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THE GODBILLON-VEY CYCLIC COCYCLE AND

LONGITUDINAL DIRAC OPERATORS

HlTOSHI MORIYOSHI AND TOSHIKAZU NATSUME

The goal of this paper is to prove the index theorem for
the pairing of the Godbillon-Vey cyclic cocycle with the index
class of the longitudinal Dirac operator for a codimension one
foliation. Let {X,T) be a foliated S^-bundle over an arbitrary
spin manifold M. The Dirac operator on M lifts to a longi-
tudinal elliptic operator D, the longitudinal Dirac operator,
on (X, T). The index class of D is an element of the i^o-group
of the foliation C*-algebra C*(X,!F). A densely defined cyclic
even-cocycle on C*(X, T), the Godbillon-Vey cyclic cocycle, is
constructed. The main result gives a topological formula for
the pairing of the Godbillon-Vey cyclic cocycle with the in-
dex class of D. The proof of the main theorem uses a new
technique, the pairing with the graph projections.

1. Introduction.

Over the past decade ϋΓ-theory has come to play significant roles in the study

of C*-algebras. One such role is as a receptor of indices of pseudodifferential

operators on foliated manifolds. If P is a longitudinal elliptic operator on a

foliated manifold (X, T), then the index of P is an element of the jFί0-group of

the foliation C*-algebra C*(X: J
7) [10]. A transverse invariant measure v for

the foliation generates a trace on the C*-algebra C*(X, T\ This trace defines

an additive map φv from the ϋo-group into the scalars. Evaluating φv on the

index of an operator, we obtain a numerical invariant (an analytic index),

which depends on the transverse invariant measure v. The index theorem

of A. Connes [6] describes the analytic index in terms of the symbol of the

operator and the foliation cycle corresponding to the transverse invariant

measure.

For many interesting foliations, e.g. Anosov foliations, there does not

exist a nontrivial transverse invariant measure. Thus, in order to obtain

numerical invariants of operators on such foliations, we need an alternative.

A natural candidate is the pairing between iί-group and cyclic cohomology.

In fact, a trace on a (7*-algebra may be regarded as a densely defined cyclic

0-cocycle. Our aim is to give an index formula for higher dimensional cyclic

483



484 HITOSHI MORIYOSHI AND TOSHIKAZU NATSUME

cocycles. In this direction several authors have obtained results for certain
cocycles, see for example [11]. Connes and H. Moscovici [9] studied the
pairing between cyclic cocycles associated with group cocycles and Dirac
operators on a Golois covering. In order to compute the pairing they use
idempotents constructed by A. Wasserman. Our arguments use graph pro-
jections associated with the operators; the advantage is that they provide a
direct construction and result in a simple argument.

We focus on a particular cyclic cocycle for a special class of foliations. Let
Γ be a discrete group acting freely on a manifold M so that M/Γ is a closed
manifold. Suppose that a Γ-action on the circle 5fl

uby orientation preserving
diffeomorphisms, is given. The Sι-bundle over M/Γ associated with the
action is equipped with a foliation J1', whose leaves are transverse to the
fiber of the bundle. The ^-bundle X with T is called a foliated S^-bundle.
When the action satisfies a certain condition (Condition 2.2), the foliation
C*-algebra C*(X, T) is strongly Morita equivalent to the reduced crossed
product C{Sι) x Γ. The foliation T is of codimension one, and transversely
orientable. To such a foliation, is assigned a characteristic class, called the
Godbillon-Vey class [13]. It is a 3-dimensional de Rham cohomology class of
X. For foliated S^-bundles, this characteristic class is interpreted as a group
2-cocycle with values in the space of 1-forms on S1 [5]. Based on this picture,
A. Connes studied an analytical interpretation of the Godbillon-Vey class
[8]. He constructed a densely defined cyclic 2-cocycle r on the C*-algebra
C(S1) xi Γ and showed that the additive map, induced by r, coincides with
the map, which the Godbillon-Vey class induces on the geometric group
K°(S\Γ), via the index map K°{S\Γ) -> KoiCiS1) x Γ).

If P is a longitudinal elliptic operator on a foliated S^-bundle {X,F),
its index ind(P) is regarded as a class in KQ(C(SX) K Γ) via the strong
Morita equaivalence. We will explicitly compute the value of the additive
map mentioned above on the indices of longitudinal Dirac operators. More
precisely, we will consider the case where an even-dimensional manifold M
is endowed with a Γ-invariant metric and a Γ-invariant spin structure. We
will study the index of the associated Dirac operator D. In order to carry
out an explicit computation, the following points have to be taken care of.
(1) Since ind(jD) is defined to be a class in the ίίo-group of the foliation C*
algebra, we have to obtain a formula for a densely defined cyclic cocycle on
C*(X, T) (Section 6). The strong Morita equivalence between C*(X, T) and
C{Sι) xi Γ yields a homomorphism from C{Sι) xi Γ into C*(X, T). Thus, once
we obtain a densely defined cyclic cocycle on C*(X, T), we can compare this
cocycle with Connes's cocycle (Section 9). (2) The index mά(D) is described
in terms of a parametrix of D [10], [9], and there is not a canonical choice
of a parametrix. Thus it seems infeasible to compute the evaluation on



GODBILLON-VEY CYCLIC COCYCLE 485

such an element. Hence we need a projection "canonically" attached to the
operator. The operator extends to a closed operator T; the graph of T is a
closed subspace, and the associated orthogonal projection is called the graph
projection of T. It will be shown that the graph projection represents ind(D).
A disadvantage of using graph projections is that they lack the regularity
which idempotents in [9], [10] can enjoy. Thus it has to be verified that the
graph projection does indeed belong to the domain of the cyclic cocycle.

A use of graph projections in the index problem is a new idea. Once
(1) and (2) above are done, the proof of the actual computation of the
evaluation (Theorem 8.10) will be straightforward by employing Getzler's
symbolic calculus method [12].

This work grew out of a study of the K0-group of the C*-algebras of
Anosov foliations on the unit circle bundle TXΣ of a closed Riemann surface
Σ of genus g > 1 furnished with a metric of constant negative curvature.
Those C*-algebras are strongly Morita equivalent to crossed product C*-
algebras C(SX) x TΓL(Σ), where π^Σ) acts on C(S1) through linear fractional
transformations. Since Anosov foliations on 7\Σ have nonzero Godbillon-
Vey classes, there must be a class in Ko on which the cyclic cocycle attains
a nonzero value. Our motivation was to describe this class as clearly as
possible. This matter will be discussed in Section 10.

2. Foliated Bundles and Its C*-algebras.

In this section we study the properties of C*-algebras associated with foli-
ated bundles. On these C*-algebras we will construct densely defined cyclic
cocycles in Section 6.

Let M be a closed Riemannian manifold, and let M —» M be a Galois
covering with deck transformation group Γ. Given a right Γ-action on a closed
manifold V by diffeomorphisms, we can construct a fibre bundle X —> M
with fibre V. This is the associated bundle

p:X = MxΓV ^ M/V = M,

where the right Γ-action on M x V is diagonal. The product foliation on
M x V with leaves M x {x},x £ V, descends to a foliation T on X. The
projection p restricted to any leaf of T is a covering map. We call the
F-bundle X —> M together with T a foliated V-bundle.

Condition 2.1. Through the paper we assume that a Γ-action on V
satisfies the condition: for g G Γ, if there exists an open set U in V such
that xg = x for all x G Z7, then g is the identity element of Γ.

The Condition 2.1 guarantees that the holonomy groupoid G of T is a
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Hausdorff space, and that

G**(M xMx V)/Γ,

where Γ acts by (m,n,x)g = (mg,ng,xg), (ra,n,x) G M x M x V, # £ Γ.
The groupoid structure of (M x M x V)/Γ is described as follows. Denote
by [ra, n, #] the class of (m, n,x) £ M x M x V. The source map 5 and the
range map r are given by

r{[m,n,x\) = [m,x],

s([m,n,x]) = [n,x].

Two elements [m',n\x'] and [m,n,x] are composable if and only if there
exists a g E Γ such that n' = mg, x' — xg. In this case,

[m',n',x'][m,n,x] = [m'g""1,?!,^].

The lifting to M of the Riemannian metric on M induces a leafwise Rie-
mannian metric. The latter gives rise to a left Haar system {vx} of the
groupoid G [18].

We recall the definition of foliation (7*-algebras with coefficient [11]. Let
E be a Hermitian vector bundle over X. Denote by C™(G,E) the space of
all compactly supported smooth sections of the bundle (s*(E))* ®r*(£>). So,
if/GCc°°(G,£), then

/ ( 7 ) G H o m ( % , % ) , 7 EG.

The space C£°(G,E) has a *-algebra stucture:

(Λ * /2X7) = / fι(Ί')f2h'-1Ί) dvr^{Ί'),

where /i(7/)/2(7~17) is the composition of maps, and

is the adjoint of /(7"1) E Hom(J5'r(7),£'s(7)).
Let f, s be the lifting of r, 5 to M x M x V -> M x V, respectively. Thus

r(ra, n,#) = (m,x) and s(m,n,x) = (n,x).

Denote by E the lifting to Mx F of E. It is easy to see that CC°°(G, E) is iden-
tified with the space /Cc of those Γ-invariant smooth sections of (s*(E))* ®
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r*(E) which have Γ-compact supports. Here we say that a subset of M x
M x V is Γ-compact, if its image in (M x M x V)/Γ is compact (Definition
8.3 of [3]). _

Let Mx — M x {#}, x G V, and let μx be the strictly positive smooth den-
sity on Mx corresponding to the Γ-invariant smooth density on M through
the canonical identification of Mx and M. Set

where Ex is the restriction of E to Mx. Then the collection Ή — (Hx)xeV

together with the space CC(E), of compactly supported continuous sections
of the bundle E over MxV, defines a continuous field of Hubert spaces over
V. The Γ-action o n M x V and E gives rise to an action on H. We denote this
action by ξ -> gξ, for g £ Γ, and a section ξ of W. The space EndΓ(Ή) of Γ-
equivariant bounded measurable fields of operators T = (Tx), Tx G B(HX),
is a (7*-algebra, where the norm is given by

There is a faithful representation p : Kc —> EndΓ(W) For / G /Cc, the
operator p(/) is defined by

(2.2) [p(/U](m) = L f(m,n,x)ξ(n)dμx(n),

for ξ G //"a?. The norm-closure of Kc with respect to the norm

is, by definition, the C*-algebra C*{X,T,E) of the foliated bundle (X, T)
with coefficient £7.

Let C(V) x Γ be the reduced crossed product C*-algebra arising from the
(left) Γ-action on C(V) given by

(ga)(x) = a(xg), geC(V).

The C*-algebra C(V) x Γ is exactly the reduced (7*-algebra associated with
the following groupoid. As a topological space this is V x Γ. The space of
units is F, with s(x,g) = rrg and r(x,g) = #. Thus C(V) x Γ contains the
following dense *-subalgebra CC(V x Γ) :

(ab)(x,g) =
her

a*(x,g) =a(xg,g~ι)
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for o, 6 G CC(V x Γ). For each x £V, one has

Define a ^representation Lx of CC(V x Γ) on I2(s~1(x)) by

where a G CC(F x Γ) and ξ e P^ix)). Then

\\a\\=Snp{\\Lx(a)\\;xeV}<<X>,

and C(V) x Γ is the completion of CC(V x Γ) with respect to the norm|| | |.
If Ug denotes the characteristic function of V x {<?}, then Ug belongs to

CC(V x Γ), since V is compact. Any a E CC(V x Γ) can be expressed as a
finite sum

α = Σ α ^ > ageC(V).
per

The *-algebra CC(V x Γ) is generated by C(V) and {Ug)geγ, subject to rela-

tions: U9Uh = Ugh, ff,fteΓ, U; = E/,-1, and t/,αί/; = ff(α), a e C(V).

Remark 2.3. The collection {I2(s~1(x))}xev forms a continuous field of
Hubert spaces, and the correspondence x -> Lx(a) is a continuous field of
bounded operators.

Proposition 2.4. There exists a Hilbert C(V) x T-module e such that

^(X.T^E) is isomorphic to the C*-algebra JC(e) of compact operators of e.

In particularj C*(X,JΓ,E) is strongly Morita equivalent to C(V) xi Γ.

Proof Choose a base point * E M. The image T of {*} x V in X is a
complete transversal of T, where G£ = ^ ( T ) Π r~x(T) and G τ = s'1^)
are identified with F x Γ and M x V, respectively. Then Proposition 3 of
[14] implies the assertion. D

We now describe the module e, as we will need the description later. Let

S = CC(E). A right C C (F x Γ)-action on S is defined by

ξ)(m,x), ξ 6 5, / G
per

A C c(y x Γ)-valued inner product ( , •) on S is defined by
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where ( , )~ is the Hermitian product in E. The module e is the completion
of S with respect to the norm ||ξ|| = | |(ξ,ξ)| | 1 / 2.

The representation of C*(X,T,E) on e given by Proposition 2.4 is:

(/*0(7)=

for / G CC(G,E), ξ G Cc(Gτ,r*E). Through the identification G = (M x
M x F)/Γ, the left CC(G, Enaction is described as

f{m,n,x)ξ(n,x)dμx(n),

where (m, x) G M x V = GT, and / is regarded as a Γ-invariant family
of integral kernels on M x M x V. Proposition 3 of [14] says that the left
CC(G, E)-action extends to a faithful representation of C*(X, T, E) on 6, and
that the image of this representation is precisely the space /C(e) of compact
operators of the Hubert C*-module e over C(V) xi Γ.

Let C™>°(E) be the space of compactly supported sections of E over MxV
of class C0 0 '0 ([6]). In an obvious way C^°'°(E) can be regarded as a subspace
of sections of the field %. Consider the *-algebra of intertwining operators
of H which map C™>°(E) into itself. Its C*-closure in EndΓ(H) is denoted
by 55.

Proposition 2.5. There exists a *-monomorphism Φ from 03 into the
C*-algebra C(e) of all bounded operators of the Hilbert C*-module e over
C(V) x Γ.

Proof. For ξ ejC™>°(E), denote by ξx the restriction of ^ onto Mx. Then
ξx£Hx = L2(EX). For / G Cc{Gξ), define SξtX(f) G C?>°(E) by

For u G C^°(E), define TξtX{u) G CC{GT

X) by

where (, )x is the inner product of Hx.
We need the following lemma.

L e m m a 2.6. The linear maps Sξ,x and Tξ^x extend to bounded maps

SLx : 12{GT

X) -* Hx,
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and

Moreover,
(1) Sξ:X is the adjoint of TξtX;
(2) for ξ,η,ζe C?'°(E) and f € /2(Gj), one has

(3) \\ξ\\ = sup{| |5 ξ > x | | ; xeV} = sup{| |Γ ί l ! t | | ; x E V} ,
where \\ξ\\ is the norm of ξ in e.

Proof. By a straightforward computation,

where / e CC{G1) and u 6 CC{E), and the right-hand side is the inner
product in 12{GT

X). Let a € CC(V x Γ) and £,77 G C, 0 0 - 0 ^). Then

From this

As for the second equality in the assertion (2), we have

τξtXsη,x{f)=ΆΛ(v<>)*)

τ
= ((ξ,η)a)\Gτ

x

= Lx((ξ,η))f,

where a is an element of CC(V x Γ) such that a\Gτ = f. Thus

\\sUf)\\2 = (sξ,Λf),s

Prom this and facts that Cc(Cfζ) is dense in P(Gl), and that Lx((ξ,ξ)) is
positive, it follows that 5 ξ, x extends to a bounded linear map, and
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Consequently, Tξ x also extends to a bounded linear map, and

Finally,

= sup | | 5 ί i τ 112

= sup \\Tξ,x 112.

This completes the proof of the lemma. D

We return to the proof of Proposition 2.5.
Assume that P = (Px) e EndΓ(Ή) and its adjoint P* = (P*) preserve

the space C™'°(E). Since P is Γ-equivariant, it is readily seen that P defines
a CC(V x Γ)-module homomorphism P of C^°j0(E). Furthermore, for £ E
C?>°(E), one has

(2.7)

<sup| |P x | | suP | |-S ξ,, | |

= \\p\\ lien-

Thus P is a bounded operator of e. Similarly P* defines a bounded operator
P* with

for ξ,η e e. Therefore P 6 £(e).
We show that the correspondence P —> P is injective. From the inequality

(2-7),

ll^lk <

Assume that P = 0. Let P = lim^^oo P^ in norm in EndΓ(Ή) where we
have that P^ preserves C™^(E). Then, for ξ e Cc°°'

0(^), we have

Urn
J - ί OO

Notice__that any ξ 6 C^°'°(E) is written as ξ = a(β,η) for some α, /?, 7 G
C,0 0 '^^). Then



492 HITOSHI MORIYOSHI AND TOSHIKAZU NATSUME

Therefore

sup Hpω&H < sup \\P<j»Sa,9\\ sup \\TβtX(Ίx)\\

for some C > 0. Thus sup HPJ ̂ H -> 0 as j -> oo. Hence P ^ = 0 for all
x e F. This means that P = 0 in EndΓ(Ή). Thus P -^ P is an injective
*-homomorphism, and in particular,

M = \\P\\ =

This ends the proof of Proposition 2.5. D

Remark 2.8. The foliation C*-algebra C*(X, T, E) is a subalgebra of 93,
and the restriction to C*(X, T, E) of the embedding of OS into C(e) is exactly
the isomorphism

C*{X,T,E)^K{e)

given in Proposition 2.4.

Remark 2.9. When the Γ-action on V does not satisfy the Condition 2.1,
the structure of the holonomy groupoid is more complex, and C* (X, T^ E) is
not strongly Morita equivalent to C(V)xΓ. Thus the arguments above do not
apply to this case. However, if one uses the C*-algebra of the fundamental
groupoid, in place of the holonomy groupoid, then the results in this paper
remain valid.

3. Algebra of Pseudodifferential Operators.

For a given foliated bundle (X,T), the C*-algebra C*{X,T,E) defined in
the preceding section contains pseudodifferential operators. In this section
we will introduce a dense Banach subalgebra 21 of C* (X, T, E) and will show
that 21 is holomorphically closed. _

Let E° and E1 be Γ-equivariant Hermitian vector bundles over M x V.
Let P : C^°{E°) -> C°°'°(Eι) be a continuous linear map. We say that P
is a Γ-equivariant family of pseudodifferential operators of order r if

(1) P is Γ-equivariant, _
(2) for each x eV, the operator P restricts to Mx to give a pseudodiffer-

ential operator of order r

px: C

(3) the distributional kernel of P has Γ-compact support.
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Conditions (1) and (2) imply that the distributional kernel is regarded as
a distribution on M x M x V and is Γ-invariant.

Denote by Φ£ (EO, E1 J the space of all Γ-equivariant families of pseudod-

ifferential operators of order < r from E° to E1. When E° = E1 = E, we use

ΦfCE) instead of Φf ( E ° , E 1 ) . A basic fact is that if P G Φ£ (J5°, E1} , QG

Φf ( E 1 , ^ 2 ) , then QP G Φ£ + s ( l ; 0 ,£ 2 ) . If P E Φf ( E ° , JB1) , then its formal

adjoint P* belongs to Φf (E1, E°J . So, in particular, ^(E) is a *-algebra.

Recall [11] that by a tangential operator we mean a continuous linear
operator D : C™>°(E°) -+ C 0 0 ' 0 ^ 1 ) such that D is Γ-equivariant and
that for each x £ V,D restricts to Mx to give a continuous linear operator
Dx : C™(E°X) -+ C°°(El). _

Let Ax be the Laplacian on Mx twisted by Ex. Then Δ x acts on the
sections of Ex. Denote by W£(E) the completion of C^°(EX) with respect to
the Sobolev s-norm:

where ( , )x is the inner product of Hx — L2(EX). We obtain a continuous

field W?{E) = (W£{EΫ) of Hubert spaces over V, which we shall call a

tangential Sobolev field [15, p. 78].
A tangential operator D is smoothing if Z) induces a bounded operator

for all 5, t G R A smoothing operator is compactly smoothing if its distribu-
tional kernel has Γ-compact support.

For a tangential operator P, and s,ίGM, set

\\Px\\.,t = sup

and

Of course, | |P x | | S ) t , \\P\\s,t might be infinite. However it is true that if P G
Φf (E), then

| | P | | β - r , β < OO,

for any s. In particular, P extends to an intertwining operator



494 HITOSHI MORIYOSHI AND TOSHIKAZU NATSUME

If P belongs to tyγ°°{E) = ΠΦf (-E), then P is a compactly smoothing oper-

ator. Moreover, one canjsee that Φf°°(ί?) is contained in C*(X, T, £7), here

E is the lifting of E to M x V.
Let S*T be the unit cosphere bundle of T, and let π be the canonical

projection S*T —> X. l&t EQ,Eι be Hermitian bundles over X, and let
E°, E1 be the liftings to M x V of ϋ7°, J51, respectively. The principal symbol
map is σr : Φ£ ( E 0 , ^ 1 ) -> C ^ S ^ H o m ^ E 0 , ? ^ 1 ) ) . We say that P E

Φf ( S 0 , ^ 1 ) is elliptic if σ r(P) is invertible.

Proposition 3.1. ([15, Prop. 7.12], [6, p. 128]). Let P G Φ f ^ 0 , ^ 1 ) be

elliptic. Then there exists Q E ^ ( E 1 ^ 0 ) such that I - PQ and I - QP
are compactly smoothing.

The operator Q given by Proposition 3.1 is called a parametrix of P.

Every P E ^!%{E) is regarded as an intertwining operator in EndΓ \W®(E)) .

Thus Φ£(JE7) C 55. Let p 0 denote the enclosure of Φ£(£7) in EndΓ

The principal symbol map σ0 extends to a *-homomorphism

and the sequence

0 -> C*(X,T,E) -> po Λ C(S*JΓ End(π*£)) ^ 0

is exact.
Fix an TV > dimM. For P E Φf1 = Φ f 1 ^ ) , set

Then by the interpolation method of Calderon, for all —N < s < N — 1, one
has

Certainly, | | | -1|| is a norm on Φ f ι . A staightforward computation shows that

II Will < Ill^lll lllβlll
for PjQGΦf 1 .

Let 21 be the Banach algebra completion of Φfι with respect to | | | | | |.

Lemma 3.2. There exists an injective homomorphism a : 21 —> ρ o

Proof. Since ||P||o,o ^ III^ΊII? there exists a homomorphism a : 21 -> po
We prove the injectivity of a. Let {Pj} be a Cauchy sequence in Φp 1 with
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respect to | | | | | | . It suffices to show that if α(P, ) -> 0 in ρ 0 , then Pj —> 0 in
21. Since {Pj} is a Cauchy sequence in 21, it is a Cauchy sequence also with
respect to | | | | s +i, s ,— N < s < N — 1. Therefore, there exist intertwining
operators P ( s ) , of fields of Hubert spaces Wf(E) -+ W?+1{E) such that

as

Recall that C™>°{E) is a total subspace of W^{E). For ξ E C?>°(E) and
for s > —1, we have

a s j —>• o o .

Hence P^ξ = 0 for all ξ E CC°°'0(JB). Consequently P ( s ) = 0.
Assume, now, that 5 + 1 < 0. Then

< \\(Pj - p(°))ξ\\s+1 + \\Pjξ\\0

as j -> oo.
Hence P( s )^ = 0 for all f E Cc°°'0(£). Thus P, -> 0 in 21. D

From now on, we regard 21 as a subalgebra of ρ o In particular, an element

P E 21 is interpreted as a collection of operators P = (Ps) such that Ps :

W?{E) -> VFr

5+1(^) is bounded for -TV < 5 < N - 1, and such that

p.\w;(E) = p t if 5 < t .

Let 2t+ be 21 with unit adjointed. As an algebra, 2l+ is identified with the

algebra generated by 21 and the identity / of p o Then a sequence {A Ĵ + P J

in 2t+ converges to λ/ + P in 2l+ if and only if

Xi -> λ in C,

and

^ -> P in 21.

Theorem 3.3. The dense subalgebra 2l+ of C*(X,T,E)+ is holomorphi-

cally closed.

In order to prove Theorem 3.3 we need the two lemmata below.
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Lemma 3.4. IfP + I, P G 21, is invertible in C*{X,F,E)+, then (I + P)8 '
W?{E) -> W;+1{E) is invertible for \s\ < N.

Proof. Let 0 < s < 1. Obviously, (I + P)s: W?(E) ->• W*(E) is injective. By
the Open Mapping Theorem, if (I + P)s is surjective, then it is invertible.
Let η e W?(E). Since (I + P)o : W?(E) -> W?(E) is invertible, there exists
a ξ eJV?(E) such that (J + P)ξ = η. Then ξ = η-Pξe W^E) + W?(E) C
Wϊ(E), since Pξ E W}(E). Thus (/ + P)s : w/(E) -* WJ(E) is injective.

By an induction, using the fact that P maps W^~~ι(E) into W^(E), we
can show that (I + P)8 is invertible for 0 < s < N.

As for — N < s < 0, use the nondegenerate pairing

W~S{E) x f ; ( E ) - ) C

and the fact that (£, (/ + P)8η) = ((/ + P*)-Sξ,η) to deduce the conclu-
sion. D

By Lemma 3.4, we know that when I+P is invertible, it induces invertible
operators at each level W;(E) -> W?(E).

Lemma 3.5. Let I+P, P E Φf \ be invertible in ρ0. Then (I+P)'1 G 21+.

Sublemma. IfQE^ίγ is invertible in ρ0? then there exists α sequence {Ai}
in Φp such that I — AiQ is compactly smoothing, and that

\\I — AiQ\\8tt -> 0 as i —> oo for all s,t.

Proof of Sublemma. Since Q is invertible in p0, its principal symbol σ(P) is
invertible, i.e. Q is elliptic. Then there exists R G Φ?. such that / — Qi2, / —
RQ are compactly smoothing.

Since Q is invertible in ρθ5 there exists a sequence {B^} in Φp such that

| |Q~ 1-Si| |o,o->0 as i->oo.

Put A< = 2Λ + S f - RQBi - BiQR - RQR + RQB{QR. Then A{ e Φf. We
have

/ - AiQ = (I - RQ)(I - BiQ)(I - RQ).

Since S = / — iϊQ is compactly smoothing,

| |z - AiQiu,* = M^CQ-1 - ^OQSΊI-,*
<||5||s,o||Q-1--Bi||o,o||Q||o>o||5||o,t-^0 as i -> oo,
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and the sublemma is proved. •

Proof of Lemma 3.5. By the sublemma, there exists a sequence {Ai} of order
zero ψDO's such that / — Ai(I + P) is compactly smoothing, and such that

\\I-Ai(I + P)\\Sit - > 0 as z - ^ 0 for a l l s,t.

Notice that I-Ai = A{P + (I- A^I ' + P)) belongs to Φf1. τ h u s Ai = I + Bi
with Bi G Φf1. Set

Ti = / - ( / + J5i)(/ + P) G ΦF°°.

We have (I + P)'1 -I = ^ + Ti(/ + P)~ 1 . The operator (7-hP)"" 1-/maps
into WΓ

r

s+1(£) for -TV < s < N - 1. Therefore

|| ((/ + P ) - 1 - /) - ^ | | s + i , s is finite,

and

J P ) 1 | | β , β -^0 as i -+ oc.

This means that (7+P)" 1 - J+Q, with QeSl. Thus (/+P)" 1 G 2l+. D

Proof of Theorem 3.3. The proof uses the well-known fact that an algebra
is holomorphically closed if and only if the resolvents are contained in the
algebra itself. Since 21 is an ideal of C*(X, T, E)+, no elements of 21 are
invertible in C*(-X", T, E)+. So it is sufficient to consider elements of the
form / + P, P G 21. Since P E 21, there exists a sequence {P }̂ in Φfλ such
that

->0 as i -> oo.

Then, in particular, | | (/ + P) - (/ + Pi)||o,o ~> 0 as i -> cx>. As / + P is
invertible in C*(X, T', i?)+, one may assume that I + Pi is also invertible in
C*{X,T,E)+ for all ϊ. From

(/ + P ) - 1 - / = (/ + p ) - 1 ( / - ( / + P)) = - ( / + P)-ιP,

it follows that (/ + P ) - 1 -I maps W7(E) into PFr

s+1(E) for -N < s < ΛΓ-1.
As bounded operators on W*(E), one has that

< (\\(i + p) - (i + muiίi + P)-ι\\ls)

I ( I +1|(/ + po - (/ + P)| |S l S | |(J +
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Prom this, it follows that sup{||(J+ P i)~1 | |S i S; i} < oo. Moreover, one can
see that sup{||(7 + Pi)"1 Iks', i, \s\ < N} < oo. Then we have

P ) - 1 - / ) - ( ( / + P i ) " 1 -

Since | | (/ + P^)" 1 ^^ is uniformly bounded, as i -> oo one has

+ P ) - 1 -I)- ((I + Pi)'1 - J ) | | , + 1 , . -> 0.

This means that HKJ + P ) " 1 - (I + Pi)'1]]] -> 0. By Lemma 3.5, {I + Pi)-χ €
21+. Consequently (/ + P)""1 e 2l+ •

Applying Theorem 3.3 to the bundle Ek, one obtain that Mfc(2l)+ is holo-
morphically closed in Mk(C*(X,F,E))+. Prom this we get the following
(see [3]).

Proposition 3.6. The canonical inclusion 21 C C*(X^Jr
 )E) induces an

isomorphism

4. Modular Automorphism Groups.

A volume form on the fibre of the foliated bundle (X, T) gives rise to a weight
on C*(X,J7,E). We will show that the modular automorphism group, asso-
ciated with the weight, leaves the Banach algebra 21 invariant, and induces
a one-parameter group of automorphisms.

Throughout the rest of the paper, assume that V is oriented, and Γ acts
on V by orientation preserving diίfeomorphisms. Let ωv be a volume form
on V. For j G Γ , a positive real-valued function λg on V is determined by

Xgωv = g(ωv).

The correspondence g -» λ̂  satisfies the cocycle condition:

(4.1) λ9h = g(λh)λ9, g,her.

Let φ be the state on C(V) xi Γ associated with the volume form ωv. Then

Φ(f) = I feωvJv



GODBILLON-VEY CYCLIC COCYCLE 499

if

The modular automorphism group (σt) of φ leaves C(V) x Γ invariant.
We have

for / = Σ fgUg Actually, σt is implemented by the following unitary Aιt on
L2{V)®l2{Y) defined by

Let ω be a Γ-invariant volume form on M. Choose an orientation on X so
that for a Γ-invariant volume form ω on MxV, there exists a positive smooth
function ψ on M x V such that

ω Λωv = ψω.

As above, let E be a Γ-equivariant Hermitian bundle over M x V. Recall
S = CC{E). Define a linear operator Au (t G K) on 5 by

(4.2) Δ i f ( O = ^ - i t ί , ξ e = S .

Lemma 4.3. T/ze linear operator Aιt extends to a bounded operator Aιt :
e —> e which satisfies:

(1) (Δ"(O,Δ i t (r ? ))=σ ί ((^r ? )), f,̂  e e,
(2) Δ«(ξo) = (Δ
(3) Δ"Δ"( ί ) =

Proof. (1) By the definition of C(V) x Γ-valued inner product and (4.2), the
equality holds for ξ, η £ S, t G M. Then

sup{||Δ r f(ξ)||/||ξ||; ξeS, ξ ϊ 0}

= snp{\\σt((U))\\1/2/\\(U)\\1/2; ξes,ξ?o} = i.

Hence Aτt extends to a bounded operator on a Banach space e, and the
equality holds for all ξ G e.

(2) A straightforward computation shows that the equality (2) is true for-
ξ E e, α G C(F) x Γ. By continuity, the equality holds for all ξ G e and
α G C(F) x Γ.

(3) From the definition of Aιt and continuity, the conclusion follows.
D



500 HITOSHI MORIYOSHI AND TOSHIKAZU NATSUME

Statement (2) of Lemma 4.3 means that Aιt is not C(V) x Γ-linear.

Lemma 4.4. (1) If P e £(e), then AUPA~U € £(e), and HΔ^

l l^ll
(2) We have Δ<t/C(e)Δ-<ί C £(e).

Proof. (1) Let ξ € e, and let a € C(V) » Γ. By Lemma 4.3,

«) (ξa) = AU

We have also that

This means that (Δ^PΔ"*)* = AUP*A-U. Obviously, AitPA~it, Δ < ί P*Δ' i ί

are bounded. Thus

Since Δ J ί : e —> e is a surjective isometry,

| |Δ«PΔ- β | | =

(2) Let ξ,η G e. By the definition of rank one operators θ^η and Lemma
4.4,

Therefore Δft/C(e)Δ-« C /C(e). D

Definition 4.5. For P G £(e), set

σ t(P) = Δ i t P Δ - i t e C{e).

Proposition 4.6. TΛe operator {σt}te^ on £(e) amounts to a one-parameter
group of automorphisms of the C*-algebra C(e). Moreover, {σt} preserves

Proof. It is easy to see that t -> σt is strongly continuous. The conclusion
follows from Lemma 4.4. D
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Notice that Δ" preserves CC°°

Lemma 4.7. If P e Ψf(#), then AitPA~it € Φf (S).

Proof. We only have to show that AτtPA~ιt is Γ-equivariant. (Other prop-
erties of elements of Φf(E) are obvious.) For g € Γ, ξ E CC°°'O(E), we
have

= g(Ψ)-*g{ξ) = X^^gte) =

Hence

0 ( Δ a P Δ - a ) = λ ^ ' Δ ^ P Δ " " = XjuAuPgA-it

because the multiplication by λ^ 6 Coo(Vr) commutes with operators Δ8t

and P. D

Lemma 4.8. ΓΛe linear operator Δ r t extends to a bounded operator on
W?{E) for all s.

Proof. Recall that the L2-inner product induces a well-defined pairing

such that \{ξ,η)x\ < \\ξx\\s\\ηx\\-s Let s > 0. Set Q = ψ*&*'$-*. Thanks to
Lemma 4.7, Q G Φ^S(£J). We have

<

Therefore Δ ώ : W?(E) -)• ̂ ( έ ) is bounded for s > 0. Then by nondegen-
eracy of the pairing W* x W;-s ->• C, we see that Δ " : W (E) -> Wτ

s(£;) is
bounded for all s. D

By Lemma 4.8, there exists a constant C > 0 such that

| | | Δ i t p Δ - i t | | | < C| | |P | | | for P e f 1 ^

By continuity, σt{P) = Δ ' P Δ " " , P € 21, gives rise to an R-action on the
Banach algebra 21. Denote by δ the generator of (σt), i.e.

<5(P) =l imi(σ ί (P)-P)/ ί , P e 21.
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Then δ is a closed derivation of 21, whose domain contains Φf 1(E). Set
φ = λogψ. Then by a straightforward computation we obtain that

= [φ,P]=ψP-Pφ,

where φ is regarded as pointwise multiplication operator.

Proposition 4.9. IfPe Φ f 1 ^ ) , then δ(P) G ^γ2{E).

Proof. Recall first the definition of i/>, i.e.

ώ Λ ωy = ψω.

Prom this, g(ώ) Λ g{ωv) = g(ψ)g(ω), g G Γ. Since cD and α; are Γ-invariant,

and g(ωy) = λpα;v, we have

λ^ώ Λ ωy = g(ψ)ω.

Therefore we have

(4.10)

and

(4.11)

Since φ G C°°(M x V), both </λP and Pψ are continuous linear operators
Cc°°'0(£) -> σc°°

 0 ( β ) , and (φP)x = φxPx, {Pφ)x = Pxφx are ψDO's on M β

for every x G V. By asymptotic expansion of the symbols, we can see that
ψxPx — Pxψx is a τ/>DO of order —2. Hence we only have to show that [φ, P]
is Γ-invariant. We have

g(φP - Pφ) = g(φ)Pg - Pg(φ)g

- Pψ)g + (\ogλgP -Plogλ9) by (4.11)

= {ψP - Pφ)g,

because log λg commutes with P.
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5. Godbillon-Vey Classes.

Throughout this section, V denotes the circle S1 with the canonical volume
form dx. The foliation J7 on X = M xΓ V is transversely orient able and
codimension one. To such a foliation, a characteristic class gv(T), called the
Godbillon-Vey class, is assigned. In this section we will give a description of
gv(T) in terms of function φ introduced in the preceding section. We will
use this description in Section 8.

Let θ be an arbitrary 1-form on X defining T. By integrability, there
exists a 1-form η such that dθ = η A θ. The Godbillon-Vey class then given
by[ηΛjη\eH*DR(X)([13]).

Let Θ,JI be the lifting of 0, η respectively to M xV. Let Ω be the pullback
of ώ by M x V -> M. Then ω = Ω Λ θ is a Γ-invariant volume form on M x V.

Since θ and ωy = dx define the same foliation on M x V, there exists a
nowhere vanishing smooth function / on M x V such that θ = fωv. Then

ω = ΩΛθ = fΩΛωv = fφω.

So / = 1/ψ. Consequently, θ = (l/φ)ωv. From this

dθ = ήΛθ= (l/φ)η Aωv.

On the other hand

dθ = d(ljφωv) = d{l/φ) Λ

for ωv is closed. From these,

(5.1) (l/Φ)η Aωv = d{l/φ) Λ ωv.

Recall that ψ — log-0 and ώ Aωv — φω. Thus — dψ Aωv — η Aωy.
The tangent bundle T oΐ M x V has a splitting

where T" (resp^ T;/) consists of vectors tangential to M I } x £ V (resp.

{α} x F , α 6 M). Set

Ωn'm = C°°(An(T;)* ® Λm(T")*).

The exterior derivative d splits as

d = d' + (-l)nd" on Ωn'm,

where d! and d/; are exterior derivatives in the direction of M and V, respec-
tively.
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The (1,0)-component and (0, l)-component of the 1-form η are denoted ηf

and 77", respectively. Since the wedge product with ωv induces an injection

it follows from (5.1) that

-d'φ = -{dφ)'=ή'.

Then

(5.2) ηAdη = (ή' + ή") A d(ή' + η")

= -ή' Ad"ή' +ή' Ad'ή",

because dή' = -d'd'φ = 0 and Ωn 'm = 0 for m > 1. We have

(5.3) d(rf A η") = {dfrf - d"η') Λ η" - fjf Λ (d'η" + d"η")

Notice that η' A η" is Γ-invariant, sine the Γ-action on M xV preserves the

decomposition T = V Θ T".

Proposition 5.4. The Godbillon-Vey class of T is given by the cohomology

class

[-d'φAd"d'φ]eH3

DR(X).

Proof. By (5.2) and (5.3),

ηAdη = -d'φ A d"d'ψ - d{ή' A η").

Since η A dή and ή1 A ή" are Γ-invariant, so is d'φ A d"d!φ. Therefore —d'φ A

d"d'φ defines a 3-form on X, and

[η A dη] = [-d'φ A d"d'φ] £ H3

DR{X).

D

Remark 5.5. Equality (4.11) together with the fact that logλ5 on M xV

is constant in the direction of M implies that d'φ is Γ-invariant.
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6. Cyclic Cocycles.

In this section we will construct a densely defined cyclic cocycle on the
algebra 21. This cocycle can be interpreted as an analytical variant of gv{T).

As in the preceding sections, let E be a given Γ-equivariant bundle over
M x Sι. Define a new right Γ-action by

(6.1) vg = \g(x)-ιvg, f i E £ M , g G Γ,

where vg is the given Γ-action. Denote by E' the vector bundle E equipped
with this new action, and denote by g[ξ] the action of g G Γ on ξ G C^°f0(E').
Then

(6.2) g[ξ] = Xgg(ξ).

With respect to the new action (6.1), the Hermitian metric of E is no
more Γ-invariant. However, we have the relation

(vg.wg) = λg(x)~2(υ,w), υ,w G E(πiyX).

This enables us to obtain continuous fields of tangential Sobolev spaces.
Let P G Φ f ( S ) . Then

9[P(ξ)} =

here we used the fact that P commutes with the multiplication operator λg.

Thus P E <&r

τ(E').

Conversely, if Q € *£(•#')> t h e n

Since λ9 > 0, we have g(Q(ξ)) = Q(g(ξ)), i e. Q € *
Denote by d2φ the partial derivative of φ in the direction of S1. Regard

the pointwise multiplication by d2φ as an operator C^°'°(E) -> Cffi{E'),
and consider the commutator of operators

] = (d2φ)P-P(d2φ) for P
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Proposition 6.3. We have [d2φ,P] G Φ j r 1 ^ , ! ? ' ) .

Proof. The proof is similar to that of Proposition 4.9. We only have to show
that [<92<£, P] is Γ-equivariant. We then have

g[(d2φ)P - P(d2φ)} = Xgg((d2ψ)P - P(d2φ))

= \g{g{d2φ)gP - Pg{d2φ)g)

= \g{d2φ)Pg - XgPg{d2φ)g

= (d2φ + a2(log λg))Pg - P(θ2ψ + d2(log λg))g

= {{d2φ)P - P(d2φ))g + Θ2(log λg)Pg - Pd2(log\g)g.

Since logλp is constant along Mx, x € S1, so is 92(logλ3). Thus 92(logλ9)
commutes with P. Hence

] = [d2φ,P}g,

i.e. [d2φ, P] is Γ-equivariant. D

Let N be as in Section 3, and let N > r > 0. As in Section 3, we can
define a norm | | | | | | on Ψ^Γ(E,E') by

Denote by OPf(E,E') the completion of ^γr{E,E') with respect to
HI • | | | .Jt is easy to see that if P e Φr(^), Q E Vq

Γ(E,E'), then PQ, QP 6

Proposition 6.4. The space OPf2(E,E') is a Banach %-module.

Proof. Straightforward. D

Notice that the correspondence P —> [d2φ,P] is an unbounded derivation
from 21 into OPf2(E,E') with domain Ψ f 1 ^ ) . Closability of the multipli-
cation operator d2φ implies that the derivation P —ϊ [d2φ, P] is closable.
Denote by δι its closure with domain Dom^x).

Consider the multiplication operator Aiι on both E and E'.

Proposition 6.5. If Q e ^(E,E'), then AUQA-U G Φf (#,.§').

Proof. It is sufficient to show that AuQA~ιt is Γ-equivariant. Let ξ €
C™<°(E). Then

(6.6)
= g(Δu)\gg(QA-«ξ) =
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By (4.10), g(Au) = AH. Hence the equality (6.6) is equal to

This is the end of the proof. •

For Q e Φf2(i?,£'), set σ't{Q) = Δ^QΔ"4*, t G R

Lemma 6.7. The linear operator σ't extends to an automorphism of
OPf2(E,E').

Proof. By Lemma 4.8, the operator Aιt is bounded on Sobolev spaces. There-
fore

In particular, there exists C > 0 such that

.-N < C\\Q\\-N+2,-Nt

| |Δ i*QΔ- i t | |JV,Λr_2 < C\\Q\\N,N-2.

It follows that || |σί(Q)||| < C|| |Q|| |. D

It is clear that (σ't) is a one-parameter group of automorphisms. Denote
by δ'2 the generator of (σ't), and by Dom^ί,) its domain.

Proposition 6.8. If Q € ^γ2{E,E'), then Q € Όom(δ'2), and δ'2(Q) =

[ψ,Q]

Proof. Same as that for the derivation δ2. D

Proposition 6.9. If P G Φ f 1 ^ ) , then δ1(δ2(P)) = ̂ (

Proof. From Proposition 6.8 and the definition of J l 5 the conclusion fol-
lows. D

Recall that the underlying Hermitian vector bundle structures of E and E'
are the same. Therefore L2(E) = L2{E'). Then, if Q E Φ ^ E , ^ ) , r > 0,
the operator P x can be regarded as a bounded operator on L2(EX). Let σ
be a compactly supported smooth function on M x S1, and let σx be the
restriction of σ to Mx, x G S1.

Proposition 6.10. Let s > dimM. Then σxΛ~s/2 and A~s^2σx are Hilbert-
Schmidt class operators.

Proof. Recall that Λ = (/ + Δ) 1 / 2 . For the Laplacian Δ' on M, we have that

(I + A1)-112 G Cv for any p > dimM.
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Prom this, ((/ + Δ') 1 / 2 )~ s / 2 is a Hilbert-Schmidt class operator. If Q is
a ψΌO of order —1/2 on M, then Q is a Hilbert-Schmidt class operator,
because

/ /

In particular, the Schwartz kernel of Q is measurable and square-integrable.
Let P e ^γs/2(E). Then the Schwartz kernel of P is measurable [6].

The observation above, combined with Γ-compactness of the support of the
Schwartz kernel, implies that σxPx and Pxσx are Hilbert-Schmidt class op-
erators.

Let P e Ψγs/2{E) be a parametrix of Λ5/2, so that T = PΛS/2 - / is a
compactly smoothing operator. We have

as operators on L2(EX). Prom this, σxA~s/2 = σxPx — σxTxA~s/2. Since
both σxPx and Txσx are Hilbert-Schmidt class operators, so is σxA~s^2. As
Λ~s/2 is self-adjoint, we see that A~8/2σx is also a Hilbert-Schmidt class
operator. D

Corollary 6.11. Let σ,σ' be compactly supported smooth functions on
M x S1. Then for every P e Φf s(E,E') with s > dimM, the operator
σxPxσ'x is a trace class operator on L2(EX), for any x E S1. Moreover, there
exists a constant C > 0 such that

\Tr(σxPxσ'x)\ < C | |P | | s / 2 > _ s / 2 .

Proof. We have

σxPxσ'x = (σ.Λj ^ X Λ ^ P . ^ /

Consequently, σxPxσ'x is of trace class, and

\Tr(σxPxσ'x)\ < ^ k

where || ||i (resp. || | |2) is the trace class norm (resp. Hilbert-Schmidt
norm).

Continuity of the family (A~s^2)x implies the existence of C > 0 such that
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Thus
\Tr(σxPxσ'x)\<C\\P\\s/2^s/2.

D

Let σ be a compactly supported smooth function on M x S1 such that

i.e. {g(σ)2}geΓ is a Γ-invariant partition of unity on M x S1.

Definition 6.12. For P G ̂ γs(E,E') with s > dimM, set

(6.13) traceΓ(P) = / Tr(σxPxσx)dx.

Notice that the integrand in (6.13) is continuous. A modification of the
proof of Lemma 4.9 of [1] shows that traceΓ(P) is independent of the choice
of σ.

Let P G Φf s (£,£ ' ) , Q ^τr(E) = Φ F W
Then PQ, QP G Φ r β + r ( £ , £ ; )

Proposition 6.14. Let r + s > dimM + 2. Assume that either 0 < r < 2,
or 0 < 5 < 2. Then

tracer (PQ) = traceΓ(QP).

Proof. Since P and Q have Γ-compact Schwartz kernels, there exists a finite
subset S of Γ satifying:

(i) S = S~\

(ii) snppg(σ)x Π suppσ ^ 0 => g e S,

(iii) σxPsΣ#(σ)x = σxPxΣ'g(σ)x, and

)x = σxQxΣ'g(σ)x,

where the summation Σ (resp. Σ') is taken over all g G Γ (resp. g G S).
Then

Tr(σx(PxQx)σx) =

The last expression is equal to

Σ'Tr{g{σ)xQxσxσxPxg(σ)x),
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because either σxPxg(σ)x or g(σ)xQxσx is a trace class operator, by Corollary
6.11 and our assumption on s,r.

Let U(g) be the canonical unitary mapping L2(Exg) —> L2(EX). It is easy
to check that, as multiplication operator,

g(σ)x = U(g)σxgU(g)~1.

Then we have

g(σ)xQxσxσxPxg(σ)x

= U(g)σxgU(g)-1QxU(g)U(gy1(σx)
2U(g)U(g)-1PxU(g)σxgU(9r1-

Since Q is Γ-equivariant, U(g)~1QxU{g) = Qxg. As for P, we have

Hence

traceΓ(PQ)= / Σ'Tr{g(σ)xQxσxσxPxg(σ)x)dx
Js*

= / Σ'Tr(σxgQxgg-1(σ)xgg-1(σ)xgλg(x)Pxgσxg)dx
Js1

s1

= / Σ'Tr{σxQxg-\σ)xg-ι{σ)xPxσx)dx

= ί Σ'Tr(σxQxg(σ)xg(σ)xPxσx)dx

ί ' -1/ \2

= ί Tr(σxQxΣ(g-ι(σ)x)
2Pxσx)dx

Js1

= tracer (QP)>

D

By Corollary 6.11, tracer is continuous with respect to || ||s/2,-s/2j P r o "
vided that s > dimM. This implies that traceΓ extends to a continuous
linear functional on OPfs(E,E') with s > dimM. (Caution: our tracer is
not the same as tracer of [1]. Our traceΓ is not an actual trace on any
algebra, it is just a linear functional, while Atiyah's tracer is an actual trace-
on an algebra.)

Lemma 6.15. (1) traceΓ([d2^,P]) = 0 for all P e * f s ( £ ) with s >
dimM.
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(2) tracer(#>(<9)) = 0 for all Q G ΦFS(#, E') with s > dimM.

Proof. (1) Notice that Pxσx and Px(d2φ)xσx are trace class operators. Then

Tr{σx{d2φ)xPxσx) = Tr{Pxσxσx(d2φ)x)

= Tr(Px(Θ2cp)xσxσx)

= Tr(σxPx(d2φ)xσx).

Thus Tr(σx[d2φ,P]xσx) = 0. Hence traceΓ([<92</?,P]) = 0.
(2) The proof is the same as that of (1). D

Furnish (£ = Dom(5χ) Π Dom(52) with the locally convex topology given
by the graph norms associated with δι and δ2.

We will construct a densely defined cyclic cocycle on 21. Let us first con-
sider the case where dimM = 2. Set

(6.16) r2 (P°,P\P2) - tracer ( P % (P1) δ2 (P2))

- traceΓ (P°δ2 (P1) δι (P2)) for P°, P 1 , P 2 G C C 21.

Proposition 6.17. The trilinear functional τ2 is a cyclic 2-cocycle.

Proof. If P ^ P ^ P 2 e <£, then the products

P % (P°) ί2 (P°) and

belong to OPf5(E,E'). Since $i and δ2 are derivations, τ2 is a Hochschild
cocycle. By Proposition 6.14 and Lemma 6.15, τ2 is a cyclic cocycle on
Ψf l(E) C C Then by continuity and the fact that Φ f 1 ^ ) is dense in 6, we
can see that τ2 is a cyclic cocycle on (£. D

Proposition 6.18. The densely defined cyclic cocycle τ2 is a 2-trace on 21
in the sense of [8].

Proof. We have that

τ2(a?dxιaιdx2) =

and

< σ l f 2 | | | α 0 | | | n i e l l i ,
for some constant CΊj2 depending only on x1 and x2.
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Similarly

This completes the proof. Π

Let us now consider higher dimensional cases. Let dimM = 2n. The
formula (6.16) defines a cyclic cocycle on Φf °°(.E), but not on 6 when n > 1.
Consider the cyclic 2n-cocycle Sn~~1τ2, instead. For P°, . . . , P 2 n , we have

(6.19) ((n-l) !)- 1 (2π2) 1 - n S f n - 1 τ 2 (P 0 , . . . ,P 2 n )

{tracer (

2i-2δ2(P2i~1)P2i
P2i-2δ2(P2i~1)P

Denote by τ 2 n (P°, . . ,P 2 n ) the right-hand side of (6.19). Notice that
r2 n (P°,... , P 2 n ) makes sense when P°,. . . , P 2 n e <£.

The proof of Proposition 6.18 can be generalized to show that τ 2 n is a
2π-trace on 21.

Definition 6.20. When dimM = 2n, the Godbillon-Vey cyclic cocycle gv
is the 2n-trace

gv = ( n - l)!τ2 n.

By [8, Lemma 2.3; Corollary 2.4], gv extends to a cyclic 2n-cocycle on
a holomorphically closed dense subalgebra of 21, consequently it induces an
additive map from i£o[2l] into the scalars. By Proposition 3.6, the canonincal
inclusion 21 C C*(X, T, E) induces an isomorphism of fΓ0-groups. Hence gv
induces a map ϋfo[C*(X, T, E)] -> C. In Section 8 we will compute the value
of this map on a specific class in Ko[C*(X, T, E)].

7. Dirac Operators and Graph Projections.

In this section we will show that the graph projection of a longitudinal Dirac
operato^belongs to the domain of the 2n-trace gv on 21. _

Let M be as in the preceding sections. Assume further that M is even-
dimensional and is furnished with a Γ-invariant spin structure. Denote by
D the associate^ Dirac operator on M acting on the bundle S of (complex)
spinors. Since M is even, the bundle S has a Z2-grading ε. Thus

(7.1) S = S+@S~y
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where S*1 are ±1 eigenspaces of ε, respectively. With respect to the decom-
position (7.1), the operator D has the form

where D*1 are first-order, elliptic differential operators. Since the Γ-action
on S preserves 5=*= respectively, D*" are Γ-equivariant operators. Moreover,
D is essentially selfadjoint and has a closed extension. The closure D** of
D has the form

D ( ή

where T is the closure of Z?*, and Z}** is selfadjoint.
The graph G(T) of Γ is, by the definition of T, a closed subspace of

L2(S+) θ L2(S~) = L2(S). Denote the corresponding orthogonal projection
by e, and set

Lemma 7.2. We have

/ 1 1 \ / \

Proof. Define t : L2(5+) -»• L2(5+) θ L2(5") by

/Λ 1/2 / ( / +

ί = ^ τ J (7 + TT) =

It is easy to see that t*ι = 1. Since (/ + JΊ*T)-1/2 j s a n isomorphism from
L2(5+) onto the domain Dom(T) of T, the image of % is precisely the graph
G(T). Thus the projection e is given by

* __ ( i1 + T*T)-λ {I + T*T)~λT* \
6 ~ U \T{I + T*T)-λ T(I + τ*T)~ιT*) '

As for the second equality, from the equality

f, /τ»*τΛ—1 \ / n αi+λ



514 HITOSHI MORIYOSHI AND TOSHIKAZU NATSUME

it follows that

D

Set

Set u = (I + X)ε Then

u2 = (I + X)e(I + X)ε = (J + X)(J - X) = I - X2,

because Xε = —εX.

Let e = e — p_. Then using the equality

we can see that

(7.3)

From this,

(7.4) e2 = vΓ2 = {I - J

A straightforward computation shows that

(7.5) e= I U + i 1 ]

As in the preceding sections, suppose that Γ acts on S1 by orientation pre-
serving diffeomorphisms. For each x e S1, identify Mx = M x {x} with M
in a natural way. Via this identification, we obtain a vector bundle Sx and
a differential operator Dx. By abuse of language, denote the family (Dx) by
D. It is clear that D is a Γ-equivariant family of elliptic operators, acting on
a Γ-equivariant vector bundle S = (ί?x), i.e.

D e Φi(5).
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The Γ-equivariant differential operator D on M x S1 descends to a longi-
tudinal elliptic operator D on X — M x Γ S1, which we call a longitudinal
Dime operator.

The operator D is of the form

D =

and D+ = (D£) £ Φp(S ί+,S f ). Consequently, we can consider a continu-

ous field e = (ex) of projections: each ex is the orthogonal projection of

L2(S£) θ L2(S~) onto the graph of the closure of D+. The matrix p_ can be

regarded as the orthogonal projection of (L2(SX)) onto (L2(S~)J

Then, obviously p_ E Φr(S).
We devote the rest of the section to show that e belongs to the domain

of the cyclic cocycle gv. For this purpose we employ the method of bounded
propagation [20], [21], [23]. Since the Dirac operator D is the lifting of the
Dirac operator on a closed manifold M, it has bounded propagation speed.

Recall that the space S^M) of symbols of order zero is the collection of
all C°°-functions / o n l such that for each j = 0,1, 2,. . . , it holds that

sup{(l + \x\Y\fU)(x)\ : x e R} < oo.

We need the following:

Proposition 7.6. ([15, Thm. 7.25], [20, Thm. 21]). Let P <E ̂ r(E) be
a longitudinal, tangentially essentially self adjoint, first-order elliptic differ-
ential operator of bounded propagation speed. If the Fourier transform f of
f E ^(K.) is compactly supported, then

// the Fourier transform g of a Schwartz function g is compactly supported,

g{P) is compactly smoothing.

Let p+ : R -» [0,1] be a C°°-function such that

P + Ξ 1 on t < 1 - 5,

and

P + Ξ 0 on t>l+δ

for some sufficiently small 0 < δ < 1. Set p-(t) — p+(—t). For λ > 2, set



516 HITOSHI MORIYOSHI AND TOSHIKAZU NATSUME

to obtain a C°°-function ρx(t) : R -» [0,1] such that

Px{t) = l on |*| < λ — 1 — *,

and

P A ( * ) Ξ 0 o n | ί | > λ - l + ί .

Lemma 7.7. For any positive integer i, there exists a positive constant Ci
such that

\pψ{t)\<d for all λ,ί.

Proof. By the construction of px, it is straightforward. D

Set

(7.8) φλ(x) = (2π)~1/2 / eixtpx(t)e^ dt.
JR

L e m m a 7.9. (1) The function φx belongs to 5°(1R), and its Fourier
transform is px(t)e~^.

(2) The function φχ(x) = (2π)" 1 / 2 ( l + x2)φx(x) -I is a Schwartz func-
tion with compactly supported Fourier transform.

(3) As λ -> oo, ^λ converges to zero in C0(M).

Proof. (1) Using integration by parts twice, we get that

(7.10) {2π)-^φx{x) = - ^ + Γ p'l(t)e^~^(ix - 1)~2 dt
1 ~r X JO

+ f pl{t)^ix+ι\ix + l)-2dt.

Prom this, it follows that sup{(l + x2)\φx(x)\; x E M} < oo. This, in turn,
means that φx G L1(M), because φx is continuous. Then by the Fourier
inversion formula,

Φx{t)=pλ(t)e-M.

For a given nonnegative integer j , consider

hx(t) = (it)jpx(t).
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Notice that hl*\o) = 0 for k = 0,1,... J. Then

f°° I

JO J-oo

— (-l)J f h(jUt)p(ix~1ϊt(iτ — l)~j Ht
I I I I ί ί ι \ l l / j C \ LJu JLI L6o

^ 0o

It is easy to see that there exists a constant C > 0 such that

bλ }(^)l < £ ( ! * * - l Γ ' + lis + ll"') for all x.

Thus

sup{(l + \x\)j\φ(^(x)\; x e R} < oo.

(2) The equality (7.10) implies that φx E C0(R). We need the following

Sublemma, which we will prove later.

Sublemma. As distributions, we have the identity

where SQ is the delta function at t = 0.

We now have that

(7-11) & ( ^ )

= —pχe~w + 2ρf

xe~^sgn(t) (as distributions).

Since both sides of (7.11) are compactly supported C°°-functions, they are

actually equal as C°°-functions. It is now clear that φx is a Schwartz func-

tion.

(3) The Fourier transform induces an isomorphism from C0(M) onto C*(R).

So

By our construction, p'λ', p'x are bounded uniformly in λ. Therefore the equal-

ity (7.11) implies that

H^AIUMR)-*0 a s λ->oc.

This concludes the proof of Lemma 7.9. D
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Proof of Sublemma. Let /(«) = e~w. For g e CC°°(M), applying integration
by parts twice, we obtain that

f f(t)g"(t)dt = Γf(t)g"(t)dt+ f f(t)g"(t)dt
JR JO J-OO

= -2^(0) + ff(t)g(t)dt.
JR

Therefore

t-\ ί f(t)g"(t)dt
2 Ju

= 9(0)

D

For P G Φp(iS), by a straightforward computation we get that

(7.12) | | P | | M + r = | |(7 + Δ) f c/ 2P(7 + Δ)-( f c

In the definition of tangential Sobolev spaces for the bundle S, we can use

D2 in place of the Laplacian, thanks to the standard elliptic estimate. Thus

we may assume that the Sobolev s-norm is given by

2ξ\\ for ξeC™.

Consider an (unbounded) intertwining operator T — (Tx) of W®(S) —

(L2(SX))X, where Tx is the closure of D+. As before, set

χ - [ τ o j
Then

(7.13) e = (I + X)

By Proposition 7.5 and Lemma 7.9,
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and

= V2Ϊ(l + D2) Ψχφ) -

These imply that ψχ(D) G ̂ γ2(S). Hence

The equality (7.13) means, in particular that e is an operator of order —1.

Therefore we can consider the norm e — \/2π(J 4- X)εψχ(D)\

By (7.12)
\k,k-l

k,k-l
(I + X)ε [I + D2) - V2π(I + X)εφx(D)

(/ + b2)k/2 {I + X)ε ( (/ + D2)"' - V2^Ψxφ)\ ( l + D2)

(i + x)ε ( (/ + b2) ~ι - v^^ί^D)) (/ + b2*)1A

(/ + X)ε (i + D2) ~1(l-y/2^[l + D2) φxφ)) |

(7 + X)ε (i + D2)'1 I - y/2^ ίl + D2) Ψxφ)\\ .
V ' r\ r\ ^ ' I' 0,0

(l-fc)/2

0,0

0 0

In this computation we have used the fact that (/ 4- D2)1/2 commutes with

(/ + X)ε(I + D2)-1 - V2πψλ(D). Now by Lemma 7.9, (3),

k,k-l
a s λ —>> o o .

Thus e is in the closure of ΦΓ

1(S r) with respect to the norm | | | | | | . Therefore
e G21.

We show that e belongs to the domain of δ2. Recall that e = u~ι —
((I+X)ε)-1 = (D+ε)~ι. If φ is bounded, then the commutator [φ, (D+ε)'1]
is a bounded operator, and

lim [φ, V2^{I + X)εψxφ)\ = [(/?, (5 + ε)"1] .

Unfortunately, ψ is unbounded in general (see (4.11)). Thus \φ,(D + ε) λ is

defined only on a subspace which may not be dense. So, even if </?,(£) + ε ) " 1
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extends to a bounded operator, the extension may not be unique. However,
"formally" we have the equality

[φ, (D + ε)"1] = ψφ + ε)"1 - φ + ε)~ι

φ

and (Z> + ε)"~̂ [Z) + ε, φlφ + ε)"1 is a bounded operator, because [D + ε,φ] —
[D,ψ] E Φr(^) τ l m s ιt i s natural to expect that

δ2(e) = φ + ε)~ι[D + ε, φ]φ + ε)~ι.

Notice that [φ, φ+ε)V2πφxφ)] € ΦF2(^)5 and that φ+ε)~1[D+ε,φ}φ+
ε)" 1 is an operator of order —2 (not a ψΏO). We will show (Proposition 7.17)
that

as λ -» CXD for any s. It is enough to show that

I(D + ε) [ψ, (D + ε)V2Uφχ{D)] φ + ε) - [D + ε, φ]\\^ g -> 0

as λ —> oo. Recall that ψ\(x) = 1 — (1 + x2)φx(x).

Lemma 7.14. We have

( 2 ) ] | - > 0 as λ->oo.

Proof. For simplicity, set aχ(x) = (1 + x2)φχ(x). Then

φxφ) (i + D2) = aλφ) = J ax{s)eisΈ> ds.

Since [<£>, D] extends to a bounded operator, by DuhameΓs formula,

[ψ,φxφ)

From this

+ D2)}\\oo<\\[φ,D}\\o,ojjax(s)\\S\ds.

= J ̂

By the definition of ψλ, when λ -> oo, the integral JR |Sλ(^)| |s| ds behaves
like λe~Λ; i.e. there exists a constant C > 0 such that

*x(s)\\s\ds<C\e-χ.
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Thus

L e m m a 7.15. We have

Proof. We have

Then

0,0

0,0

0 as λ -» oo.
0,0

-1/2

-1/2

0,0

D

0,0

0,0

(notice that [(/ + D 2 ) 1 / / 2 , φ] is an operator of order 0). By Lemma 7.14, we
get the conclusion. D

Lemma 7.16. We have

\\[φ,MD)]\

Proof. By (7.12),

s,s—1
0 as λ —> oo.

0,0
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Case (i). s > 0. In this case

here we have used the fact that 11 + D2) ,φ\ GΦf (S) provided that

5 > 0. We have

<

0,0

0,s-l Ϊ-1,0

which converges to zero as λ -> oo.
Similarly,

0 as λ —> oo.
0,0

Then, by Lemma 7.15, we obtain the conclusion.

Case (ii). s < 0. In this case -s/2 + 1/2 > 0 and [φ, (I + /J2)(1-*)/2] i s

a ψΌO. Making use of [y>, (/ + D*)Q—)I*] in the place of [(/ + D2)s'2, φ] in

Case (i), we can deduce the conclusion. D

Proposition 7.17. The element e is in the domain of δ2, and

Proof. As mentioned above, it is sufficient to show that

φ + ε) [φ, φ + ε)V2^Ψxφ)] φ + ε)

converges to [D + ε, ψ] as λ ->• oo, as operator of order zero. By a straight-

forward computation,

φ + ε)[5 + ε,<p]-φ + ε) [<p, φ

= [D + ε,φ]ΦxΦ) + M
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We have that

Then by Lemma 7.16,

\\[tp:iPx(D)}{D + s)\\s,s-*O as λ -> oo.

By construction, ψ\(D) commutes with (i + D2j . Hence

2 φχ(D) (/ + D2yΦ

-)• 0 a s λ -> o o .

From these it follows that ||[D+ε, φ]ψ\(D)\\SiS —>> 0 as λ —> oo. Consequently,

[cp, (5 + ε)V2πφx{D)] -> (D + ε ) " 1 ^ + ε, (p](5 + ε)" 1 .

0,0

Recall that (D + ε)v2π(y9λ(-D) —> e in 21. Therefore, by closedness of δ2 we
obtain that

S2(e) = (D + ε)-χ[5 + ε, ̂ ( 5 + ε) ' 1 .

D

By the same argument, we can verify that e is also in the domain of <5X,
and that

(7.18) δ1{e) = {DΛ- ε ) " 1 ^ + ε,

8. Main Theorem.

In this section we will compute the pairing between the 2n-trace gv and the
class of the graph projection of the longitudinal Dirac operator. Throughout
this section dimM = 2n.

Let D be the longitudinal Dirac operator for the foliated S1 -bundle (X, T).
Denote by C*(X,T,S)~ the C*-algebra generated by C*(X, T, S) and the
projection p_ in ρo We then have a split exact sequence:

In Section 7, we showed that
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Set Θ = [e] - [p_]. Then Θ € K0[C*(X,F, S)].

Proposition 8.1. The class Θ is equal to ind(jD+).

Proof. Recall [9, Lemma 6.1] that

where Q is a parametrix of D+, and

S0 = I-QD+eC*(X,f,S+),

Set

and

o \1 "T
?; =

Then,

and

_ / 50

2 5o(/ + S0)Q\

^-{s^ i-si J'
and υu = e. Thus

i n d p + ) = Θ in ϋΓ0[C
r (-X'J^

Γ,5)].

D
Denote by C*(X,^Γ,Sf)+ the C*-algebra C*{X,T,S) with unit adjoined.

Notice that C*(X,^*, 5) + is identified with the C*-subalgebra of ρQ gener-
ated by C*(X, T, S) and /G po The 2n-cocycle gv, constructed in Section
6, extends to C*{X,T,S)+ by setting
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if one of α°, α 1 , . . . , a2n is a scalar multiple of /.
In terms of C*(X,T, S)+, the class Θ is expressed as a difference

where

P =

Θ = [p] - [ϊ],

(I + D-D+)-1 0 0 (I +
0 00
0 0 1 _

\D+(I + D-D+)-1 0 0 D+(I +

'D- \

and

/0 0 0 0\
0 0 0 0
0 0 1 0
0 0 0 1/

Notice that p, q e M2(C*(X,Jr, S)+). Then it is easy to see that

(gv,\p)-[q]) = (2τn)2nn\gv(e,...,e).

The main focus of the section is to explicitly compute gv(e,... , e).
We have

gv(e,... , e) = (n - 1)!

where the summation is taken over all i and j such that 0 < i, j and i + j <
n - 1 .

Lemma 8.2.

(1)

have

and

(2)

x (I (D +
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Proof. Recall that u = (I + X)ε = D + ε. In Section 7 we showed that

5j(e) = φ + ε)-ι\D + ε,d2φ](D + ε)'1 = U-1[D,

and

δ2{e) = u-1[D,φ]u-1.

Therefore

e2i+1δ1(e)e2jδ2(e)e2n-2i-2j'2

D2) "(ί+1) [5, a2¥?] (J + £ 2 ) " ϋ + 1 ) [5, φ)

Similarly we obtain the second equality. D

For i, j with 0 < i, j , and i + j < n — 1, let

Then

gυ(e,... , e) = (n - 1)! ̂  (traceΓ (A i J) - traceΓ (β^")) ,

traceΓ (-4*>J) — \ tr (σxA^jσx) dx:

tracer {BiJ) = ϊ tr {σxB^σx) dx,

where Ax'
j (resp. B^) is the restriction of A1^ (resp. B1^) onto M^ =

M x {#}, a; G 5 1. We must compute tr{σxA\^σx) and tr(σxBx

y*σx). In order
to do so, we make use of Getzler's symbolic calculus method [12]. Fix an
arbitrary x G S1. For a while we do analysis on the manifold Mx — M. In
order to simplify the notation we supress the subindex, as long as it is clear
on which manifold we are working on. _

Consider a one-parameter family of operators on M = Mx,

ii+1) [W,d2φ]

pγwΛ
t2D-D+)-1 -(I + ΐD+D)1 Γ
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Similarly, define B^{t).
In the symbolic calculus method, a key notion is that of asymptotic order.

Assign to the parameter t the order —1, and to a Clifford multiplication the
order +1. The total order is called the asymptotic order. For instance, the
following symbols have the asymptotic order 0 [9]:

(i)

(ii) σ([W,f])(m,ξ)=tdfm, f£C°°(M).
In (i) the operator (λ+tD2)"1 is a ψΌO. However, its distributional kernel

does not have Γ-compact support. In (ii) dfm is a Clifford multiplication
operator.

Although in [12] only compact manifolds are studied, the method devel-
oped there works for compactly supported T/JDO'S. In particular, the follow-
ing "Fundamental Lemma" is valid for such ψDO's (we use the notation of
[12] and omit the proof).

Lemma 8.3. ([9], [12]). (1) If A = A(t) has asymptotic order 0, then

σt-i(A(t))=σ0(A)

where σt-\ is the rescaled symbol, and σo(A) is the asymptotic symbol of A.

(2) // A, B are operators of asymptotic order 0, then

σo(AB) =σo(A)*σo(B),

where * is the Getzler multiplication of symbols.

(3) IfU{t) G Oj95-°°, then

Trs(U(t))--=(2π)-άϊmM f _tr8(σt-i(π(t)))(m,ξ)dmdξ, t > 0,
JT*M

where dmdξ is the symplectic measure on T*M.

We return to the computation. It is easy to see that

and

tr(σB'Ί(t)σ)=Trs(n*j(tj),

where

Π£ (ί) = σ (/ + t2D2) ~ t+1 [W, d2φ]
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and

+ t 2 b 2 )

b2) ~{n~ι~J)

 σ%
2b2)

Next, notice that the operators considered in [9] and [12] are the operator
y/^ΛΪ). For simplicity, let JJ) = \f-ΪD. Then Ίjb * = - Jβ and $> 2 = - I ) 2 .
We have [ί?,<p] = -yf^Jβ ,φ\, and [JD,ftv?] = -yΓΛ\ψ ,ft^] From this
it follows that

π i w = -σ (i - e ip 2)" ( i + 1 ) [t 9" ( i + 1 ) [t 9 Λ] (it2y> 2 ) ' u + 1 )

t2 φ 2 y n~l~3

Similarly,

, d2φ] (i-t2 φ2y 3 σ.

The operators Π^ and Π^ satisfy the assumption of Lemma 8.3. Therefore

(8.4) ίr(σi4^(t)σ)=Γr f(lIί 1

J .(ί))

= (2π)~2n ί ^trs (σt-i ( π ^ ) ) (m,ξ)dmdξ
JT*M V V JJ

= (2π)~2n [ ^trs (σ0 (ufλ
JT*M

Similarly

(8.5) tr (σB^(t)σ) = (2π)"2n / trs (σ0 (nf,)) (m,0 dmdξ + 0{t)./
T*M

We compute the asymptotic symbols σ0 (Π^ J and σ0 (jlfj) - Symbols which
are independent of ξ commute with those dependent on £, with respect
to Getzler multiplication. By [9, Example (3.2)], σo([t# ,</?]) = dφ and

,d2φ\) = d(d2φ). Hence

σ o ( π ^ ) = -σd(ft^) Λ dφσσ0 (jl - tt2
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and

σ0 ( i l*) = -σdφ A d(d2φ)σσ0

2 ) (" J= σd(d2φ) A dφσσ0 ((i - i2 $> 2 ) (" J

Using the formula:

V7 " * ^ / = k\ Jo

we obtain

GQ ( Π ^ J = —σd(d2ψ) ί\dφσ- —- / sn^~1e~sσo(e~st ** )ds.

By [9, p. 362],

• sR/2 \ 1 / 2

JT* M "K y S ^\smhsR/2) '

where R is the curvature tensor of the Γ-invariant metric on M.
Applying the super trace, which amounts to multiplying (2/i)n and taking

the top degree term, we get that (8.4) is equal to

-(2π)- 2 n / _ σd(d2φ)
JT*M

A/ _ σd(d2φ) A dφσ
T*M (n + l j !

Γ°° ί s/?/2 λx^2

x / s n + 1 e - s τ r " s - n d e t — , ' Λ dsdmdξ + O(t)
Jo \smhsR/2J s v '

= - (-)"(2π)-2"π" ίσ2d(d2φ)Adφσdet ( R'l ) + O(t).
\ι J JM Vsinniί/2/

Therefore

(8.6) Σ\tr (σA^iήσ) - tr (σB^iήσ)}

i,j); 0 < i,j, and i+j<n- 1}) 2(2π)-2 nτrn

/ ^ \ / 2 I/O \ A 7 j x / ^ / ^ \ , rΛί,\

x T x / σ d\p2ψ) Λ dφσdet . Ί _ . + Uίί)

^ . ^

x/_σM^)Λ^σdet(-^) +O(ί)
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( i?/2 \ 1//2

, ) is homogeneous of degree
smn XL I Δ J

(n — 1). Hence (8.6) is equal to the following (8.7)

-2nτrnn(n+l)(2m)n-1- βY (2π)-2nτrnn(n+l)(-2m)

x / a*d{d2ψ) Λ dΨa det ( ΪT^T, u) ̂  + <>(*)•
7M y Ψ> Ψ \smh(-(l/2πi){R/2))J w

Proposition 8.8. As t -> 0, the term
converges to

-(-) (2π)-2nπnn(n + l)(-2πi)n'1

Moreover, convergence is uniform in x.

Proof. Convergence follows from the equality (8.7).
Recall that we^are dealing with a family of operators^!) = (Dp) on M x S1

such that Dx = Dy via the canonical identification of Mx and My, and φ, d2φ
are smooth functions. It follows that, when one applies Lemma 8.3, (1), one
obtains an estimate O(t), which is uniform in x. Then the conclusion is
immediate. D

Proposition 8.9. We have that

£ / [tr(σxA^σx)-tr(σxB^σx)]dx,

= ^ ί [tr(σxA
iJ(t)xσx) - tr(σxB

iJ(t)xσx)] dx for all t > 0.
^ Js1

Proof. The right-hand side of the identity above is precisely

where et is the graph projection of the operator 1D+, and et = et

Clearly, (e^) is a continuous path of projections. Therefore

[e] - [p-] - [et] - \p-} in Ko.

Hence
gv(et,... , et) = ̂ υ(e, . . . , e) for all ί > 0.
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D

From Propositions 8.8 and 8.9, it follows that

g v ( e , . . . , e ) = g v ( e t , . . . , e t )

= l i m g v ( e t ) . . . , e t )

- lim(n - 1)! ]Γ j [tr(σxA^\t)xσx) - tr(σxB"(t)xσx)} dx

= ( n - l ) ! V ( lim[tr(σxA
ι>J(t)xσx)-tr(σxB

ίJ(t)xσx)]dx
z-^ Jsi t->0

= -(n + I)!(2π)-2 nπn(-2πi)n-1 β

1 /9

x[ ίσld((d2φ)x)Ad(φx)det(. ~ / 1 ^ ) ( ^ 2 )

/ 9 , 0 dx
Js* JMX \smh(-(l/2m)(R/2)))

= -(n + I)!(2π)~2nπn(-2πί)n-1 [-")

x / [σ2dfd"φΛd'φΛA(R)

Js1 J M
= -(n + I)!(2π)~ 2 nπn(-2πi)n- 1 Γ-^ / rf'd'V Λ d'φ A A(R),

where X = Mxr^S1, and A(i?) is the A-polynomial of M given in terms of the
curvature R of the Γ-invariant Riemannian metric on M. Since d'd"φ Λ d'φ
is Γ-invariant, so is d'd"φ A d'φ A A(R). Consequently the integration of
d'd"φ A d'φ A A(R) on X is well defined. By Proposition 5.4, the 3-form
—d'd"φ Ad'φ represents the Godbillon-Vey class gv(F). On the manifold X,
the cohomology class of A(R) is exactly the pullback of A-class A(M) of the
spin manifold M. Thus

(8.10) gυ(e,... ,e) - -(n + l) !(-l) n ~ 1 (2^)~ 1 / d'd"φ A d'φ A A(R)
Jx

- (n + m-ir-1 (2m)-1 (gv{T) U A(M)) [X].

Summarizing the arguments above, we have the main result:

Theorem 8.11. Let X be a foliated S1-bundle over a 2n-dimensional closed
spin manifold M, and let D be the longitudinal Dirac operator. Then

{gυ,md(D+)) = (-l)"- χ(n + l)(2π ί)-"" 1 (gυ{T)UA{M)) [X].
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Corollary 8.12. // (gv(T) U A(M)) [X] φ 0, then the class θ = ind(D+)

is nontrivial in K0[C*(X,T.S)].

Example 8.13. Let ( T i Σ , ^ ) be an Anosov foliation associated with the
geodesic flow on the unit circle bundle TίΣ over a closed Riemann surface Σ
of genus > 2. Since dim Σ = 2,

(gv,ind(D+)) = ^

It is known [18] that gυi^lΆΣ] Φ 0. Therefore, θ = ind(D+) is nontrivial
in K0[C*(TιΣ, TA, S)]. In the next section we will show that θ together with
other known elements generates the whole i^0[Cί*(T1Σ,^Γ4, S)].
Remark 8.14. In (8.10), the righthand side is always purely imaginary.
This is due to the fact that the cyclic 2n-cocycle gv is purely imaginary, i.e.

for α 0 , . . . , a2n G Όom(gv).

9. A relationship between the cocycle gv and Connes's cocycle.

In this section we will study the relationship between the cyclic cocycle gv
and Connes's cocycle [8].

Let us recall his construction. Denote by τ\ the transverse fundamental
class for C(Sι) x Γ. That is

n(f°J1)=1)= Σ ί f°9o^9o)dfι

9l{χ
9091=1 J S 1

where fj = Y,fu

gUg G Cf{Sι x Γ). Its derivative fl5 defined by

(9.1) M/0,/1) =limi(r1(σ t(/°) lσ t(/1)) - r ^ / 0 , / 1 ) ) ,

is (σt)-invariant. The cocycle which Connes studied is iDφ(τι) We will see
that there exists a homomorphism Π from C(S1) x Γ into C*{X,T,E) such
that

τΓ{gυ)=iDφ{τ1)

on
C^iS1 x Γ) c C^ 1 ) x Γ.

There exists a compactly supported C°°-function σ on M such that
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i.e. {g{σ)}9€r is a Γ-invariant partition of unity for M. We can choose σ
so that σ takes the value 1 on some open set U. We may further assume
that the fundamental domain V is contained in suppσ. Assume that E is
a Γ-equivariant vector bundle on M x S1, which is the pullback of a vector
bundle E on M by the composition of two canonical maps

M x S1 -> M 4 M.

The bundle S of spinors considered in the preceding two sections satisfies
this assumption. Choose a section f E C^°(p*E) such that suppξ C £/, and

ί(ξ,ξ)dμ(m) = l.
JM

In a natural way, ξ can be regarded as a compactly supported section of E.
By the choice of ξ, we have that

(9.2) supp£ Π supp#(£) — 0 unless g = 1.

Moreover

(9.3) L(M)*dμx(m) = l
JM

for all x ζ S1. From this follows that

where ( , •) is the C(S'1) >i Γ-valued inner product on e in Section 2.
In general, for a right Hubert module over a unital (7*-algebra 21, if there

exists an η E e such that (77,77)̂ 1 = 1, then the map Π defined by

(9.4) Π(α) - 0 ^ , α E 21,

is a *-homomorphism from 21 into /C(e), which induces an isomorphism of
if-groups. Apply this principle to ξ above to obtain a *-homomorphism Π
from C{Sι) x Γ into /C(e) ^ C*{X,T,E).

Let dx and ώ be as in Section 5. Let ψ b e a real-valued C°°-function on
M x S1. It is easy to see that ω = φω Λ dx is a Γ-invariant volume form on
M x Sι if and only if τ/> is never zero, and φ = g(φ)λg for any # E Γ. Set
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Since {g(σ)} is a partition of unity, and Xg > 0, the function ψ is always
positive. Moreover

her

her

Thus ω = ψω Λ dx is a Γ-invariant volume form. Using the definitions given
in Section 5, obtain (Δ**) and (σt).

Lemma 9.5. The section ξ (as a section of E over MxS1) has the property
that

Proof. Obvious from the fact that ψ Ξ l o n suppξ. D

Lemma 9.6. The *-homomorphism Π given by (9.2) is R-equivariant; i.e.

σt(Π(α)) =Π(σ t(α)), for all aeC(Sx)xΓ and teR.

Proof. For each a G C^S1) x Γ and t e M, by Lemma 4.3,

= Π(σt(α)).

D

For α G Cf^°(Srl xΓ), the operator Π(α) is a compactly smoothing operator.
Therefore tracer(Π(α)) is well defined.

Proposition 9.7. For a0, a1 G C?(Sι x Γ), we

tracer
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Proof. We have, using (9.2) and (9.3), that

tracer (Tl(a°)δι(ϊl(a1)))

= / I L Σ ao(xg,9-
1h)((d2φ)(n:x)-(d2φ)(m,x))

Js* JVJM ghglh,

x a1 (xg',g'-ιti){ξ(nh,xh),ξ{ngf,xg'))

x (ζ(mhr, xh1), ξ(mg, xg)) dμx(n) dμx(m) dx

= 11 LΣa°(x9^-1h)((d2φ)(n,x)-(d2φ)(m,x))a1(xg,g-1h)
Js1 Jv JM g h

x \\ξ(nh,xh)\\2 \\ξ(mg,xg)\\2 dμx(n) dμx(m) dx

= ί ί LΣa^x^a^xh^iid.φ^x) - (d2φ){m,x^
Js1 Jv JM "

x \\ξ{nh,xh)\\2 \\ξ(mg,xg)\\2 dμx(n) dμx(m) dx.

Since ψ Ξ l o n supp<^, we have (52(^)(rn, a;) = 0 if m E P . Hence

tracer (Π(α )δι(H(a )))

Jv JM h

x dμx (n) dμx (m) dx

ί f x

Js1
 JM ^

If nh £ V, then \\ξ(nh,xh)\\2 = 0. By the choice of ̂ , if ||ξ(n/ι,x/ι)||2 ^ 0,
then

ψ(n,x) = \h-i(x)h(σ)(n),

and

φ(n,x)=l(h-1){x)+log(h(σ)(n)).

Therefore (d"φ)(n^ — dl(h~λ)x. Consequently

tracer (Πία^ί^Πία1))) = Y ί a°(x,h)aι(xh,h-ι)dl(h-1)

D
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Finally we can relate the two cocycles:

Proposition 9.8. For a0, a1, a2 in C™(Sι x Γ), we have

Proof. This is immediate from Lemma 9.6, Proposition 9.7 and [8, Lemma

6]. D

Remark 9.9. Suppose that E is the trivial line bundle. Then the formula

(9.10) / / (k°{m,n,x)d"kι{n,m,x)dndrndx
Js1 Jv JM

defines the transverse fundamental class on /Cc. The cocycle {k°,kι) -»
traceΓ (A;0δλ {k1)) — tracer (A;0 [d"φ,k1]) is the derivative, in the sense of (9.1),
of the cocycle (9.10) with respect to the modular automorphism group (σt).

10. The ίQrgroups of the C*-algebras of Foliated 51-bundles.

In this section we will determine the generators of the group K0[C*(X,T)]
for an arbitrary foliated S1 -bundle over a closed Riemann surface.

Let Σ be a closed Riemann surface of genus g > 2, and let Γ = π^Σ). To
any (right)action of Γ on the circle S1 by orientation preserving diffeomor-
phisms, a fibre bundle with fibre S1 is associated (Section 2). By evaluating
the Euler class of this bundle on the fundamental class of Σ, we get an integer
X, which is called the Euler characteristic.

This group Γ is an amalgamated free product Γ = F2 *% F2g~2 By [17] we
have an exact sequence, a part of which looks like

K0{Aι)®K0{A2) -> K0{A) -* Kλ{Ao) -> K1(A1)®K1(A2)i

where Ao = CiS1) x Z, Ax = C(52) x F 2 , A2 = CiS1) xi F2 ί 7_2, and
A = C(S1) x Γ. The computations done in [16] enable us to obtain

(10.1) K0[A] ̂ Z 2 5 Θ Z Θ Z/χZ.

The subgroup Z2g in (10.1) is generated by Rieffel projections. It is straight-
forward to see that those 2g generators lie in the kernel of the map K0(A) ->
C induced by the pairing with the cyclic 2-cocycle iDφ(ϊi) described in the
preceding section. The torsion subgroup Z/χZ is generated by the class of
the unit. As for the remaining generator, we know only of its existence, by
applying an exact sequence to compute the ϋf-groups. We will show that this
missing generator is given by the class θ associated with the Dirac operator.
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Recall that the upper half plane H+ is the universal covering of Σ. The
Γ-equivariant Hermitian vector bundles S — S+ θ 5~~, associated with the Γ-
invariant spin structure on H+, give rise to a Hubert C*-module ei over C*Γ
in the fashion used to create e in Section 2. Let ξ be as in Section 9. Then
ξ yields *~homomorphisms Π : C^S1) M Γ - ) /C(e) and Πx : C T -+ K{ex),
which induce isomorphisms of K-groups.

Proposition 10.2. There exists a *-homomorphίsm from /C(ei) into /C(e)
such that the diagram

C*Γ - ^ - > /C(eχ)

C{Sι) x Γ —5-^ /C(e)

is commutative, where C*Γ —> C(S1) xi Γ is £Λe canonical inclusion.

Proof. Recall that /C(e) is generated by operators with Γ-compactly sup-
ported, Γ-invariant C°°-kernels. Let P G /C(ei) have the kernel k. Then the
Γ-invariant C°°-kernel k defined by

k(m,n,x) — A;(m,n), (m,n,x) E O+ x O4. x 5 1,

determines an operator P G /C(e). Using the definition of norm, it is not hard
to check that the correspondence P —> P extends to a *-homomorphism
j : /C(Cl) -^ /C(e).

Commutativity of the diagram is also easy. D

The Dirac operator D+ on Σ lifts to a Γ-equivariant differential operator

The graph projection e+ associated with JD+ is a bounded operator on
I/2(HLf, <S + θ5") and determines a class

Proposition 10.3. The class θ 0 and the class of unit 1 G C*Γ generate

Proof. By the fact that the index map from the ϋf-homology of Σ into
if*[C*Γ] is an isomorphism [2, Thm. 3], we can see that K0[C*T] is isomor-
phic to Z2 and is generated by the class of the unit and the index mdΓ(D+).
As in Section 8, it is not hard to see that Θo coincides with indΓ(Z)+). D
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By the construction of j we can see that

Prom this we see j*(Θ0) = θ , where j * : K0[JC(eι)] -» K0[IC(e)] is the

induced map.

Theorem 10.4. The class θ is the missing generator of K0[C(Sι) x Γ] =

Proof. We claim that θ , together with the known generators, spans the Ko-
group. Let Ao, A l 5 A2, and A be as above. We have a commutative diagram:

KQ[Aλ}®K0[A2) • K0[A) - • Kλ{A0} > K1[A1]®K1[A2]

T ΐ ΐ ΐ
s

i S - 0 [ ^ -^2J vl? •** θL^-/ 2 o 2J ^ " 0 L ^ *• J ^ " 1 1 ^ *-*J ^ •"• 1 L̂ * ^ 2 j ® -^ 1 1 ^ - ^ 2 σ 2J?

where horizontal rows are exact, and all the vertical arrows are induced from

the canonical inclusions of C*-algebras.

The map Kλ[C*Z] -> Kλ[C*F2] θ Kλ[C*F2g-2] is a zero map, and the

kernel of iϊ^jylo] -» ^ [ A i ] θ i ί Ί ^ ] is an infinite cyclic group generated by

the class of the unitary of C(Sι) x Z corresponding to the generator of Z.

Since the class of the unit and the class θ 0 generate ifo[C*Γ], we see

that <5(θo) must be the generator of-KΊ[C*Z]. From this and the observation

above, δ(Θ) is the generator of the kernel of ϋΓi[-40] —> ifi[Ai] θ ϋΓi[^42]

Therefore the class θ and the image of the map ϋΓo[^i] θ ^0(^2] ~> K0[A]

generate JKΌ[̂ 4.] Π

References

[1] M.F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Asteri-
sque, 32/33 (1976), 43-72.

[2] P. Baum and A. Connes, Geometric K-theory for Lie groups and foliations, preprint,
Brown U.-I.H.E.S., 1982.

[3] , Chern character for discrete groups, A Fete of Topology (Editors: Y. Mat-
sumoto, T. Mizutani, and S. Morita) , Academic Press, 1987, 163-232.

[4] B. Blackadar, K-theory for operator algebras, Mathematical Sciences Research In-
stitute Publications: 5, Springer-Verlag, 1986.

[5] R. Bott, On some formula for characteristic classes of group actions, Differential
Topology, Foliations and GeΓfand-Fuks cohomology, Rio de Janeiro, Lecture Notes
in Math., 652, Springer-Verlag, 1979, 19-143.

[6] A.,Connes, Sur la theorie noncommutative de Vintegration, Algebras d'Operateurs,
Lecture Notes in Math., 725, Springer-Verlag, 1979, 19-143.

[7] , Non commutative differential geometry, Parts I and II, Inst. Hautes Etudes
Sci. Publ. Math., 62 (1986), 257-360.



GODBILLON-VEY CYCLIC COCYCLE 539

[8] , Cyclic cohomology and transverse fundamental class of a foliation, Geo-
metric Methods in Operator Algebras (Editors: H. Araki and E.G. Eίfros), Pitman
Research Notes in Math. Series, 123 (1986), Longman Scientific and Technical,
52-144.

[9] A. Connes and H. Moscovici, Cyclic cohomology, the Novikoυ conjecture and hyper-
bolic group, Topology, 29 (1990), 345-388.

[10] A. Connes and G. Skandalis, The longitudinal index theorem for foliations, Publ.
Research Inst. Math. Sci., Kyoto Univ., 20 (1984), 1139-1183.

[11] R. Douglas, S. Hurder and J. Kaminker, The longitudinal cocycle and the index of
Toeplitz operators, preprint, I.U.-P.U.I., 1988.

[12] E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer
index theorem, Comm. Math. Phys., 92 (1983), 163-178.

[13] C. Godbillon and J. Vey, Un invariant des feuilletage de codimension 1, C.R. Acad.
Sci. Paris, 273 (1971), 92-95.

[14] M. Hilsum and G. Skandalis, Stabilite des C* -algebres de feuilletages, Ann. Inst.

Fourier, Grenoble, 33 (1983), 202-208.

[15] C.C. Moore and C. Schochet, Global Analysis on Foliated Spaces, Math. Sci. Res.
Inst. Publ., vol 9, Springer-Verlag, 1988.

[16] T. Natsume, Euler characteristic and the class of unit in K-theory, Math. Z., 194
(1987), 237-243.

[17] M. Pimsner, KK-groups of crossed products by groups acting on trees, Invent.
Math., 86 (1986), 603-634.

[18] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math., 793,
Springer-Verlag, 1980.

[19] M.A. Rieffel, Projective modules over higher dimensional non-commutative tori,

Canadian J. Math., 40 (1988), 257-338.

[20] J. Roe, Finite propagation speed and Connes foliation algebra, Proc. Camb. Phil.

Soc, 102 (1987), 459-466.

[21] , Partitioning non-compact manifolds and the dual Toeplitz problem, Opera-
tor Algebras and Applications (Editors: D.E. Evans and M. Takesaki), Cambridge
Univ. Press, 1989, 187-228.

[22] M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, 1981.

Received February 16, 1993 and revised March 22, 1995. The second author was partially

supported by a NSF Grant. The authors are grateful to J. Fox for fruitful conversations

during his visit to Buffalo, and useful information.

HOKKAIDO UNIVERSITY

KITA-KU, SAPPORO 060

JAPAN

current address:
RLTSUMEIKAN UNIVERSITY

NOJI-CHO 1916, KUSATSU

SHIGA 525, JAPAN

SUNY AT BUFFALO

BUFFALO, NY 14214






