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A TYPE OF UNIQUENESS FOR THE DIRICHLET
PROBLEM ON A HALF-SPACE WITH CONTINUOUS DATA

HlDENOBU YOSHIDA

Dedicated to Professor F.-Y. Maeda on his 60th birthday

In this paper, we shall prove a property of the harmonic
function H defined on a half-space T which is represented by
the generalized Poisson integral with a slowly growing con-
tinuous function / on the boundary dT of T. Then we shall
investigate the difference between H and more general har-
monic functions having the same boundary value / on dT.
These give a kind of positive answer to a question asked by
Siegel.

1. Introduction.

Let K. and K+ be the sets of all real numbers and of all positive real numbers,

respectively. We introduce the spherical coordinate (r, Θ), Θ = (0i,02, >

0n-i)> i n ^ e n-dimensional Euclidean space Rn (n > 2) which are related to

the cartesian coordinates (X,y), X — {xι^x2->. ,xn-i5!/) by the formulas

/n-l

Xχ ~ Γ I Π

and if n > 3,

Λ-i \
Xn+ι-k = r J | sinθ^ cos0fc (2 < k < n - 1),

where

0 < r < H-oc, - 2 " x π < 0n_i < 2~13π

and if
n > 3, 0 < θj < π (1 < j < n - 2).

The unit sphere (the unit circle, if n = 2) and the upper half unit sphere

{(l,0i,02,..- A - i ) e M n ; 0<6>! < f} (the upper half circle {(l,0i) E M2;
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-2-λπ <θx< 2~ιπ) if n = 2) in Rn (n > 2) are denoted by S71"1 and S!p\
respectively. The half-space

{ ( I , y ) G Γ ; X G R n - 1 , y > O } = { ( r , θ ) G Γ ; Θ G S ^ 1 , 0 < r < + O O }

is denoted by Tn. Then the boundary dΊn of Tn in Rn (n > 2) is identified
with R71"1, which is represented as

{Q = (t,ξ)ew-ι

; |g| = t > o, f e as"-1}

by the spherical coordinates, where 9S+"1 is the boundary of S+"1 in S71"1 (if
n > 3, then dS1^1 = § n " 2 and if n = 2, then dS\ = {-§, f} , (t, f) = t G R
and (ί,-f) = - t 6 R ( ί > 0 ) ) .

Given a continuous function / on OTn, we say that h is a solution of the
(classical) Dirichlet problem on Tn with /, if h is harmonic in Ύn and

lim h(P) = /(Q)

for every Q e dTn.
Helms [4, p. 42 and p. 158] states that even if / is a bounded continuous

function on dTn, the solution of the Dirichlet problem on T n with / is not
unique and to obtain the unique solution H(P) (P = (X,y) € Tn) we must
specify the behavior of H(P) as y —» +oo. With respect to this fact, Siegel
[6, Theorems 1] proved the following result. Let Ft (ί > 0) be the set of
continuous functions f{x) on R such that

i: \x
2+ι

If f G Fι, then there exists a solution Ht^{f){P) of the Dirichlet problem on

T 2 with f satisfying

o(rί+1/cosθ1) (r -> +oo)

(P = (rsinθi, rcos^i) G T 2 ) .

If h(P) is a solution of the Dirichlet problem on T2 with this f such that

h(P) = o(/ + 1 / c o s 0 i ) (r -> +oo) (P = (rsinβi, rcosβi) G T2),

then

for every P G T 2, tί Λere U(h)(P) is a harmonic polynomial (of P = (xyy) G

R2) of degree at most ί vanishing on dΊ2 = {(z,0) G R2; rr G R} . Further



DIRICHLET PROBLEM ON A HALF-SPACE 593

he stated the following result without proof (Siegel [6, Theorem 3]). Let £ be
a non-negative integer. If f is a continuous function on dYn (n > 2) such
that

(1-1) \f(Q)\<F(x) (QedΊn = Rn-\ \Q\=x)

for some F(x) € Fe, F{x) = F{—x) (x € M), then there exists a solution
He,n(f){P) of the Dirichlet problem on Tn with f satisfying

(1.2) He<n(f)(P) = o(ri+1/cosθ1) (r^+oo)

(P = (r,Θ) € Tn, Θ = (Θ1,θ2,... ,0 n - i)) .

If h(P) is a solution of the Dirichlet problem on Tn with this f satisfying

(1.3) h(P)=o(ri+1/cos θ1) (r->+oo)

(P = (r,θ) € Tn, θ = (Θ1,θ2,... ,0n-x)),

then
h(P) = Ht,n{f)(P) + U(h)(P) (P € Tn),

where U(h)(P) is a harmonic polynomial of P — (#i,#2? ,rrn_i,ί/) G W1

of degree at most ί vanishing on dTn = { ( I , 0 ) G R n ; X e W1'1} .
In connection with these results, Siegel [6, p. 8] asked whether the condi-

tion (1.1) of f{Q) can be replaced by more natural condition

(1 4) Lτv§*dX<+~ ιl20}

under which H£)Tl(f)(P) exists.
A special case of the following result of Yoshida shows that this question

is solved affirmatively in the case where i — 0. To state it, we need the
following notations. Let Φ(r, θ) be a function on Tn. We put

N(Φ)(r)= / ^Φ(r,θ)cosθidσθ (θ = (0i,02,... ,0n-i

and

μo(Φ) = lim r"

if they exist, where dσ& is the surface element on S n x. Let Gn(P1,P2){Pι1

P2 E Tn) be the Green function of T n . By K^n(P, Q) (P e Tn, Q e dΊn),
we denote the ordinary Poisson kernel of T n

ς fθ.(P,<ϊ) = 5! | i .-β |- c.-l' Ά <" = ;;>
ov sn [(n-2)sn, (n > 3)
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where — denotes the differentiation at Q along the inward normal into Tnόv
and sn is the surface area 2τrn/2{Γ(n/2)}-1 of Sn~\

Theorem A. (Yoshida [8, Theorem 3 and Lemma 3]). Let f(Q) be a con-
tinuous function on Ύn (n > 2) satisfying

r+cχ>

(1.5) J Γ2 Π_λ \f(t,ξ)\dσξj dt < +00,

where dσ^ is the surface element of 9S"" 1 = Sn~2 (n > 3) and

ί \f(t,ξ)\dσξ= f(t^) + / ( t , ~ ) (n = 2).

Then the Poisson integral

H0,n(f)(P) = j d τ f(Q)K0,n(P,Q)dσQ

is a solution of the classical Dirichlet problem on Ύn with f such that

μo(HoA\f\))=0.

If h(P) is a solution of the classical Dirichlet problem on Tn with this /,
then two limits μo{h) (—00 < μo(h) < -j-oo) and μo(\h\) (0 < μo(\h\) ̂  +00)
exist, and if

(1.6) μo(\h\) < +00,

then

(1-7) h(P)=HoM)(P)

foranyP = (X,y)€Ίn.

We remark that (1.5) is equivalent to

• dQ < +00.

If h is a solution of the Dirichlet problem on Tn with this / such that
h = o(r/cosθi) (r -> oo), then μo{\h\) = 0, μo(h) = 0 and hence h(P) =
Ho,n{f){P) This shows that Theorem A gives a positive answer to SiegeΓs
question in the case where ί — 0. However Theorem A gives a form of h not
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only in the case where μo(|^|) — 0 but also in the case where 0 < /io(|/ι|) <
+ OO.

In this paper we shall show that a solution of the Dirichlet problem on T n

with / satisfying (1.4) satisfies a natural condition weaker than (1.2) (The-
orem 1) and other solutions with this / satisfying some growth condition
different from (1.3) are specified in a certain sense (Theorem 2), which con-
tains a positive answer to SiegeΓs question in every case (Corollary 1) and
gives a generalized form of Theorem A (Corollary 2). We shall also state
Theorem 2 in more general form (Theorem 3).

I would like to thank the referee for suggesting a much simpler proof of
Lemma 3.

2. Statement of results.

We denote the origin of IRn by O. Let k (k > 0) and n (n > 2) be two

integers and let Lk^n+2 be the (n + 2)-dimensional Legendre polynomial of

degree £;, where Lo,n+2 = l We also put

n-ί

We note that ck^n+2Lk^n+2(t) is equal to the ultraspherical (or Gegenbauer)

polynomial Pk

/2 of degree k associated with | (see Stein and Weiss [7, p. 148])
The following theorem gives the Fourier expansion of KOjΐl(P, Q).

Theorem B. (Armitage [1, Theorem E] and Gardiner [3, Theorem B]).

Let Q = (Z) = (ί,f) E R71'1 - {O}, \Q\ = t, ξ E Sn~2 (n > 2). The function

Jk,n,Q ofP = (X,y) = (r ,θ) E IT, θ = (0i,02,-- A - i ) , 9™en by

(2.1) Jk^Q(P) = rh+1 cos θιLk^2(smθ1 cos

(7 is the angle between (-X", 0) and (Z,0))

is a homogeneous harmonic polynomial of degree k -\-1. Further the function
independent of t and r

{which is the restriction to the surface § n - 1 of Jkyn,Q(P) and hence a spherical
harmonic of degree k + V) satisfies

(2.2) |/,,n

for each P = (r, θ) E Rn. // r < t and θ E S+" 1 then K0,n(P, Q) is given by

K0,n(P,Q) = -
SSn k=0
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For an integer £ > 1 and two points P = (r, θ) e Tn, Q = (t,ξ) e OTn,
we put

VUPQ)

We see from Theorem B that for any fixed Q 6 dTn the function V^n(P, Q) of
P £ Tn is harmonic on Tn and vanishes on OTn. We define another function

TTΛ / o ^^ ίVifn(J°, Q) (P eTn,Q = (ί, 0 e STn, 1 < t < +oo)

In addition to K0>n(P, Q), the Poisson kernel Ke>n(P, Q) (P G Tn, Q g 5Tn)
of order t {I > 1) is defined by

κe>n(p, Q) = κo,n(P, Q) - Wi,»(P, 0)

(see Siegel [6, p. 7] and also see Armitage [1, p. 56]).
Let I be a non-negative integer. Given a function Φ(r, θ) on Tn, we set

μt(Φ) = lim r-*-χiV(Φ)(r),
r—>oo

if it exists. By FιiΎl we denote the set of continuous functions f(Q) on
dΊn = W1'1 (n > 2) such that

which is equivalent to

Jdsi-1

Hence F^2 is equal to F£.

Theorem 1. Let £ (ί > 0), n (n > 2) 6e too integers and f e FitΛ. Then

Ht,n(f)(P)=f f(Q)Ke,n(P,Q)dσQ
JdΎn

is a solution of the classical Dirichlet problem on Ύn with f satisfying

(2.4)

Remark 1. Further, suppose in Theorem 1 that / E Ft^n for some £' lesa
than L Then
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Γ°°t-k-2 (ί Ik^(Θ)f(t,ξ)dσλ dt P=(r,θ).

We note from (2.2) that

^ dί<+oo.

Put Jk,n,Q(P) = yΎk3niQ(P), and observe from (2.1) that Ύk^Q(P) is a
polynomial of P = (xχ,x2,... ,xn_i,y) G Mn of degree at most k and even
with respect to the variable y. Hence, if we set Jkn(f)(P) = j/ϊjζn(/)(P),
then Ύ*kn(f)(P) is a polynomial of P = (xι,x2,... ,xn_i,?/) of degree at
most k and even with respect to y (h = £',£' + 1,£' + 2,... ,£ — 1). Thus

fΓo,(/)(P) = HP,n{f){P) + yL(f)(P),

where L(f)(P) is a polynomial of P = (̂ 1,̂ 2? i%n-ι,y) £ Mn of degree
at most £ — 1 and even with respect to y.

Remark 2. If (1.2) is satisfied, then (2.4) also holds. Since Siegel assumed
(1.1) which is stronger than (2.3), he could obtain (1.2). It is interesting to
ask whether (1.2) follows under (2.3) or not.

The following result is just a generalization of Picard's theorem stating
that a positive harmonic function in the Euclidean space is a constant. Let
H(r,Θ) be harmonic on Em (ra > 2). If for some positive t > 1,

r-^MiH+Hr) -> 0 (r -> +00), M{H+){r) - / ίί+(r, θ) dσ,7 0 7

then for some positive integer £ less than t

£

where C is a constant and Ξk(r,Θ) = rkYk(Θ) is a homogeneous harmonic
polynomial of order k (1^(0) is a spherical harmonic function) (see e.g.
Brelot [2, Appendix; §26]).

It is well known that many results on harmonic functions in Mn can easily
obtained by a passage to Mn+2. By using this fact and the result with m —
n + 2 stated above, Kuran proved the following Theorem C. To state it, for
a function Φ(r, θ) on Tn we define

2?(!/Φ,r) = (σ+)-1 / ί/Φ(r,θ)dS+
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if it exists, where §+ = {(r, θ ) G T n ; Θ G S+"1} , σ+ is the surface area of
the spherical part of §+ and dS+ is the surface element of §+.

Theorem C. (Kuran [5, Theorem 10]). Let h{X,y) (— h(r,θ)) be a har-
monic function on T n such that h vanishes continuously on dTn.

If for some positive t,

(2.5) lim r'f'2V(yh+, r) = 0,
T—>-OO

then

h = yU(h)

in T n , where Tl(h) is a polynomial of(xι,x2,... , xn-i, y) E IRn of degree less

than t and even with respect to the variable y.

Remark 3. Let Φ(r, Θ) be a function on T n . Then

(2.6) V(yΦ,r) = 2s~V]V(Φ)(r),

if they exist. Hence (2.5) is equivalent to

limr" ( f + 1 )JV(Λ+)(r) = 0.
r—>oo

The following theorem answers affirmatively Siegel's question in the case
where I is a positive integer.

Theorem 2. Let ί (I > 1), n (n > 2) be two integers and

(2.7) / G Fitn.

If /ι(r, Θ) is a solution of the Dirichlet problem on Tn with f satisfying

(2.8) μe(h+) = 0,

then

(2-9) h(P) = Htιn(f)(P) -

for every P = (X, y) E T n , where Π(/ι) (P) is a polynomial of P — (xι, x2, -
xn-ι,y) G W1 of degree at most ί—1 and even with respect to the variable y.

The result obtained by Siegel immediately follows from the remark fol-
lowing Theorem A (the case ί = 0) and Theorem 2 (the case ί > 1).
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Corollary 1. Let i be a non-negative integer and f(Q) be a continuous
function on dTn — R n - 1 (n > 2) satisfying

\f(Q)\<F(x) (Qer-1, \Q\ = X>O)

for some F(x) e Ft (£ > 0), F(x) = F(-x) (x E K). If h(P) is a solution of
the Dirichlet problem on Ύn with f such that

h(P)=o(re+1/ cos ΘJ (r->oo) (P = (r, Θ) 6 T n ) ,

then

h(P) = Ht,n(f)(P) + U(h)(P) (P = (r ,θ) G T n ) ,

where U(h)(P) is a harmonic polynomial of P — (x1,x2,. . , a;n_i,y) G Mn

o/ degree at most ί vanishing on dTn.

Theorems 1, 2 and Remark 1 also give a generalized form of Theorem A.

Corollary 2. Let £ be a positive integer and f(Q) be a continuous function

on dTn (n > 2) satisfying f E i*V_i,n Then the Poisson integral

f(Q)Kέ-ltn(P,Q)dσQ

is a solution of the classical Dirichlet problem on T n with f satisfying

(2.10) μt.

If h(P) is any solution of the classical Dirichlet problem on Ύn with this f

satisfying

μe(h+) = 0,

then

(2.11) h(P) = Ht.lιΛ(f)(P) = yΠ'(Λ)(P)

for every P = (X,y) G TΓn, where Tl*(h)(P) is a polynomial of P with degree
at most i — 1 and even with respect to the variable y.

Remark 4. Since

from (2.10) and (2.11) and

yW(h)(P) = reφ(h)(θ){l + o(l)} (r -> +oo) (P = (r, θ ) G T n )
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for some φ(h)(θ) on S^_x, it follows that

φ{h)(θ)cosθ1dσe1

exists. Put I = 1 in Corollary 2. Then Π*(/ι)(P) is a constant C and
Q

= Cμo(y) = — s n Thus we obtain (1.7) under the weaker condition
In

(1.6).It may be more desirable to restate Theorem 2 in the following form.

Theorem 3. If ft(r, Θ) is a solution of the Dirichlet problem on Tn (n > 2)
some / G i^,n (̂  > 0) satisfying

6 , v A y < +oo,
logr

for every P = (X, y) G Tn, where A(h)(P) is a polynomial ofP = {xχ,x2,.. ,
rrn_-i,y) G K.n and even with respect to the variable y.

3. Proofs of the Theorems 1, 2, 3 and Corollary 2.

For a set E, E C R+ U {0}, we denote {(r, θ) G Tn; r G # } and {(r, θ) G
OTn; reE} by ΊnE and <9Tn£, respectively.

Lemma 1. For a positive integer ί we have

\KOin(P,Q) - Vt9n(P,Q)\ < dr^H-^cosθ±

for any P = (r,θ) G Tn, Θ = (θuθ2,... ,βn-i) and any Q = (t,0 G
2r

9Tn — {0} (n > 2) satisfying 0 < — < 1, ti Λere CΊ «5 a constant depending

only on ί and n.

Proof Take any P = (r,Θ) G Tn and any Q = (t,ξ) G OTn - {O}. Put
2r ί

β i = — , α = — and Θi = Θ in
t 2

x,θx), («i?2,θ2)) = Gn ((RuQi), (Ra,θ2))

(«€«+ , (Λi,θ x ), (Λa.θa) 6 T n ) .

When (i?2,62) approach to (2, £) € OTn along the inward normal, we obtain

(3.1)
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2r
Suppose that 0 < — < 1. Prom Theorem B and (2.2) we have that

V

(3.2)
£-1 fc+1

£+l

Since

£-1

is finite, we immediately have

from (3.1) and (3.2), which is the conclusion. D

Lemma 2. Let t he any positive integer. Let f(Q) be a locally integrable
function on dTn (n > 2) satisfying (2.3). Then i?^)T1(/)(P) is a harmonic
function on Tn.

Proof. For any fixed P = (r, Θ) G Tn, take a number i? satisfying R >
max(l,2r). Then from Lemma 1 we have

(3-3)

/ \
dΊn[R,+oo)

\f(Q)\\Kttn(P,Q)\dσQ

)

dTn[R,+oo)
\f(Q)\\K0,n(P,Q) dσ

cosθλ Γ°° Γ£-2 I ί \f(t,ξ)\dσλ
JR yjds^-1 j

dt

Thus Hiin(f)(P) is finite for any P e Tn. Since Kt,n(P,Q) is a harmonic
function of P £ Ύn for any fixed Q G OTn, i/^n(/)(P) is also a harmonic
function o f P e T n . D
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L e m m a 3. Let ί be any positive integer. Let f(Q) be a locally integrable
and finite-valued upper semicontinuous function on ΘΎn (n > 2) satisfying
(2.3). Then

for any Q* £ dΊn.

Proof. Let Q* = (ί*,ξ*) be any fixed point of dTn and ε be any positive

number. Take a positive number £, δ < 1, such that

(3-4) HQ)<f(Q )+ε

for any Q e <9Tn Π C/^Q*), where t/"4(Q*) = {P 6 Mn; | P - Q | < δ} . From
(3.3), we can choose a number R*, R* > 2(ί* + 1), such that

(3.5) / \f(Q)\\Ke,n(P,Q)\dσQ<ε,
JdTn[R*,+oo)

for any P eΊnΠUδ(Q*). Now we write

HUf)(P) ^ I f(Q)KtΛP, Q) dσQ
JdΊnΠUs(Q*)

+ I f(Q)Ke,n(P,Q)dσQ
JdTn[0,R*)-Us(Q*)

+ I f(Q)K£,n(P,Q)dσQ
JdΊn[R*,+oo)

h{P)=ί f{Q)K0,n{P,Q)dσQ

JdΊnnυs(Q*)

-I f(Q)We,n(P,Q)dσQ

JdΊnnUs{Q )

and

h(P)= ί f(Q)KOtn(P,Q)dσQ
JdΊn[0,R*)-Us(Q*)

- I f(Q)We,n(P,Q)dσQ

JdTn[0,R )-Us(Q )

First we see from (3.5) that

(3.6) \h(P)\<ε
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for any P G T n Π Uδ(Q*). Since

K0,n{P,Q)dσQ
dτnnuδ(Q*)

/
dτn-uδ(Q*)

= — ί \P-Q\-n

Sn JdΊn-Uδ{Q*)

for any P — (X, y) £ T n , we have

lim
/

JdΎnnUδ(Q*)

and hence from (3.4)

(3-7) limP ( Ξτn, P->Q*Λ,I(P) < f(Q*) + ε.

Also observe that

(3.8) |/2il(P)| < ^ ( I ) " Γ ί""2 f / |/(ί,C)μσξ) dί

for any P = (X,y) e T n Π C/4/2(Q'). Since

/ I/(Q)I l ^ , n ( ^ Q ) l ^ Q < C2COSΘ1

Jaτn[o,R*)

for any P = (r,Θ) G T n Π t ^ ( Q ), Θ = ( ^ , θ 2 , . . . ,0^), where

C2 = 2 ^ 1 2 c , n + 2 ( r + l) t + 1 Γ ^-2f/ \f(t,ξ)\dσλ dt,

we obtain that

(3.9) |/l
JdτnnUδ(Q*)

< C2 cos θλ -> 0

and

(3.10) |7 2 i 2 (P) | < ( \f(Q)\ |W,,n(P,Q)| dσQ

J dΊn[0,R*)-Uδ{Q*)

< C2 cos θλ -+ 0,
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as P = (r,θ) -> Q*. All (3.6), (3.7), (3.8), (3.9) and (3.10) give

Π E P e T n , P^Q.Hitn(f)(P) < f(Q*) + 2ε,

from which the conclusion immediately follows. D

Proof of Theorem 1. If £ = 0, then Theorem 1 is included in Theorem A.
Hence we can assume that ί > 1. It immediately follows from Lemma 2 and
Lemma 3 that i ϊ^ n (/)(P) is a harmonic function on T n and

for any Q* € OTn.
To prove (2.4), we see first that

(3.11) N(\HUf)\)(r)

= /1(r) + /2(r)

for any P = (r,θ) G Tn, θ = (Θ1,θ2,...,θn^), where

h(r) = I ( I \f(Q)\ \Kt,n(P,Q)\ dσQ) cosθ1dσθ

and

h(r) =

Let ε be any positive number. Take a sufliciently large number r0 such
that

7 )
where Ci is the constant in Lemma 1. Since

(3.12)

we have from (3.3)

(3.13) h(r) < ε-
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for any P = (r, θ) G Tn, r > r0.
Suppose P = (r,θ) G Tn[§,+oo). For any Q = (t,ξ) G OTn (0 < t < 2r)

we obtain
ί-l

from (2.2) and hence

where

C3 = i2ίs~ι

Hence we have

(3.14) hi?) < I2ti(r) + I2,2(r)

from (3.12), where

\f(Q)\( [ K0tn(P9Q)co8θ1dσθ] dσQdΊn[0,2r) \JSl-1

and

/2f2(r) = C3(2n)-15flr
ί Λ ^ " 1

Here, consider the function KOin(P,Q) of P = (r, θ) E Tn for any fixed
Q = (t?f) G aTn. Then we see from (2.5) that

and from Kuran [5, Lemma 2] and Helms [4, p. 109; Example 2] that

which gives

/ _ιK0in(P,Q)cosθ1dσθ = I™ ^ _J ~T <n~ιrι~n

(r\ (f\ n n
[\y = = \"l •) V2-) •) "n—1
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Hence we obtain

(3.15)

Γ 2 V 2 ( 7 \f(t,ξ)\dσλ dt

= n - V - / V 2 (7 \f(t,ξ)\dσλ dt
Jo \Jdsi-1 )

V 2 ( 7 \f(t,ξ)\dσλ dt

V1-" + n-V1-" ΓΓt-\2r)n+t-11 [ \f(t,ξ)\dσλ dt

where

and

Γ^if ldσλ dt.
)

Then

(3.16) l2Ar) = C3(2n)-1snr
£φ(r).

Thus if we can show

(3.17) φ(r) = o(r) (r -> oo),

then we have

I2,i(r) = o(rt+1) (r->oo)

from (3.15),
J 2 i 2 (r) = o(rt+1) (r -> oo)

from (3.16) and hence from (3.14) we can find a number ri such that

(3.18) I2{r) < ε-rί+ί

for any r > rλ.
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To see (3.17), we note that ψ(r) is increasing,

Γ°° ^ dv = 2 /+°° r ^ 2 f / |/(ί, £)| dσλ dt < 2C5

<2 Γre-2( f \f(t,ξ)\dσλ dt<2Cb,
Ji \Jdsy1 )

C,= Γt-e-2( ί \f(t,ξ)\dσλ dt.

and
φ{r)

r

where

From these we see

/

+oo
r~2ψ(r) dr < +oo

_
by the integration by parts. Since

— φ(r) / x 2 dx < x 2φ(x)dx,
J r J r

this gives (3.17).
If we put r2 = max(ro,Γi), then we finally have from (3.11), (3.13) and

(3.18)

for any r, r > r2 > which gives (2.14). D

Proof of Theorem 2. Consider the function h - H^n(f). Then it follows from
Theorem 1 that this is harmonic in T n and vanishes continuously on dTn.
Since

(3.19) 0 < {h - He,n(f)}+ (P) < h+(P) + {He,n(f)Γ

for any P G T n and

from (2.4) of Theorem 1, (2.8) gives that

From Remark 3 and Theorem C we see that
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for every P = (X,y) G Tn, where U(h) is a polynomial in Rn of degree at
most ί — 1 and even with respect to the variable y, which gives the conclusion
of Theorem 2. D

Proof of Corollary 2. The first part follows from Theorem 1. Since / G F^n,
Theorem 2 gives

for every P = (X,y) G Tn, where Π(Λ)(P) is a polynomial of P G Mn with
degree at most £ — 1 and even with respect to the variable y. Remark 1 also
gives

for every P = (X,y) G Tn, where L(f)(P) is a polynomial of P G Rn with
degree at most ί — 1 and even with respect to the variable y. Prom these, we
evidently obtain (2.11). D

Proof of Theorem 3. Put

— ]QgN{h+)(r)
limr_>oo = α.

logr

It immediately follows that /i[α]+i(/i+) = 0. Take an integer t satisfying
t > max(£, [a] + 1). Since / G F£^n and μ£*(h+) = 0, Theorem 2 gives that

(3.20) h(P) = Hέ.9n(f)(P) + yΠ(Λ)(P),

where Π(Λ)(P) is a polynomial of P and even with respect to y.\ί ί — t ,
then (3.20) gives the conclusion. Suppose that t > ί. Prom Remark 1 we
also see

(3.21) Ht.,n(f)(P) = Ht,n{}){P) + yL(f)(P),

where L(f)(P) is a polynomial of P and even with respect to y. From (3.20)
and (3.21) we have

h(P) = He,n{f)(P) + yΛ(Λ)(P), Λ(Λ)(P) = Π(Λ)(P) -

which is also the conclusion of Theorem 3. D
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