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M-HYPERBOLIC REAL SUBSETS OF COMPLEX SPACES

GlULIANA GlGANTE, GIUSEPPE TOMASSINI AND SERGIO VENTURINI

The aim of this paper is to make a first attempt to study
real analytic subsets of complex manifolds (or more generally
of complex analytic spaces) from the viewpoint of the theory
of metric spaces.

1. Introduction.

Our starting point was inspired by the definition of the so-called Kobayashi
pseudodistance on complex manifolds We recall briefly that such a pseudo-
distance is defined on any complex analytic space M using only the space
of all holomorphic maps sending the open unit disk Δ in C in the space
M. Moreover the complex space M is said to be "hyperbolic" if such a
pseudodistance actually is a real distance, namely it assigns non vanishing
values to pair of distinct points of M. In our situation, we introduce a sim-
ilar pseudodistance dv^M on any subset of V of a complex analytic space
M using the space of all holomorphic maps from Δ to M sending the open
interval / =] — 1,1[ in V, and we introduce the concept of M-hyperbolicity
(cf. Section 2).

We are primarily interested in the case when M is a smooth complex
manifold and V is a (closed) real analytic smooth submanifold of M, but
the definitions work in this more general context as well.

Any holomorphic map between complex manifolds is distance decreas-
ing when the manifolds are endowed with the Kobayashi distances. Our
pseudodistances also fulfill this fundamental property. A unexpected phe-
nomenon is that there are some classes of non holomorphic mappings which
enjoy this property. A description of such mappings is given in the Section
3 of the paper. As an application, some hyperbolicity criteria are given, and
some Liouville type theorems are proved.

We also extend the construction of the Kobayashi-Royden pseudometric
when V is a smooth real analytic submanifold of a complex manifold M
(Section 4) and we establish some results on the behaviour of a complex
Lie group G acting holomorphically on M and leaving V invariant (Section
5). Moreover we define and study the "geodesies" for such a metric Some
examples are given (Section 6).
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2. Main definitions.

Let us fix some notations. We denote by / the open real interval ] — 1,1[,
and by D the open unit disk in C. The Poincare hyperbolic distance on D
will be denoted by p.

We denote by D(R), 0 < R < +oo, the set of complex number z such
that \z\ < R, and also put I(R) = D(R) Π R

Let M be a complex analytic (reduced) complex space and let V be a
subset of M. By an M-analytic arc in V, or simply an analytic arc in V,
we mean a holomorphic map / : D —> M such that /(/) C V. Given two
points p and q in V, an analytic chain 7 in V joining p and q is given by the
following data:

(i) points α 0 , . . . , ak in /;
(ii) M-analytic arcs / 1 ? . . . , /*. in V such that fι(a0) = p, fk(a>k) — 9

Λ K ) = Λ+iK ) for j = 1,... , fc - 1.
The length of the analytic chain 7 is by definition the number

J f e - l

i=o

We denote by CPjg(V, M) the set af all the M-analytic chains in V joining
p and g.

Using the analytic arcs so defined we introduce a pseudodistance on V by
the formula

dM) i f { ( ) I 7 e C M (

where by definition the second member in the definition is +00 if the set
Cp,q(V,M) is empty.

Clearly the function dVjM{p, q) so defined is a pseudodistance that vanishes
when p — </, it is symmetric in p and q, and satisfies the triangle inequality.

We say that V is hyperbolic with respect to M, or simply M-hyperbolic
if CIV,M{P, Q) > 0 whenever p φ q.

On the other hand we say that V is M-hyperbolically ffat, or simply
M-ffat, if the pseudodistance cfy5M vanishes identically.

In this paper we are interest in the case when V is a real analytic subset
(even a real analytic submanifold) of M. Nevertheless the definition makes
sense with no additional structure on V.

We begin by noting some elementary properties:
(i) If V = M, then cfy,M is the usual Kobayashi pseudodistance on M;

(ii) If M = D and V = /, then the Schwarz Lemma implies that the
pseudodistance dv^M is the restriction to / of the Poincare distance on
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(iii) If (Vi,Mi) and (V2,M2) are pairs of complex spaces as above and
/ : Mi —> M2 is a holomorphic map sending Vλ in V2, then for every p
and q in Vι

(iv) If δ : V x V -> [0, +00] is a pseudodistance such that

*(/(*),/(*)) < P ( M )

for all M-analytic arcs / in V then δ < dVyM.

(v) If M = C and V — R then C?V,M vanishes identically, that is, M is

C-flat; indeed, given y E i , let / be the analytic arc z H-» m/z, n G N;

then /(0) = 0, /(i/n) = y and hence

Taking the limit for n —ϊ -i-oo we obtain G?\/M(0, y) = 0.

3. Hyperbolicity and "good" mappings.

We say that an arbitrary map F : Mx -+ M2 between complex spaces is good,
if, for every holomorphic map / : D(R) —ϊ M 1 ? there exists a holomorphic
map / : D(R) -> M2 such that f(t) = F(/(ί)) for every ί G I{R).

The proofs of the following two Propositions are straightforward.

Proposition 3.1. Let Mx and M2 be complex spaces, V\ and V2 be subsets
of Mi and M2 respectively, and let F : Mi —> M2 be a good map satisfying
F(Vι) C V2. Then, for every pair of points p and q in V\,

dv2,M2(F(p),F(<l)) <dVlMl(p,q).

Proposition 3.2. Let Mi, M2, V1; V2 and F as in the previous Proposition.
(i) IfV2 is M2-hyperbolic and F\Vl is injective, then Vι is Mi-hyperbolic.

(ii) // Vι is Mi-flat and F(Vλ) = V2, then V2 is M2-flat

Every holomorphic map is clearly good. However there also are not holo-
morphic good maps:

Proposition 3.3. The map F : C n -> C 2 n defined by

z = ( z i , . . . ,zn) *-> F(z) = (zuzu... ,zn,zn)

is good.

Proof Let / : D(R) -^ Cn be a holomorphic map. Define /* : D(R) -> C n

by the formula

r(z)=*f(z)), zeD(R).
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Clearly /* is holomorphic and the map / : D(R) —ϊ C?n given by

where fτ and /* are the i-th component respectively of / and /*, satisfies

f(t) = F(f{t)) for every t G I(R). D

Since compositions of good maps are good we immediatly obtain

Proposition 3.4. Let H : C 2 n —̂  M be a holomorphic (or simply a good)

map. Then the maps F,G : C 1 -> M defined by

F(zu... ,zn) = H(zuzu... ,zn,zn),

G(xι +iyw" ->χn + iVn) = H(xuyu... ,xn,2/n),

are good.

For the projective space we have:

Proposition 3.5. The map F : QPn -* CP^, v = [n + I ) 2 - 1, defined by

(3.1) Wij = ZiZj, i,j = 0 , . . . , n

Proof. The assertion follows from the Propositions 3.3 and 3.4, and the fact
that for every k there is a one to one correspondence between holomorphic
maps / : D —> QF^ and holomorphic maps g = (go,- - ,gk) '• D(R) —> C "̂̂ 1

satisfying g{ φ 0 for some ΐ = 0,... , k. D

In order to find hyperbolic spaces the following (almost trivial) remark is

useful.

Proposition 3.6. Let M be a complex space and let V be a subset of M.
If N is a closed complex subspace of M containing V', then

In particular, if N is hyperbolic (as complex space), then V is M-hyperbolic.

Proof. It suffices to show that if / : D -» M is a holomorphic arc in V,
then f(D) C N, that is f~ι(N) = D. But this is obvious, since f~x(N) is a
closed complex subspace of D containing /, and any such a subspace must
coincide with D. D

We now give some example of flat spaces.
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Proposition 3.7. Any interval of the real line is flat.

Proof. It suffices to prove the assertion for the interval J — [0,1]. Indeed, the

map z H* exp(—z2) shows that d/,c(l5 t) = 0 for every t EJO, 1]. Analogously,

the map z •-> 1 - exp(-z 2) yields dJiC(t,O) — 0 for every t E [0,1[. Finally,

one has d J | C ( l , 0) < d J | C ( l , ιh) + rfj.cOΛi 0) = 0. D

As consequence of this Proposition we obtain the following Liouville type
Theorem.

Theorem 3.1. Let V be a subset of a complex space M. If V is M-
hyperbolic then every holomorphic map f : C —> M sending some non-trivial
real interval J C IK in V is a constant map.

Proof. Since V is M-hyperbolic and J is C-flat the map / must be constant

on J and hence it is constant on all C. D

Other examples of flat space are given in the following three Propositions.

Proposition 3.8. Any connected subset of a non-singular real conic in
C = R2 is flat.

Proof. Since real affine self map of C are good, any conic is isometric either
to the unit circle x2 + y2 = 1, or to the equilateral hyperbola xy — 1, or
to the parabola y — x2. Any connected subset of such a conic is the image
of an interval of some real line in C under the maps z •-> cos(z) + isin(z),
z H-> exp(^) + i exp(-2:), and z *-ϊ z + iz2 respectively. D

Proposition 3.9. The boundary S of the unit ball in Cn (with respect to

the standard euclidean norm) is flat.

Proof. Given two arbitrary distinct points p and q in 5, the complex line L
joining p and q intersect S along a circumference, that is, a conic in L, and
hence, by the previous Proposition, one has

ds,& (p, q) < dSπL,L{Pi 9) = °J

and the assertion follows. D

Proposition 3.10. Every real ellipsoid in C n is flat.

Proof. Indeed the unit ball of O1 can be mapped onto any real ellipsoid

under a suitable real linear map of C^, and any such map is good. D

And now here are some examples of hyperbolic sets. The following Propo-

sition is immediate consequence of Propositions 3.4 and 3.6.
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Proposition 3.11. Let K c C = K2n be a subset defined by k equations

(3.2) fi(xuyu... ,xn,yn) = 0, i = 1,... ,&,

where Xι and yτ are the standard real coordinates in C n , and / i , . . . , /& are
real analytic functions defined by real power series converging over all R 2 n .
Let Vc be the subset of C?n defined by the same set of equations 3.27 where
now Xi and yι represent the complex coordinates of C 2 n . Under these hy-
potheses, ifVc is hyperbolic (as complex space) then V is Cn-hyperbolic.

Example. Let z = x + iy be the standard coordinate in C. Let F c C the

graph of the real function y — log(l + x2). Then V is C-hyperbolic. Indeed

according to the previous Proposition it suffices to prove that the complex

curve

Vc = {(z,w) eC2 \exp(w) = 1 + z2}

is hyperbolic. Clearly Vc is regular everywhere, that is it is a closed Riemann
surface in C2. Let denote by g : Vc -> C the restriction to Vc of the projection
map (z, w) H^ z. The map g is a non constant holomorphic map on Vc. Since
the exponential function never vanishes, then the map g necessarily omits
the values i and —i, the zeroes of the function 1 + z2. The little Picard
Theorem therefore implies that the universal covering of Vc can not be the
complex plane, and hence Vc is covered by the unit disc JD, that is, Vc must
be hyperbolic, as asserted.

The following assertion gives a criterion for CP1-hyperbolicity.

Proposition 3.12. Let V C C C GP1 be a subset defined by an equation

(3.3) / ( s , y ) = 0 , z = x + iyeQ

where f(x,y) is a polynomial in the variables x and y of degree d. Let V be
the (topologicaΐ) closure of V in QP 1. Let Vc be the complex curve in C2 of
equation 3.3, where now x and y are considered as complex coordinates in
C 2

; and finally let Vc be the closure of Vc in CP 2 . If Vc is hyperbolic then
V (and hence V also) is QP1 -hyperbolic.

Proof. Let z0 and zγ be homogeneous coordinates in CP 1 , that is, z — x+iy =
z1/z0.

Let g G C[X0>^i>^2] be the homogeneous polynomial defined by the
equation

9(x0,x1,x2) = xd

Qf ( ^ ( * + * )
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Choosing XQ,Xγ,X2 and X3 as homogeneous coordinates in QP3, let W be
the quasiprojective algebraic subset of GP3 defined by

QX% ~~ X\Xi = 0 ,

and let W be the closure in CP3 ofW.
Consider now the map F : CP1 -* CP3 defined by

Xι =
<

Such a map is injective, and Proposition 3.5 says that the map F so defined
is a good map. By construction one clearly has F(V) C W and hence
F(V) C W. By Proposition 3.2, in order to check the QP1-hyperbolicity of
V, it suffices to prove that the curve W is hyperbolic.

It is easy to show that W and Vc are isomorphic (as affϊne algebraic va-
rieties), and therefore W and Vc are birationally equivalent as projective
algebraic curves. Since hyperbolicity is preserved under birational isomor-
phisms between (compact algebraic) curves, it follows from our hypotheses
that W is hyperbolic, as asserted. D

For algebraic varieties of higher dimension hyperbolicity is no longer a bi-
rational invariant. So the previous argument does not apply to higher dimen-
sional projective spaces. Nevertheless the following Liouville type Theorem
for meromorphic mappings holds:

Proposition 3.13. Let F c C n be a subset defined by k equations as in the
Proposition 3.11. Let Vc be defined as in Proposition 3.11, and let Vc be the
closure in CP 2 n of Vc- Let f1,...,fn:C—>Cbe meromorphic functions.
Assume that

(i) there exists a non-degenerate interval J c K such that every f{ has no

poles on J and (/ι(t), . . . , /n(ί)) G V for every t G J;

(ii) the complex space Vc is hyperbolic.

Then every fι is a constant function.

Proof. Let P be the set of all the poles of the functions f{. The set P is
discrete and closed in C It is easy to check that, for every i = 1,... , n, the
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function f*(z) = f(z)} is an entire meromorphic function, and the mapping
F : C \ P ->• C?n defined by

\(fn(z) + mz)),±-.(fn(z) - f:(Z

is a holomorphic map sending the real interval J in Vc Since Vc is closed
in QP 2 n , it follows that F(C \ P) C Vfc. Moreover, by hypothesis, Vc is a
compact hyperbolic complex space. Thus the map F extends throughout all
C (cf. Corollary 3.2. of Chapter VI of [4]). Again by the hyperbolicity of
Vc, the map F must be constant, and this yields our assertion. D

The following Proposition follows immediatly from [8, Theorem 3].

Proposition 3.14. Let M be a complex manifold and let V be a subset of
M. Assume that there exists a bounded plurisubharmonic function u : M —>
K. of class C2. If u is strictly plurisubharmonic at every point ofV, then V
is M-hyperbolic.

4. Real analytic submanifolds.

In this section we assume that M is a (connected) complex manifold and

V C M is a (connected) closed real analytic submanifold of M.

Proposition 4.1. Let p0 G V C M be a point and let (U,x) be a local
real coordinate system on V around p0. Then there exists a neighbourhood
U' C.U of po and a positive finite constant C such that for every p and q in
V one has

i<l) < C\\X(P) ~ x(

In particular the function dv^M is continuous in V x V.

Proof. Let m be the real dimension of V. Thus the map x is a real analytic
diffeomorphism of U onto x(U) C Mm. Put x0 = x(po) Since the map
x~x : x(U) —> V is real analytic, there exists a neighbourhood Uf C U of p0

and a small ball B C Cm centered at x0 and a holomorphic map F : B -» M
such that x(U') CC JB, F(B Π R m ) C U C V, and F(x(p)) = p for every
p G U'. It follows that if p and q are arbitrarily chosen points of U' then

(4.1) dVM(p,q) - dVM{F{x{p)),F{x{q))) <
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Since x(U') CC B it easy to prove, using images under complex affine map-
pings of the unit disc Z), that there exists a constant C such that for every
pair of points y' and y" in x(U') one has

(4.2) dBaam,B(y',y")<C\y'-y"\.

Combining 4.1 and 4.2 our assertion follows. D

The following assertion is an immediate consequence of this proposition.

Proposition 4.2. IfV is M-hyperbolic then the distance dv,M induces the
topology of V.

Proof. As dv^M is continuous we only have to prove that for every p0 G V
the open balls B(r) = {p G V \ dViM(p,q) < r} form a fundamental system
of neighbourhoods of p0.

Let U be an arbitrary neighbourhood of p0. We need to prove that there
exists a ball B(ε) contained in U for some ε > 0. Pick a connected neig-
bourhood U' of x0 contained in U with compact boundary S — dU'. Every
analytic chain in V connecting p0 and an arbitrary point q in V \ U' must
intersect the boundary S of U' and therefore one has

jnf dVM{po >p) > irt dv,M(Po,p) > inf dVM(p0,p) = ε > 0,

where the last inequality follows from the M-hyperbolicity of F, the conti-

nuity of dV)M and the compactess of S. But this implies that B(ε) C U' C U,

as asserted. D

We now introduce a pseudometric on V C M which generalizes the con-

truction of the Kobayashi-Royden pseudometric on complex manifolds, and

then we will prove that its integrated form is the pseudodistance dv,M-
Let us fix some notation. For every p G V we identify the real tangent

space of M at p with the holomorphic tangent space of M at p, so that
the (real) tangent space TPV of V at p will be identified with a subspace of
the holomorphic tangent space T^M of M at p. For later use we denote by
CΓpV the smallest complex vector subpace oΐT^M containing TPV.

If / : D —> M is a holomorphic map sending / in V, for every t G / C D
we then denote by f'(t) either the image of the (real) tangent vector d/βt
under the differential of /μ at £, or the image of the holomorphic tangent
vector d/dz under the (holomorphic) differential of / at t.

With this notation, for every p G V and every ξ G TPV we define
[FV,M](P->0

 a s the infimum of the positive real numbers a > 0 for which
there exists an M-analytic arc / in V such that /(0) = p and /;(0) = a~ιξ.
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It is easy to check that all properties ( i ) , . . . , (v) of the Section 2 stated
for the pseudodistance dViM, with the necessary modifications hold for the
pseudometric [FV^M]. Moreover one sees that this pseudometric decreases
under differentiable good mappings, and that the analogous estimate to that
in Proposition 4.1 can also be given for this pseudodistance.

Up to now very little can be said about the regularity of [i<V)M]. Denoting
the (real) tangent bundle of V by TV with its usual topological structure,
the best result we can prove is the following:

Proposition 4.3. The pseudometric [FyiM] •' TV -* [0, +oc[ is a Borel
function.

Proof. Denote [ F ^ M ] simply by F. We will prove our assertion finding a de-
creasing sequence of lower semicontinuous pseudometrics Fn : TV —» [0, +oo[
such that for every p G V and ξ G TPV one has

(4.3) F(p,ξ) = mΐFn(p,ξ).

Fix a complete hermitian metric h on M and denote by d its associated
distance. For every n E N let denote by Λn the class of all analytic arcs /
in V satisfying d(f(z), f(w)) < n \\z — w\\ for every z and w in D. Let Fn be
the pseudometric defined as the pseudometric F but using analytic arcs in
Λn instead of all analytic arcs in V. As consequence of the Ascoli Theorem,
by the completeness of the metric h and the closure of M, it follows that
if /„ is an arbitrary sequence of analytic arcs in Λn such that the sequence
fu(0) converges to some point p £ V, then a subsequence of fv converges
uniformly on all compact subsets of D to an analytic arc / G Λn such that
/(0) = p. Moreover the derivatives at 0 of such a subsequence converge to
/'(()). It is then an easy matter to derive the lower semicontinuity of the
pseudometric Fn from this fact.

Let now p G V and ξ G TPV be given. Let / be an analytic arc in V
such that /(0) = p and /'(0) — a~1ξ. For every ε > 0 small put fε(z) —
/((I — έ)z), z G D. Then fε -> / uniformely on compact subsets of D,
and each fε belongs to An, for some n — n(ε). All this clearly implies the
formula 4.3. The proof is so completed. D

If 7 : [0,1] —> V is an absolutely continuous curve, the length of 7 (with

respect to the pseudometric [FyiM]) is the number

' [Fv,M}{Ί(s),<y(s))ds.1
The integrated form dVjM{p, Q) of the pseudometric [FV,M] is the infimum

of the lengths of the absolutely continuous curves 7 : [0,1] -> V such that
7(0) =p and 7(1) =q.
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Proposition 4.4. The pseudodistance dViM crnd the integrated form of the
pseudometric [FV^M] coincide.

Proof. It is a direct consequence of the Theorem 2.1 of [9]. D

5. Group actions.

In this section M will stand for a complex manifold, V for a closed real
analytic submanifold of M, and G for a complex Lie group of holomorphic
transformation of M. We denote by G(V) the subgroup of G of the trans-
formations which leave the submanifold V invariant. Being V closed in M,
then G(V) is a closed subgroup of G, and therefore is a (real) Lie group. We
also denote by g and g(V) the Lie algebras respectively of G and of G(V),
and by J the complex structure of g.

Theorem 5.1. If G(V) acts transitively on V, then V is M-flat.

Proof. Let p G V. Then there is a neighbourhood U of p in V such that
every q eV belongs to a real one parameter subgroup t»-» exp(£X), for some
X € gOO? which extends holomorphically to a entire holomorphic map by
C 3 z H+ f(z) = exp(zX). Clearly /(K) C V, and therefore dVM(p,q) = 0.
The triangle inequality then implies that dy^M vanishes everywhere, that is
V is M-flat. ' D

Theorem 5.2. // G(V) acts effectively on V and V is M-hyperbolic then
G(V) is discrete.

Proof. It suffices to prove that g = 0. Pick X G g. Consider the real
one-parameter subgroups

t *-> exp(tX), t M- exp(ί JX).

We have [X, JX] — 0 and consequentely these two one-parameter subgroups
generate a complex one-parameter subgroup H of G. Thus, taking C, the
universal covering of ϋΓ, we obtain a holomorphic action C x M -> M which
extends the real action on V given by (t,p) M- exp(tX)p. Then, from the
Theorem 3.1 it follows that exp(tX)p = p for every t £ M, p G V and this
implies X = 0, because G(y) by hypothesis acts effectively on V. D

Corollary 5.1. If V is M-hyperbolic and dim^G(V) > 0; then G acts-
trivially on V. In particular, if there is a point p0 G V such that CΓP0V =
TPoM, then G acts trivially on M.

Corollary 5.2. Let M be compact, V be M-hyperbolic and suppose that
there is a point p0 such that CΓPo V = TP0M. Denote with Aut(M) the group
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of all the holomorphic automorphisms of M. Then the set

{σ e Aut(M) I σ(V) C V}

is a discrete subgroup of Aut(M).

Proof. Indeed Aut(M) is a complex Lie group wich acts on M effectively.

D

Example. Let M = C2; then C* = C \ {0} acts on C2 by

(z,w) >->(λz,w + (λ2 -l)z2).

Let

V = {(t,t2) | t € R } , V = {(t + it,2it2) \teR}.

Then G(V) = G(V) = M* = K\{0} acts effectively on V and V respectively.
Observe that V and V in this example are flat.

6. Geodesies.

Let M be complex space and V be a subset of M. We say that an analytic
arc / : Δ -* M such that /(/) C V is a M-geodesic if it is a local isometry
with respect to the distances dj^ and dy^M-> that is, for every t0 £ I there
exists a open interval J C I containing t0 such that

dγM(f(t)J(s))=dIΛ(t,s)

for every t and s in J . With abuse of language we also call M-geodesic in V
a one dimensional real submanifold of M contained in V which is the image
of the interval / under a M-geodesic / : Δ —>• M in V.

Remark. If M is a hyperbolic Riemann surface and V — M then the
distance dVM is the distance associated to a Hermitian metric ΛM, and a
M-geodesic in V is a holomorphic map / : Δ -> M such that /μ is a geodesic
with respect to the metric hw

The following Proposition on geodesies on Riemann surfaces is useful for
finding geodesies.

Proposition 6.1. Let M be an hyperbolic irreducible complex curve, that
is an irreducible complex space of (complex) dimension \, and let Mr be the
set of regular points of M. Let φ : M —» M be an antiholomorphic map and
let X be the set of the fixed points of φ. Then each connected component of
X contained in Mr is (the image of) a geodesic of M.

Proof. Let Xo be a connected component of X contained in Mr and let
x0 e Xo. Let π : M -> M be the normalization of M and let x0 G M be the
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unique point such that π ( ί 0 ) = #o Let / : Δ —> M be a universal covering
of M such that /(0) = x0 and let σ : Δ —> Δ be the unique continuous map
such that σ(0) — 0 and πofoσ = φoπof. Then Xo is the image under
π o / of the set Z of the fixed point set of σ. But σ is an antiholomorphic
automorphism of Δ such that σ(0) = 0 and hence there exists θ e E such
that

σ(z) = eiθz.

Thus the set Z is the intersection of Δ and a straight (real) line through
the origin, and therefore it is a geodesic in Δ (for the Poincare metric of
Δ). Since both the covering map / and the restriction of π to π~1(Mr) are
(local) isometries for the Kobayashi distance, the set Xo also is a geodesic
in M, as asserted. D

Example. Let X C C2 be the image of the periodic map / : E -» C2

defined by

( •

' ( e t t - 2 ) ( 2 e t t - l ) ,

Then X is a C2 geodesic. Indeed let M = C \ {0, i/2, 2} and let F : M -» C2

be the map defined by

Then F is a holomorphic embedding of M into C2 and X is the image under
F of S C M, the unit circle in C Hence it suffices to prove that S is
a geodesic in M (for the Kobayashi metric). But this follows immediatly
from the previous proposition, observing that S is the fixed point set of the
antiholomorphic automorphism φ : M —• M defined by

φ(z) = l/z.

Proposition 6.2. Let V C C" = lR2n be a subset defined by k real equa-
tions as in Proposition 3.11. Assume furthermore that V is a real smooth
submanίfold of (real) dimension one. If V is Cn -hyperbolic then each con-
nected component of V is a O1 -geodesic.

Proof. Let F : Cn -> C 2 n be defined by

Z = (X1 + Z J / 1 , . . . ,Xn +iyn) ^ ( ^ l , y i , . . - iXrnVn)-
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Let Vc C C 2 n be defined as in the Proposition 3.11. Let L : C 2 n -» C n be
the holomorphic map defined by

Obviously L(F(z)) — z for every z E C n . Thus, given z,w E V, one has

(6.1)

It follows that the map L : F(V) -> V is an isometry with respect to the
distances dp(v)1c

2n a n d c?y,o 5 and hence in order to prove our assertion it
suffices to prove that each connected component of F(V) is a C2n-geodesic.

Let F(V0) be a connected component of F(V), where Vo is a connected
component of V, and let W be the smallest complex analytic subspace of
C 2 n containing F(V0). Since W is closed in C 2 n then, by Proposition 3.6,
one has

Since V is Cn-hyperbolic, by 6.1 it follows that W is not flat for the Kobayashi
metric, and hence, since W is a complex one dimensional curve, it is hyper-
bolic.

Let φ : C?n -> C 2 n the map defined by

Since Vc is defined by real equations, the space W is invariant under φ.
Clearly the restriction of the map φ to W is an antiholomorphic automor-
phism of W. We end the proof observing that FfVo) is a connected compo-
nent of the fixed point set in W of the map ψ and hence the Proposition 6.1
applies. D

References

[1] M. Abate, Iteration theory of holomorphic maps on taut manifolds, Mediterrean
Press, Cosenza, 1989.

[2] T. Pranzoni and E. Vesentini, Holomorphic maps and invariant distances, North
Holland, 1972.

[3] F. Forstneric and J.P. Rosay, Localization of the Kobayashi metric and the boundary
continuity of proper holomorphic mappings, Math. Ann., 279 (1987), 239-252.

[4] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Dekker, New York,
1970.

[5] , Intrinsic distances, measures and geometric function theory, Bull. Amer.
Math. Soc, 82 (1976), 357-416.



M-HYPERBOLI REAL SUBSETS 115

[6] S. Lang, An introduction to complex hyperbolic spaces, Springer, New York, 1987.

[7] H. Royden, Remarks on the Kobayashi metric, In Several Complex Variables II,
Lect. Notes in Math., 189, Springer, Berlin, 1971, 125-137.

[8] N. Sibony, A class of hyperbolic manifolds, In Recent Developments in Several Com-
plex Variables, Ann. of Math. Study, 100, 1981, 357-372.

[9] S. Venturini, Pseudodistances and pseudometrics on real and complex manifolds,
Ann. Mat. Pura e Appl., Srie (IV), 154 (1989), 385-402.

[10] E. Vesentini, Variations on a theme of Caratheodory, Ann. Sc. Norm. Super. Pisa,
6 (1979), 39-68.

Received July 14, 1993.

UNIVERSITA DI PARMA
VIA DELL'UNIVERSITA, 12
43100 PARMA, ITALY

SCUOLA NORMALE SUPERIORE
PIAZZA DEI CAVALIERI, 7
56126 PISA, ITALY

AND

UNIVERSITA DI BOLOGNA
PIAZZA DI PORTA S. DONATO, 5
40127 BOLOGNA, ITALY






