a b c & d e f
\end{array}\right] \\
A=\left[\begin{array}{cc}
f e d & -c-b-a \\
f e d & -c-b-a \\
f e d & -c-b-a
\end{array}\right]
\end{gathered}
$$

E is a special symplectic instanton bundle with $k=4$. We compute

$$
h^{2}\left(E \otimes E^{*}\right)=12
$$

Example 2.4. $(k=4)$ Let B^{t} as in the Example 2.3. Let

$$
A=\left[\begin{array}{ccr}
& f e d & -c-b-a \\
e d & 2 f-b-a & -2 c \\
3 d & f e-3 a & -c-b \\
& f e d & -c-b-a
\end{array}\right]
$$

In this case $h^{2}\left(E \otimes E^{*}\right)=6, h^{0}(E(1))=4, h^{0}\left(E^{*}(1)\right)=3$.
Example 2.5. $(k=4)$ Let B^{t} as in the Example 2.3. Let

$$
A=\left[\begin{array}{lcccccc}
& f & e & d & & -c & -b \\
e & & & 2 f-a & -a & & \\
3 d & & & f & e-3 a & -2 c \\
5 d & f & e d+f & e & -5 a & & -c-b-a-c
\end{array}\right]
$$

Now $H^{2}\left(E \otimes E^{*}\right)=0, h^{0}(E(1))=4, h^{0}\left(E^{*}(1)\right)=2$.

3. On the singularities of moduli spaces.

The stable Schwarzenberger type bundles on \mathbb{P}^{m} (see (1.2)) form a Zariski open subset of the moduli space of stable bundles. Let $N_{\mathbb{P}^{m}}(k, q)$ be the moduli space of stable STB whose first Chern class is k and whose rank is q. The following proposition is easy and well known:

Proposition 3.1. The space $N_{\mathbb{P}^{m}}(k, q)$ is smooth, irreducible of dimension $1-k^{2}-(q+k)^{2}+k(q+k)(m+1)$.

We denote by $\mathrm{MI}_{\mathbb{P}^{2 n+1}}(k)$ the moduli space of stable instanton bundles with quantum number k. It is an open subset of the moduli space of stable $2 n$-bundles on $\mathbb{P}^{2 n+1}$ with Chern polynomial $\left(1-t^{2}\right)^{-k}$.

On \mathbb{P}^{5} (as on \mathbb{P}^{3}) all instanton bundles are stable by [AO], Theorem 3.6. $\mathrm{MI}_{\mathrm{P}^{2 n+1}}(2)$ is smooth ($[\mathbf{A O}]$ Theorem 3.14), unirational of dimension $4 n^{2}+12 n-3$ and has zero Euler-Poincaré characteristic ([BE], [K]).

Theorem 3.2. The space $\mathrm{MI}_{\mathbb{P}^{2 n+1}}(2)$ is irreducible.
Proof. The moduli space $N=N_{\mathbb{P}^{2 n+1}}(2, n+2)$ of stable STB of rank $2 n+2$ and $c_{1}=2$ is irreducible of dimension $4 n^{2}+8 n-3$ by Prop. 3.1

For a given instanton bundle E there is a STB S associated with E, which is stable ([AO], Theorem 2.8) and unique (ibid., Prop. 2.17). It is easy to prove that the map $\pi: M \rightarrow N$ defined by $\pi([E])=[S]$ is algebraic, moreover π is dominant by $[\mathbf{S T}]$. If $m=[E] \in M$, the fiber $\pi^{-1}(\pi(m))$ is a Zariski open subset of the grassmannian of planes in the vector space $H^{0}\left(\mathbb{P}^{2 n+1}, S^{*}(1)\right)$, where $\pi(m)=[S]$; by the Theorem 3.14 of $[\mathbf{A O}], h^{0}\left(\mathbb{P}^{2 n+1}, S^{*}(1)\right)=2 n+2$, hence $\operatorname{dim} \pi^{-1}(\pi(m))=4 n$.

In order to prove that M is irreducible, we suppose by contradiction that there are at least two irreducible components M_{0} and M_{1} of M. Then $M_{0} \cap M_{1}=\emptyset(M$ is smooth $), \pi\left(M_{0}\right)$ and $\pi\left(M_{1}\right)$ are constructible subset of N by Chevalley's theorem. Looking at the dimensions of M_{0}, M_{1}, N and the fibers of π we conclude that both $\pi\left(M_{0}\right)$ and $\pi\left(M_{1}\right)$ must contain an open subset of N, which implies $\pi\left(M_{0}\right) \cap \pi\left(M_{1}\right) \neq \emptyset$ by the irreducibility of N. This is a contradiction because the fibers of π are connected.

For $n \geq 2$ and $k \geq 3$, it is no longer true that $\operatorname{MI}_{\mathbb{P}^{2 n+1}}(k)$ is smooth. In fact on \mathbb{P}^{5} we have:

Theorem 3.3. The space $\mathrm{MI}_{\mathbb{P}^{5}}(k)$ is singular for $k=3,4$. To be more precise, the irreducible component $M_{0}(k)$ of $\mathrm{MI}_{\mathbb{P}^{5}}(k)$ containing the special instanton bundles is generically reduced of dimension $54(k=3)$ or $65(k=4)$, and $\operatorname{MI}_{\mathbb{P}^{5}}(k)$ is singular at the points corresponding to special symplectic instanton bundles.

Proof. Let E_{0} be the special instanton bundle on \mathbb{P}^{5} of the Example 2.2 $k=$ 3) or of the Example $2.5(k=4)$. Then $h^{2}\left(E_{0} \otimes E_{0}^{*}\right)=0$ and $M_{0}(k)$ is smooth at the point corresponding to E_{0}, of dimension $h^{1}\left(E_{0} \otimes E_{0}^{*}\right)=54(k=3)$ or $65(k=4)$. In particular, $M_{0}(k)$ is generically reduced. If E_{1} is a special symplectic instanton bundle on \mathbb{P}^{5}, the computations in 2.1 and 2.3 show that $h^{2}\left(E_{1} \otimes E_{1}^{*}\right)=3(k=3)$ or $12(k=4)$, and $h^{1}\left(E_{1} \otimes E_{1}^{*}\right)=57$ or 77 respectively. Hence $\mathrm{MI}_{\mathbb{P}^{5}}(k)$ is singular at E_{1} for $k=3$ and 4 .

Remark 3.4. It is natural to conjecture that $\mathrm{MI}_{\mathbb{P}^{2 n+1}}(k)$ is singular for all $n \geq 2$ and $k \geq 3$.

Theorem 3.5. Let E be an instanton bundle on $\mathbb{P}^{2 n+1}$ with $c_{2}(E)=k$. Then

$$
h^{1}(E(t))=0 \text { for } t \leq-2 \text { and } k-1 \leq t
$$

Proof. The result is obvious for $t \leq-2$. It is sufficient to prove $h^{1}\left(S^{*}(t)\right)=0$ for $t \geq k-1$. We have

$$
S^{*}(t)=\bigwedge^{2 n+k-1} S(t-k)
$$

Taking wedge products of (1.2) we have the exact sequence

$$
\begin{aligned}
0 \rightarrow \mathcal{O}(t+1-2 n-2 k)^{\alpha_{0}} \rightarrow & \ldots \rightarrow \mathcal{O}(t-k-1)^{\alpha_{2 n+k-2}} \\
& \rightarrow \mathcal{O}(t-k)^{\alpha_{2 n+k-1}} \rightarrow \bigwedge^{2 n+k-1} S(t-k) \rightarrow 0
\end{aligned}
$$

for suitable $\alpha_{i} \in \mathbb{N}$ and from this sequence we can conclude.
Ellia proves Theorem 3.5 in the case of $\mathbb{P}^{3}([\mathbf{E}]$, Prop. IV.1). He also remarks that the given bound is sharp. This holds on $\mathbb{P}^{2 n+1}$ as it is shown by the following theorem, which points out that the special symplectic instanton bundles are the "furthest" from having natural cohomology.

Theorem 3.6. Let E be a special symplectic instanton bundle on $\mathbb{P}^{2 n+1}$ with $c_{2}=k$. Then

$$
h^{1}(E(t)) \neq 0 \text { for }-1 \leq t \leq k-2
$$

Proof. For $n=1$ the thesis is immediate from the exact sequence

$$
0 \rightarrow \mathcal{O}(t-1) \rightarrow E(t) \rightarrow \mathcal{J}_{C}(t+1) \rightarrow 0
$$

where C is the union of $k+1$ disjoint lines in a smooth quadric surface. Then the result follows by induction on n by considering the sequence

$$
\left.0 \rightarrow E(t-2) \rightarrow E(t-1)^{2} \rightarrow E(t) \rightarrow E(t)\right|_{\mathbb{P}^{2 n-1}} \rightarrow 0
$$

and the fact that, for a particular choice of the subspace $\mathbb{P}^{2 n-1}$, the restriction $\left.E\right|_{\mathbb{P}^{2 n-1}}$ splits as the direct sum of a rank-2 trivial bundle and a special symplectic instanton bundle on $\mathbb{P}^{2 n-1}$ ([ST] 5.9).

Remark 3.7. In [OT] it is proved that if E_{k} is a special symplectic instanton bundle on \mathbb{P}^{5} with $c_{2}=k$ then $h^{1}\left(\right.$ End $\left.E_{k}\right)=20 k-3$.

In the following table we summarize what we know about the component $M_{0}(k) \subset \operatorname{MI}_{P^{5}}(k)$ containing E_{k}.

Table 3.10

References

[AO] V. Ancona and G. Ottaviani, On the stability of special instanton bundles on $\mathbb{P}^{2 n+1}$, Trans. Amer. Math. Soc., 341 (1994), 677-693.
[BE] J. Bertin and G. Elencwajg, Symétries des fibrés vectoriels sur \mathbb{P}^{n} et nombre d'Euler, Duke Math. J., 49 (1982), 807-831.
[BaS] D. Bayer and M. Stillman, Macaulay, a computer algebra system for algebraic geometry.
[BoS] G. Bohnhorst and H. Spindler, The stability of certain vector bundles on \mathbb{P}^{n}, Proc. Bayreuth Conference "Complex Algebraic Varieties", LNM 1507, Springer Berlin (1992), 39-50.
[E] Ph. Ellia, Some vanishings for the cohomology of stable rank two vector bundles on \mathbb{P}^{3}, J. reine angew. Math., 451 (1994), 1-14.
[ES] G. Ellingsrud and S.A. Stromme, Stable rank-2 bundles on \mathbb{P}^{3} with $c_{1}=0$ and $c_{2}=3$, Math. Ann., 255 (1981), 123-137.
[Har] R. Hartshorne, Stable vector bundles of rank 2 on \mathbb{P}^{3}, Math. Ann., 238 (1978), 229-280.
[K] T. Kaneyama, Torus-equivariant vector bundles on projective spaces, Nagoya Math. J., 111 (1988), 25-40.
[M] M. Maruyama, Moduli of stable sheaves, II, J. Math. Kyoto Univ., 18 (1978), 557-614.
[OS] C. Okonek and H. Spindler, Mathematical instanton bundles on $\mathbb{P}^{2 n+1}$, Journal reine angew. Math., 364 (1986), 35-50.
[OT] G. Ottaviani and G. Trautmann, The tangent space at a special symplectic instanton bundle on $\mathbb{P}^{2 n+1}$, Manuscr. Math., 85 (1994), 97-107.
[P] J. LePotier, Sur l'espace de modules des fibrés de Yang et Mills, in Mathématique et Physique, Sém. E.N.S. 1979-1982, Basel-Stuttgart-Boston 1983.
[S] R.L.E. Schwarzenberger, Vector bundles on the projective plane, Proc. London Math. Soc., 11 (1961), 623-640.
[ST] H. Spindler and G. Trautmann, Special instanton bundles on $\mathbb{P}^{2 n+1}$, their geometry and their moduli, Math. Ann., 286 (1990), 559-592.

Received January 5, 1993. Both authors were supported by MURST and by GNSAGA of CNR.

Dipartimento di Matematica
Viale Morgagni 67 A
I-50134 FIRENZE
E-mail address: ancona@udininw.math.unifi.it
AND

Dipartimento di Matematica
Via Vetoio, Coppito
I-67010 L'Aquila
E-mail address: ottaviani@vxscaq.aquila.infn.it
Added in proof. After this paper has been written we received a preprint of R. MiróRoig and J. Orus-Lacort where they prove that the conjecture stated in the Remark 3.4 is true.

