COMMUTING CO-COMMUTING SQUARES AND FINITE DIMENSIONAL KAC ALGEBRAS

Takashi Sano

Abstract

A relationship between finite dimensional Kac algebras and specified commuting co-commuting squares is discussed. The Majid's bicrossproduct Kac algebra is explained in our context.

1. Introduction.

The theory of Kac algebras (Hopf algebras) has been drawing considerable attention (see [6] for the reference), and in fact many intensive studies have been made recently. ($[1,18,19,34,35,36]$, etc.) On the other hand, the announcement by A.Ocneanu ([20, 21]) brought us a new aspect in the theory of Kac algebras : it is his claim (proved in [4, 17] and also [28]) that, for an irreducible inclusion of factors $M \supset N$ with finite index and depth = $2, M$ is described as the crossed product algebra of N by an outer action of a finite dimensional Kac algebra. Hence, we investigate Kac algebras from the Jones index theoretical point of view.

The purpose of this paper is to find a finite dimensional Kac algebra via the index theory : let $L \supset K$ be an irreducible inclusion of factors with finite index. Suppose that, for an intermediate subfactor M, both inclusions $L \supset M$ and $M \supset K$ are of depth 2. Although the inclusion $L \supset K$ does not always satisfy the depth 2 condition, it can be proved that this pair is of depth 2 if these factors L, M, K, and another intermediate subfactor N form a commuting co-commuting square. Details will be explained in $\S 2$ after recalling basic facts on commuting co-commuting squares. Another criterion for the inclusion $L \supset K$ to be of depth 2 is also obtained. Examples are given in $\S 3$.

The author would like to express his sincere gratitude to Professor Shigeru Yamagami for helpful advice (in fact the present work was motivated by [33]) and to Professor Hideki Kosaki for fruitful discussions and constant encouragement. He is grateful to the referee for many useful comments.

2. Main results.

Let

$$
\begin{aligned}
& L \supset M \\
& \cup \\
& N \supset
\end{aligned}
$$

be a quadruple of type I_{1} factors satisfying $[L: K]<\infty$. (For the standard facts on the index theory, see $[\mathbf{8}, \mathbf{1 1}, \mathbf{2 3}, \mathbf{2 5}, \mathbf{2 6}]$.) It is said to be a commuting square if $E_{M}^{L}(N) \subseteq K$, where E_{M}^{L} is the conditional expectation from L to M. (See [8] for other equivalent conditions.) A quadruple (L, M, N, K) is said to be a co-commuting square if the quadruple

$$
\begin{array}{cc}
K^{\prime} \supset M^{\prime} \\
\cup & \cup \\
N^{\prime} \supset L^{\prime}
\end{array}
$$

or equivalently, that of basic extensions

$$
\begin{array}{cc}
\left\langle L, e_{K}^{L}\right\rangle & \left.\supset L, e_{M}^{L}\right\rangle \\
\cup & \cup \\
\left\langle L, e_{N}^{L}\right\rangle \supset & L
\end{array}
$$

on the standard space $L^{2}(L)$ is a commuting square. Here, e_{M}^{L}, e_{N}^{L}, and e_{K}^{L} are relevant Jones projections (see [27, 30, 31]). For a commuting cocommuting square (L, M, N, K), we have $K=M \cap N$ and $L=M \vee N$. (In [27], a quadruple satisfying these equations is called a quadrilateral and, for a quadrilateral $(L, M, N, K), \operatorname{Ang}(M, N)=O p-\operatorname{ang}(M, N)=\left\{\frac{\pi}{2}\right\}$ corresponds to the commuting co-commuting condition.)

For a commuting square, we have characterization of co-commutativity ([27, Corollary 7.1] and [26, Proposition 1.1.5]).

Proposition 2.1. Let (L, M, N, K) be a commuting square of type II_{1} factors satisfying $[L: K]<\infty$. Then the following are equivalent:
(1) (L, M, N, K) is co-commuting.
(2) $L=M \cdot N=\left\{\sum_{i \in F} m_{i} n_{i} ; F\right.$ is a finite set, $\left.m_{i} \in M, n_{\imath} \in N\right\}$.
(3) $[L: M]=[N: K]$.
(4) A Pimsner-Popa basis for $N \supset K$ is also that for $L \supset M$.

Remark that, in [26], a commuting square satisfying (one of) the above conditions is called "non-degenerate" and (1),(2) of the following proposition are mentioned in [26, Proposition 1.1.6] (see also [9, Proposition 2.3]). We will see them for the completeness of this article.

Proposition 2.2. Let (L, M, N, K) be a commuting co-commuting square of type II_{1} factors satisfying $[L: K]<\infty$. Then,
(1) $\left\langle M, e_{K}^{M}\right\rangle \supset M$ is conjugate to $\left\langle M, e_{N}^{L}\right\rangle \supset M$.
(2) The quadrilateral $\left(\left\langle L, e_{N}^{L}\right\rangle,\left\langle M, e_{N}^{L}\right\rangle, L, M\right)$ is also commuting co-commuting.
(3) $\left\langle L, e_{K}^{L}\right\rangle$ is identified with the Jones extension for $\left\langle L, e_{N}^{L}\right\rangle \supset\left\langle M, e_{N}^{L}\right\rangle$.

Proof. (1) While the condition $\sum_{i} a_{i} e_{K}^{M} b_{i}=0\left(a_{i}, b_{i} \in M\right)$ is equivalent to $\sum_{i} a_{i} E_{K}^{M}\left(b_{i} c\right)=0$ for $c \in M$ on $L^{2}(M)$, the condition $\sum_{i} a_{i} e_{N}^{L} b_{i}=0\left(a_{i}, b_{i} \in\right.$ $M)$ means $0=\sum_{i} a_{i} E_{N}^{L}\left(b_{i} c d\right)=\sum_{i} a_{i} E_{N}^{L}\left(b_{i} c\right) d=\sum_{i} a_{i} E_{K}^{M}\left(b_{i} c\right) d$ for $c \in$ $M, d \in N$ on $L^{2}(L)$ thanks to Proposition 2.1.(2) and the commuting square condition. Hence, we may consider the map $\phi:\left\langle M, e_{K}^{M}\right\rangle \rightarrow\left\langle M, e_{N}^{L}\right\rangle$ defined by $\phi\left(\sum_{i} a_{i} e_{K}^{M} b_{i}\right)=\sum_{i} a_{i} e_{N}^{L} b_{i}$. It is easy to see that this map ϕ gives an isomorphism between them and $\left.\phi\right|_{M}=\mathrm{id}$.
(2) follows from [8, Corollary 4.2.3], [11, Proposition 3.1.7], and Proposition 2.1.
(3) Since the commuting square condition means $e_{M}^{L} e_{N}^{L}=e_{K}^{L}$, we have $\left\langle\left\langle L, e_{N}^{L}\right\rangle, e_{M}^{L}\right\rangle=\left\langle L, e_{K}^{L}\right\rangle$. We will show that $\left\langle L, e_{K}^{L}\right\rangle=\left\langle\left\langle L, e_{N}^{L}\right\rangle, e_{M}^{L}\right\rangle$ is the Jones extension for $\left\langle L, e_{N}^{L}\right\rangle \supset\left\langle M, e_{N}^{L}\right\rangle$. The commuting square condition implies $\left[e_{M}^{L}, x\right]=0$ for $x \in\left\langle M, e_{N}^{L}\right\rangle$. And for the conditional expectation $E_{\left\langle L, e_{N}^{L}\right\rangle}^{\left\langle L, e_{K}^{L}\right\rangle}$, by [27, Lemma 7.2], we have $E_{\left\langle L, e_{N}^{L}\right\rangle}^{\left\langle L, e_{K}^{L}\right\rangle}\left(e_{M}^{L}\right)=\frac{1}{[L: M]}$. Therefore, we get the conclusion by [24, Proposition 1.2.(2)].

Thus, we have extensions of a commuting co-commuting square (L, M, $N, K)$ in compatible ways.

For an irreducible inclusion, we have a refined estimation of the dimension of relative commutant algebras as in [8, Theorem 4.6.3] (cf. [11, Corollary 2.2.3]). We will see this in terms of sectors ($[\mathbf{1 0}, \mathbf{1 2}, \mathbf{1 4}, \mathbf{1 5}, \mathbf{1 6}])$.

Lemma 2.1. For an irreducible inclusion $M \supset N$ of type II_{1} factors satisfying $[M: N]<\infty$,

$$
\operatorname{dim}\left(M_{k} \cap N^{\prime}\right) \leq[M: N]^{k},
$$

where $N \subset M=M_{0} \subset M_{1} \subset \cdots$ is the Jones tower.
Proof. We only treat the case $k=2$ since a similar proof will work for any k. We may assume that M and N are properly infinite and isomorphic (by [16, Lemma 2.3]) and denote N by $\rho(M)$ for an endomorphism $\rho \in$ $\operatorname{End}(M)$. Consider the irreducible decompositions : $\bar{\rho} \rho=\sum_{j} m_{j} \alpha_{j}, \bar{\rho} \rho \bar{\rho}=$ $\sum_{j, k} m_{j} n_{j k} \beta_{k}\left(\alpha_{j} \bar{\rho}=\sum_{k} n_{j k} \beta_{k}\right)$, where $\bar{\rho}$ is the conjugate sector of ρ. By
the Frobenius reciprocity, we have $\beta_{k} \rho \geq \sum_{j} n_{j k} \alpha_{j}, \alpha_{j} \bar{\rho} \geq m_{j} \bar{\rho}$. Combining these, we get

$$
\begin{aligned}
{[M: N]^{2} } & =\left([M: N]_{0}^{2}=\right) d(\rho)^{4}=\sum_{j, k} m_{j} n_{j k} d\left(\beta_{k} \rho\right) \\
& \geq \sum_{j, k} m_{j} n_{j k} \sum_{j^{\prime}} n_{j^{\prime} k} d\left(\alpha_{j^{\prime}}\right) \\
& \geq \sum_{k}\left(\sum_{j} m_{j} n_{j k}\right)^{2}=\operatorname{dim}\left(M_{2} \cap N^{\prime}\right)
\end{aligned}
$$

thanks to the additivity and the multiplicativity of the statistical dimension d.

As a corollary of [8, Theorem 4.6.3], we have the following ([10, Proposition 4.2]) :

Corollary 2.1. Let $M \supset N$ be an irreducible inclusion of type II_{1} factors with finite index. Then the following are equivalent:
(1) The inclusion $M \supset N$ is of depth 2.
(2) $\operatorname{dim}\left(M_{1} \cap N^{\prime}\right)=[M: N]$.
(3) $M_{2} \cap N^{\prime}$ is a factor.

We give another lemma to prove main results.
Lemma 2.2. Let (P, Q, R, \mathbf{C}) be a commuting square of finite dimensional algebras. Then we have

$$
\operatorname{dim} P \geq \operatorname{dim} Q \cdot \operatorname{dim} R
$$

Proof. Let us take a linear basis $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ for R and a PimsnerPopa basis $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$ for $Q \supset \mathbf{C}$ with respect to the conditional expectation E from P to $R(m:=\operatorname{dim} R, n:=\operatorname{dim} Q)$. Then $x_{i} \lambda_{j}^{*}(\neq 0)$ are linearly independent ; suppose that $\sum_{i, j} a_{i j} x_{i} \lambda_{j}^{*}=0$ for $a_{i j} \in \mathbf{C}$. Since $0=\left(\sum_{i, j} a_{i j} x_{i} \lambda_{j}^{*}\right) \lambda_{k}=E\left(\sum_{i, j} a_{i j} x_{i} \lambda_{j}^{*} \lambda_{k}\right)=\sum_{i, j} a_{i j} x_{i} E\left(\lambda_{j}^{*} \lambda_{k}\right)=\sum_{i} a_{i k} x_{i}$ for any k, we have $a_{i k}=0$. Hence, we get $\operatorname{dim} P \geq n m$.

For a given commuting co-commuting square, we can get a kind of tiling by double sequences $\left\{M_{i j}\right\}_{i, j=0,1,2, \ldots}$ of subfactors (see [22, 32]). By looking at a tiling, we have two criteria for an irreducible inclusion $L \supset K$ to be of depth 2 :

Theorem 2.1. Let (L, M, N, K) be a commuting co-commuting square of type II_{1} factors satisfying $[L: K]<\infty$ and $L \cap K^{\prime}=\mathbf{C}$. If both inclusions $L \supset M$ and $M \supset K$ are of depth 2, then so is the inclusion $L \supset K$.

Proof. Let us denote extensions by $\left\{M_{i j}\right\}_{2, j=0,1, \ldots}$ such that

$$
\begin{aligned}
\left(M_{11}, M_{10}, M_{01}, M_{00}\right) & =(L, M, N, K), M_{22}=\left\langle M_{11}, e_{00}^{11}\right\rangle, \\
M_{21} & =\left\langle M_{11}, e_{01}^{11}\right\rangle, M_{20}=\left\langle M_{10}, e_{01}^{11}\right\rangle, \\
M_{12} & =\left\langle M_{11}, e_{10}^{11}\right\rangle, M_{33}=\left\langle M_{22}, e_{11}^{22}\right\rangle, \\
M_{32} & =\left\langle M_{22}, e_{12}^{22}\right\rangle, M_{31}=\left\langle M_{21}, e_{12}^{22}\right\rangle, \\
M_{30} & =\left\langle M_{20}, e_{12}^{22}\right\rangle, \quad \text { and so on. }
\end{aligned}
$$

Here, $e_{k l}^{i j}$ means the Jones projection for the inclusion $M_{i j} \supset M_{k l}$.

Figure 1.
Clearly, we have $M_{22} \cap M_{00}^{\prime} \supset M_{20} \cap M_{00}^{\prime}, M_{12} \cap M_{10}^{\prime}$. But it can be shown that

$$
M_{22} \cap M_{00}^{\prime}=\left(M_{20} \cap M_{00}^{\prime}\right) \cdot\left(M_{12} \cap M_{10}^{\prime}\right)
$$

Let us think of the following commuting square (for the conditional expectations of the restriction of the canonical trace on M_{22}) :

$$
\begin{array}{cc}
M_{22} \cap M_{00}^{\prime} \supset M_{12} \cap M_{10}^{\prime} \\
E \cup & \cup \\
M_{20} \cap M_{00}^{\prime} \supset & \mathbf{C} .
\end{array}
$$

Here, we remark that ($M_{22}, M_{20}, M_{12}, M_{10}$) forms a commuting square. It follows from Corollary 2.1 that $\operatorname{dim}\left(M_{20} \cap M_{00}^{\prime}\right)=[M: K](=: m)$ and $\operatorname{dim}\left(M_{12} \cap M_{10}^{\prime}\right)=[L: M](=: n)$. Applying Lemma 2.2 to this square, we get $\operatorname{dim}\left(M_{22} \cap M_{00}^{\prime}\right) \geq m n=[L: K]$. Combining this with Lemma 2.1, we have that $\operatorname{dim}\left(M_{22} \cap M_{00}^{\prime}\right)=[L: K]$ and $M_{22} \cap M_{00}^{\prime}=\left(M_{20} \cap M_{00}^{\prime}\right) \cdot\left(M_{12} \cap M_{10}^{\prime}\right)$. Therefore, we get the conclusion by Corollary 2.1.

Theorem 2.2. Let (L, M, N, K) be a commuting co-commuting square of type II_{1} factors satisfying $[L: K]<\infty$ and $L \cap K^{\prime}=\mathbf{C}$. If both inclusions $M \supset K$ and $N \supset K($ or $L \supset M$ and $L \supset N)$ are of depth 2 , then so is the inclusion $L \supset K$.

Proof. Let us keep the same notation as in the proof of Theorem 2.1. It is sufficient to consider the case that $M \supset K$ and $N \supset K$ are of depth 2 since another case can be proved by looking at the extension $\left(M_{22}, M_{21}, M_{12}, M_{11}\right)$. For the commuting square ($M_{22} \cap M_{00}^{\prime}, M_{22} \cap M_{20}^{\prime}, M_{20} \cap M_{00}^{\prime}$, C), we remark that

$$
M_{22} \cap M_{20}^{\prime} \cong M_{02} \cap M_{00}^{\prime}
$$

by Proposition 2.2.(3) and Takesaki duality between $M_{21} \supset M_{20}$ and $M_{01} \supset$ M_{00}, which follows from a similar argument in [23, Proposition 1.5] about a common Pimsner-Popa basis for $M_{10} \supset M_{00}$ and $M_{11} \supset M_{01}$. Applying Lemma 2.2 and 2.1 to the commuting square ($M_{22} \cap M_{00}^{\prime}, M_{22} \cap M_{20}^{\prime}, M_{20} \cap$ $\left.M_{00}^{\prime}, \mathbf{C}\right)$, we get that $M_{22} \cap M_{00}^{\prime}=\left(M_{22} \cap M_{20}^{\prime}\right) \cdot\left(M_{20} \cap M_{00}^{\prime}\right)$, and $\operatorname{dim}\left(M_{22} \cap\right.$ $\left.M_{00}^{\prime}\right)=[L: K]$. Therefore, we get the theorem by Corollary 2.1.

Remark. Let $(L, M, N, K)=\left(M_{11}, M_{10}, M_{01}, M_{00}\right)$ be a commuting cocommuting square as in Theorem 2.2. The Majid's bicrossproduct method corresponds to looking at the quadruple ($M_{21}, M_{20}, M_{11}, M_{10}$) and the relative commutant algebra $M_{32} \cap M_{10}^{\prime}$.

3. Examples.

In this section, we will explain two examples. The first one is considered in [33, Proposition].
(1) Let G be a finite group with two subgroups A, B satisfying $G=A B$ and $A \cap B=\{e\}$. Let γ be an outer action of G on a type II_{1} factor P. Then we have

Proposition 3.1. The inclusion of crossed product algebras

$$
(L:=)\left(P \otimes l^{\infty}(G / B)\right) \rtimes G \supset P \rtimes A(=: K)
$$

is irreducible and of depth 2, where the action of G on $l^{\infty}(G / B)$ is induced by the left translation.

Proof. Let us consider the commuting co-commuting square

$$
\left(\left(P \otimes l^{\infty}(G / B)\right) \rtimes G,\left(P \otimes l^{\infty}(G / B)\right) \rtimes A=: M, P \rtimes G=: N, P \rtimes A\right)
$$

Since $\left(P \otimes l^{\infty}(G / B)\right) \rtimes G \cap(P \rtimes A)^{\prime}=l^{\infty}(G / B)^{A}$, the assumption $G=$ $A B$ corresponds to the irreducibility of the inclusion $L \supset K$. Considering Takesaki duality between $L \supset M$ and $P \rtimes B \supset P$ as in the proof of Theorem 2.1, and Proposition 2.2.(1) for $M \supset K(\supset P)$, we also see that $L \supset M$ and $M \supset K$ are of depth 2. Hence, applying Theorem 2.1 to this square (L, M, N, K), we get the conclusion.

Remark. The Jones tower and the tower of relative commutant algebras can be explicitly written down as in $[\mathbf{3}, \mathbf{1 3}, \mathbf{2 9}]$; the Jones tower is

$$
\begin{gathered}
K=P \rtimes A \subset\left(P \otimes l^{\infty}(G / B)\right) \rtimes G=L \\
\subset\left(P \otimes B\left(l^{2}(G / B)\right) \otimes l^{\infty}(G / A)\right) \rtimes G=: L_{1} \\
\subset\left(P \otimes B\left(l^{2}(G / B)\right) \otimes l^{\infty}(G / B) \otimes B\left(l^{2}(G / A)\right)\right) \rtimes G=: L_{2}
\end{gathered}
$$

And the tower of relative commutant algebras is

$$
\begin{gathered}
\mathbf{C}=K \cap K^{\prime} \subset L \cap K^{\prime}=l^{\infty}(G / B)^{A}=\mathbf{C} \\
\subset L_{1} \cap K^{\prime}=\left(B\left(l^{2}(G / B)\right) \otimes l^{\infty}(G / A)\right)^{A} \\
\subset L_{2} \cap K^{\prime}=\left\{B\left(l^{2}(G / B)\right) \otimes l^{\infty}(G / B) \otimes B\left(l^{2}(G / A)\right)\right\}^{A} \\
\cong B\left(l^{2}(G / B)\right) \otimes B\left(l^{2}(G / A)\right)
\end{gathered}
$$

Hence, we also see that the depth of $L \supset K$ is 2 . Next we recall the matched pair $([\mathbf{1 8}, \mathbf{1 9}])$; because of the uniqueness of the decomposition of an element in $G=A B=B A$, we can represent $a b$ for $a \in A, b \in B$ as

$$
a b=\alpha_{a}(b) \beta_{b^{-1}}\left(a^{-1}\right)^{-1} \in B A
$$

The associative law implies

$$
\begin{gathered}
\alpha_{a a^{\prime}}(b)=\alpha_{a}\left(\alpha_{a^{\prime}}(b)\right), \alpha_{a}\left(b b^{\prime}\right)=\alpha_{a}(b) \alpha_{\beta_{b-1}\left(a^{-1}\right)^{-1}}\left(b^{\prime}\right), \\
\beta_{b b^{\prime}}(a)=\beta_{b}\left(\beta_{b^{\prime}}(a)\right), \beta_{b}\left(a a^{\prime}\right)=\beta_{b}(a) \beta_{\alpha_{a-1}\left(b^{-1}\right)^{-1}}\left(a^{\prime}\right)
\end{gathered}
$$

for $a, a^{\prime} \in A, b, b^{\prime} \in B$. Therefore, the matched pair (A, B, α, β) in $[\mathbf{1 8}$, Theorem 2.3] appears. (Here, we remark that if we write $a b=\gamma_{a}\left(b^{-1}\right)^{-1} \delta_{b^{-1}}(a)(\in$ $B A$), then the matched pair of another type (A, B, γ, δ) in [19] is obtained, but in this article we would like to treat the former one for our purpose.)

For the matched pair (A, B, α, β), we have a finite dimensional Kac algebra of Majid's type ($[\mathbf{1 9}]$) ; the bicrossproduct Kac algebra consists of the crossed product algebra $Q:=l^{\infty}(B) \rtimes_{\alpha} A$ on $l^{2}(B) \otimes l^{2}(A)$ (and others, see below) generated by $m_{f} \otimes 1$ (simply denoted by $f \otimes 1=f$) for $f \in l^{\infty}(B)$ and $u_{a} \otimes \lambda_{a}$ (simply denoted by λ_{a}) for $a \in A$, where m_{f} is the pointwise multiplication operator on $l^{2}(B)$, the action α of A on $l^{\infty}(B)$ is induced by the action α of A on $B ; \alpha_{a}(f)(b)=f\left(\alpha_{a^{-1}}(b)\right)$ for $f \in l^{\infty}(B), u_{a}$ is the implementing unitary on $l^{2}(B)$ such that $\left(u_{a} \xi\right)(b)=\xi\left(\alpha_{a^{-1}}(b)\right)$ for $\xi \in l^{2}(B)$, and λ_{a} is the left regular translation; $\left(\lambda_{a} \xi\right)\left(a^{\prime}\right)=\xi\left(a^{-1} a^{\prime}\right)$ for $\xi \in l^{2}(A)$.

We know the Kac algebra structure of this crossed product algebra and its dual Kac algebra ([19]) ; for the crossed product algebra $Q=l^{\infty}(B) \rtimes_{\alpha} A$, the comultiplication Γ, the antipode κ, and the Haar weight ψ are described by :

$$
\begin{aligned}
\Gamma\left(\chi_{b}\right) & =\sum_{b^{\prime} b^{\prime \prime}=b} \chi_{b^{\prime}} \otimes \chi_{b^{\prime \prime}} \\
\Gamma\left(\lambda_{a}\right) & =\sum_{b} \chi_{b} \lambda_{a} \otimes \lambda_{\beta_{b^{-1}}(a)} \\
\kappa\left(\chi_{b}\right) & =\chi_{b^{-1}} \\
\kappa\left(\lambda_{a}\right) & =\sum_{b} \chi_{b} \lambda_{\beta_{b}\left(a^{-1}\right)} \\
\psi\left(\sum_{a} f_{a} \lambda_{a}\right) & =\frac{1}{|B|} \sum_{b} f_{e}(b)
\end{aligned}
$$

for $f_{a} \in l^{\infty}(B)$, and χ_{b} is the characteristic function on $b \in B$. And we have

$$
\left(l^{\infty}(B) \rtimes_{\alpha} A\right)^{\wedge}=B_{\beta} \ltimes l^{\infty}(A)
$$

where the right-hand side is generated by $1 \otimes f\left(f \in l^{\infty}(A)\right)$ and $\lambda_{b} \otimes v_{b}(b \in B)$ on $l^{2}(B) \otimes l^{2}(A)\left(\left(v_{b} \xi\right)(a)=\xi\left(\beta_{b^{-1}}(a)\right), \xi \in l^{2}(A)\right)$.

The above Kac algebra $\mathbf{K}=\left(l^{\infty}(B) \rtimes_{\alpha} A(=Q), \Gamma, \kappa, \psi\right)$ has a left action ([5]) on the factor $K=P \rtimes_{\gamma} A$; let us write two generators $\pi(p)(p \in P)$ and $\lambda_{a}^{\prime}(a \in A)$ of $P \rtimes_{\gamma} A$:

$$
(\pi(p) \xi)\left(a^{\prime}\right)=\gamma_{a^{\prime-1}}(p) \xi\left(a^{\prime}\right),\left(\lambda_{a}^{\prime} \xi\right)\left(a^{\prime}\right)=\xi\left(a^{-1} a^{\prime}\right)
$$

for $\xi \in l^{2}\left(A, L^{2}(P)\right)$.

Lemma 3.1. The following map $\delta_{K}: K \rightarrow K \otimes Q$ gives a left action of the Kac algebra \mathbf{K} on $K=P \rtimes A$:

$$
\begin{aligned}
\delta_{K}(\pi(p)) & =\sum_{b} \pi\left(\gamma_{b^{-1}}(p)\right) \otimes \chi_{b} \\
\delta_{K}\left(\lambda_{a}^{\prime}\right) & =\sum_{b} \lambda_{\beta_{b-1}(a)}^{\prime} \otimes \chi_{b} \lambda_{a} .
\end{aligned}
$$

This lemma follows from direct computation, hence the author leaves its proof to the reader.

So far, we are now ready to give the theorem.
Theorem 3.1. The factor $\left(P \otimes l^{\infty}(G / B)\right) \rtimes G$ is described as the crossed product algebra of $P \rtimes A$ by the left action δ_{K} in Lemma 3.1 of the Majid's bicrossproduct algebra $\mathbf{K}=\left(l^{\infty}(B) \rtimes A, \Gamma, \kappa, \psi\right)$.

Proof. We may think that three kinds of generators $\tilde{\pi}(p)(p \in P), \tilde{\pi}(f)(f \in$ $\left.l^{\infty}(G / B)\right)$, and $\tilde{\lambda}_{g}(g \in G)$ of the crossed product algebra $\left(P \otimes l^{\infty}(G / B)\right) \rtimes G$ look like

$$
\begin{aligned}
(\tilde{\pi}(p) \xi)\left(a B, g^{\prime}\right) & =\gamma_{g^{\prime-1}}(p) \xi\left(a B, g^{\prime}\right) \\
(\tilde{\pi}(f) \xi)\left(a B, g^{\prime}\right) & =f(a B) \xi\left(a B, g^{\prime}\right) \\
\left(\tilde{\lambda}_{g} \xi\right)\left(a B, g^{\prime}\right) & =\xi\left(g^{-1} a B, g^{-1} g^{\prime}\right)
\end{aligned}
$$

for $\xi \in l^{2}\left(G / B \times G, L^{2}(P)\right)$. Identifing $G / B \times G$ with $A \times B \times A$ by

$$
\left(a^{\prime} B, g=b a\right) \leftrightarrow\left(a, b, a^{\prime}\right),
$$

we may write these generators acting on $L^{2}(P) \otimes l^{2}(A) \otimes l^{2}(B) \otimes l^{2}(A)$ such as

$$
\begin{aligned}
(\tilde{\pi}(p) \xi)\left(a, b, a^{\prime}\right) & =\gamma_{(b a)^{-1}}(p) \xi\left(a, b, a^{\prime}\right), \\
(\tilde{\pi}(f) \xi)\left(a, b, a^{\prime}\right) & =f\left(a^{\prime}\right) \xi\left(a, b, a^{\prime}\right) \\
\left(\tilde{\lambda}_{\tilde{a}} \xi\right)\left(a, b, a^{\prime}\right) & =\xi\left(\beta_{b^{-1}}(\tilde{a})^{-1} a, \alpha_{\tilde{a}^{-1}}(b), \tilde{a}^{-1} a^{\prime}\right), \\
\left(\tilde{\lambda}_{\bar{b}} \xi\right)\left(a, b, a^{\prime}\right) & =\xi\left(a, \tilde{b}^{-1} b, \beta_{\tilde{b}^{-1}}\left(a^{\prime}\right)\right)
\end{aligned}
$$

for $f \in l^{\infty}(A), \tilde{a} \in A, \tilde{b} \in B$ and $\xi \in l^{2}\left(A \times B \times A, L^{2}(P)\right)$. On the other hand, the crossed product algebra of N by the (outer) action δ_{K} of $l^{\infty}(B) \rtimes A$ is generated by $\delta_{K}(K) \vee 1 \otimes\left(l^{\infty}(B) \rtimes A\right)^{\wedge}=\delta_{K}(K) \vee 1 \otimes\left(B \ltimes l^{\infty}(A)\right)$. (See [5].) It is easy to see that $\delta_{K}(\pi(p))=\tilde{\pi}(p), \delta_{K}\left(\lambda_{a}^{\prime}\right)=\tilde{\lambda}_{a}, 1 \otimes \lambda_{b}=\tilde{\lambda}_{b}$, and $1 \otimes f=\tilde{\pi}(f)$. Therefore, we are done.
(2) Let $M \supset N$ be an irreducible inclusion of type II_{1} factors satisfying $[M: N]<\infty$ and depth 2 , and G be a finite group with an outer action γ on both M and N. Moreover, suppose that $(M \rtimes G) \cap N^{\prime}=\mathbf{C}$. (This condition is equivalent to strong outerness of the action γ for $M \supset N$.) Then we have the depth 2 inclusion $\left(M \otimes l^{\infty}(G)\right) \rtimes G \supset N \rtimes G$. In fact, this inclusion is contained in the commuting co-commutig square $((M \otimes$ $\left.\left.l^{\infty}(G)\right) \rtimes G,\left(N \otimes l^{\infty}(G)\right) \rtimes G, M \rtimes G, N \rtimes G\right)$. Similar argument as in Proposition 3.1 implies that the assumption in Theorem 2.1 for the inclusions $\left(M \otimes l^{\infty}(G)\right) \rtimes G \supset\left(N \otimes l^{\infty}(G)\right) \rtimes G(\cong M \supset N$ by Takesaki duality) and $\left(N \otimes l^{\infty}(G)\right) \rtimes G \supset N \rtimes G$ holds, hence we have the conclusion. (Cf. the orbifold construction [3, 7] and also [2].)

References

[1] S. Baaj and G. Skandalis, Unitaries multiplicatifs et dualité pour les produits croisés de C^{*}-algèbres, Ann. Sci. École Norm. Sup., 26 (1993), 425-488.
[2] J. De Cannière, Produit cronsé d'une algèbre de Kac par un groupe localement compact, Bull. Soc. Math. France, 107 (1979), 337-372.
[3] M. Choda and H. Kosaki, Strongly outer actions for an inclusion of factors, J. Funct. Anal., 122 (1994), 315-332.
[4] M.-C. David, Paragroupe d'Adrıan Ocneanu et algèbre de Kac, to appear in Pacific J. Math.
[5] M. Enock, Produit croisé d'une algèbre de von Neumann par une algèbre de Kac, J. Funct. Anal., 26 (1977), 16-47.
[6] M. Enock and J.-M. Schwartz, Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag, 1992.
[7] D. E. Evans and Y. Kawahigashi, Orbifold subfactors from Hecke algebras, Comm. Math. Phys., 165 (1994), 445-484.
[8] F. Goodman, de la Harpe and V.F.R. Jones, Coxeter Dynkin Diagrams and Towers of Algebras, Springer-Verlag, 1989.
[9] D. Guido and R. Longo, Relativistic invariance and charge conjugation in quantum field theory, Comm. Math. Phys., 148 (1992), 521-551.
[10] M. Izumi, Applıcatıons of fusion rules to classification of subfactors, Publ. RIMS, Kyoto Univ., 27 (1991), 953-994.
[11] V.F.R. Jones, Index of subfactors, Invent. Math., 72 (1983), 1-25.
[12] H. Kosaki, Automorphisms in the irreducible decomposition of sectors, in "Quantum and Non-Commutative Analysis", Kluwer Academic Publishers, 1993.
[13] H. Kosaki and T. Sano, Non-splitting inclusions of factors of type III_{0}, preprint.
[14] R. Longo, Index of subfactors and statistics of quantum fields I, Comm. Math. Phys., 126 (1989), 217-247.
[15] , Index of subfactors and statistıcs of quantum fields II, Comm. Math. Phys., 130 (1990), 285-309.
[16] -, Minimal index and braided subfactors, J. Funct. Anal., 109 (1992), 98-112.
[17] , A duality for Hopf algebras and for subfactors I, Comm. Math. Phys., 159
(1994), 133-150.
[18] S. Majid, Physıcs for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra, 130 (1990), 17-64.
[19] , Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang Baxter equations, J. Funct. Anal., 95 (1991), 291-319.
[20] A. Ocneanu, Quantized groups, string algebras, and Galois theory, in "Operator Algebras and Applications Vol. II", Cambridge Univ. Press, 1988.
[21] , Quantum Symmetry, Differential Geometry of Finıte Graphs, and Classification of Subfactors, Univ. of Tokyo Seminary Notes, 1991.
[22] S. Okamoto, Private communication.
[23] M. Pimsner and S. Popa, Entropy and index of subfactors, Ann. Sci. École Norm. Sup., 19 (1986), 57-106.
[24] , Iterating the basic construction, Trans. Amer. Math. Soc., 310 (1988), 127-133.
[25] S. Popa, Classification of subfactors: reduction to commuting squares, Invent. Math., 101 (1990), 19-43.
[26] , Classification of amenable subfactors of type II, Acta Math., $\mathbf{1 7 2}$ (1994), 163-256.
[27] T. Sano and Y. Watatani, Angles between two subfactors, J. Operator Th., 32 (1994), 209-241.
[28] W. Szymański, Finıte index subfactors and Hopf algebra crossed products, Proc. Amer. Math. Soc., 416 (1994), 519-528.
[29] A. Wasserman, Coactions and Yang-Baxter equations for ergodic actions and subfactors, in "Operator Algebras and Application Vol. II", Warwick, London Math. Soc. Lecture Notes Series 136, Cambridge Univ. Press, 1988.
[30] Y. Watatani, Lattices of intermediate subfactors, preprint.
[31] Y. Watatani and J. Wierzbicki, Commuting squares and relative entropy for two subfactors, J. Funct. Anal., 133 (1995), 329-341.
[32] J. Wierzbicki, An estimation of the depth from an intermediate subfactor, Publ. RIMS, Kyoto Univ., 30 (1994), 1139-1144.
[33] S. Yamagami, Vector bundles and bimodules, in "Quantum and Non-Commutative Analysis", Kluwer Academic Publishers, 1993.
[34] T. Yamanouchi, Bicrossproduct Kac algebras, bicrossproduct groups and von Neumann algebras of Takesaki's type, Math. Scand., 71 (1992), 252-260.
[35] , The intrinsic group of Majıd's bıcrossproduct Kac algebras, Pacific J. Math., 159 (1993), 185-199.
[36] , An example of Kac algebra actions on von Neumann algebras, Proc. Amer. Math. Soc., 119 (1993), 503-511.

Received June 23, 1993 and revised August 25,1994.
Faculty of Science
Yamagata University
Yamagata, 990, Japan

