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THE GODBILLON-VEY CYCLIC COCYCLE AND
LONGITUDINAL DIRAC OPERATORS

HitosH1I MORIYOSHI AND TOSHIKAZU NATSUME

The goal of this paper is to prove the index theorem for
the pairing of the Godbillon-Vey cyclic cocycle with the index
class of the longitudinal Dirac operator for a codimension one
foliation. Let (X,F) be a foliated S'-bundle over an arbitrary
spin manifold M. The Dirac operator on M lifts to a longi-
tudinal elliptic operator D, the longitudinal Dirac operator,
on (X, F). The index class of D is an element of the Kjy-group
of the foliation C*-algebra C*(X,F). A densely defined cyclic
even-cocycle on C*(X, F), the Godbillon-Vey cyclic cocycle, is
constructed. The main result gives a topological formula for
the pairing of the Godbillon-Vey cyclic cocycle with the in-
dex class of D. The proof of the main theorem uses a new
technique, the pairing with the graph projections.

1. Introduction.

Over the past decade K-theory has come to play significant roles in the study
of C*-algebras. One such role is as a receptor of indices of pseudodifferential
operators on foliated manifolds. If P is a longitudinal elliptic operator on a
foliated manifold (X, F), then the index of P is an element of the K,-group of
the foliation C*-algebra C*(X, F) [10]. A transverse invariant measure v for
the foliation generates a trace on the C*-algebra C* (X, F). This trace defines
an additive map ¢, from the K,-group into the scalars. Evaluating ¢, on the
index of an operator, we obtain a numerical invariant (an analytic index),
which depends on the transverse invariant measure v. The index theorem
of A. Connes [6] describes the analytic index in terms of the symbol of the
operator and the foliation cycle corresponding to the transverse invariant
measure.

For many interesting foliations, e.g. Anosov foliations, there does not
exist a nontrivial transverse invariant measure. Thus, in order to obtain
numerical invariants of operators on such foliations, we need an alternative.
A natural candidate is the pairing between K-group and cyclic cohomology.
In fact, a trace on a C'*-algebra may be regarded as a densely defined cyclic
0-cocycle. Our aim is to give an index formula for higher dimensional cyclic
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cocycles. In this direction several authors have obtained results for certain
cocycles, see for example [11]. Connes and H. Moscovici [9] studied the
pairing between cyclic cocycles associated with group cocycles and Dirac
operators on a Golois covering. In order to compute the pairing they use
idempotents constructed by A. Wasserman. Our arguments use graph pro-
jections associated with the operators; the advantage is that they provide a
direct construction and result in a simple argument.

We focus on a particular cyclic cocycle for a special class of foliations. Let
T be a discrete group acting freely on a manifold M so that M /T is a closed
manifold. Suppose that a I’-action on the circle S* , by orientation preserving
diffeomorphisms, is given. The S*-bundle over M /T associated with the
action is equipped with a foliation F, whose leaves are transverse to the
fiber of the bundle. The S*-bundle X with F is called a foliated S'-bundle.
When the action satisfies a certain condition (Condition 2.2), the foliation
C*-algebra C*(X,F) is strongly Morita equivalent to the reduced crossed
product C(S*) x I'. The foliation F is of codimension one, and transversely
orientable. To such a foliation, is assigned a characteristic class, called the
Godbillon-Vey class [13]. It is a 3-dimensional de Rham cohomology class of
X. For foliated S*-bundles, this characteristic class is interpreted as a group
2-cocycle with values in the space of 1-forms on S* [5]. Based on this picture,
A. Connes studied an analytical interpretation of the Godbillon-Vey class
[8]. He constructed a densely defined cyclic 2-cocycle 7 on the C*-algebra
C(S') x T and showed that the additive map, induced by 7, coincides with
the map, which the Godbillon-Vey class induces on the geometric group
K°(S8',T), via the index map K°(S*,T') — Ko(C(S*) x T).

If P is a longitudinal elliptic operator on a foliated S'-bundle (X,F),
its index ind(P) is regarded as a class in Ko(C(S*) x I') via the strong
Morita equaivalence. We will explicitly compute the value of the additive
map mentioned above on the indices of longitudinal Dirac operators. More
precisely, we will consider the case where an even-dimensional manifold M
is endowed with a I'-invariant metric and a I-invariant spin structure. We
will study the index of the associated Dirac operator D. In order to carry
out an explicit computation, the following points have to be taken care of.
(1) Since ind(D) is defined to be a class in the Ky-group of the foliation C*-
algebra, we have to obtain a formula for a densely defined cyclic cocycle on
C*(X,F) (Section 6). The strong Morita equivalence between C*(X, F) and
C(S') xT yields a homomorphism from C(S*) xT into C*(X, F). Thus, once
we obtain a densely defined cyclic cocycle on C*(X, F), we can compare this
cocycle with Connes’s cocycle (Section 9). (2) The index ind(D) is described
in terms of a parametrix of D [10], [9], and there is not a canonical choice
of a parametrix. Thus it seems infeasible to compute the evaluation on



GODBILLON-VEY CYCLIC COCYCLE 485

such an element. Hence we need a projection “canonically” attached to the
operator. The operator extends to a closed operator T'; the graph of T is a
closed subspace, and the associated orthogonal projection is called the graph
projection of T'. It will be shown that the graph projection represents ind(D).
A disadvantage of using graph projections is that they lack the regularity
which idempotents in [9], [10] can enjoy. Thus it has to be verified that the
graph projection does indeed belong to the domain of the cyclic cocycle.

A use of graph projections in the index problem is a new idea. Once
(1) and (2) above are done, the proof of the actual computation of the
evaluation (Theorem 8.10) will be straightforward by employing Getzler’s
symbolic calculus method [12].

This work grew out of a study of the K,-group of the C*-algebras of
Anosov foliations on the unit circle bundle T} % of a closed Riemann surface
3 of genus g > 1 furnished with a metric of constant negative curvature.
Those C*-algebras are strongly Morita equivalent to crossed product C*-
algebras C(S*) x m;(X), where m; () acts on C(S*) through linear fractional
transformations. Since Anosov foliations on 7;% have nonzero Godbillon-
Vey classes, there must be a class in K, on which the cyclic cocycle attains
a nonzero value. Our motivation was to describe this class as clearly as
possible. This matter will be discussed in Section 10.

2. Foliated Bundles and Its C*-algebras.

In this section we study the properties of C*-algebras associated with foli-
ated bundles. On these C*-algebras we will construct densely defined cyclic
cocycles in Section 6. .

Let M be a closed Riemannian manifold, and let M — M be a Galois
covering with deck transformation group I'. Given a right I'-action on a closed
manifold V' by diffeomorphisms, we can construct a fibre bundle X — M
with fibre V. This is the associated bundle

p:X=MxpV—M/T=M,

where the right T-action on M xVis diagonal. The product foliation on
M x V with leaves M x {z},z € V, descends to a foliation F on X. The
projection p restricted to any leaf of F is a covering map. We call the
V-bundle X — M together with F a foliated V -bundle.

Condition 2.1.  Through the paper we assume that a I'-action on V
satisfies the condition: for g € T, if there exists an open set U in V such
that g = z for all z € U, then g is the identity element of I'.

The Condition 2.1 guarantees that the holonomy groupoid G of F is a
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Hausdorff space, and that
G=(MxMxV)T,

where T acts by (m,n,z)g = (mg,ng,zg), (m,n,z) € MxMxV, geTl.
The groupoid structure of (M x M x V)/I is described as follows. Denote
by [m,n,z] the class of (m,n,z) € M x M x V. The source map s and the
range map r are given by

r([m,n,a:]) = [max]a

s([m,n,z]) = [n,z].

Two elements [m/,n’,z'] and [m,n,z] are composable if and only if there
exists a g € T such that n' = mg, z' = zg. In this case,

[m',n', z'|[m,n,z] = [m'g"", n, z].

The lifting to M of the Riemannian metric on M induces a leafwise Rie-
mannian metric. The latter gives rise to a left Haar system {v*} of the
groupoid G [18].

We recall the definition of foliation C*-algebras with coefficient [11]. Let
E be a Hermitian vector bundle over X. Denote by C°(G, E) the space of
all compactly supported smooth sections of the bundle (s*(E))* ® r*(E). So,
if f e C*(G,E), then

f(")’) € HOIn(Es(,Y),ET(.Y)), vy E G.

The space C°(G, E) has a *-algebra stucture:

() = [ ARG drO ),
Gr()
Fo =6,
where f1(v')f2(y ~v) is the composition of maps, and
(f(’y_.l))* € Hom(Es('y)aEr(’Y))

is the adjoint of f(y™') € Hom(E,(,), Ey))-

Let 7,5 be the lifting of r,s to M x M xV — M x V, respectively. Thus
7(m,n,z) = (m,z) and 3(m,n,z) = (n,z).

Denote by E the lifting to M x V of E. It is easy to see that C>(G, E) is iden-
tified with the space K, of those [-invariant smooth sections of (5*(E))* ®
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7 (E) which have I'-compact supports. Here we say that a subset of M x
M x V is -compact, if its image in (M x M x V) /T is compact (Definition
83 of [3]).

Let M, = M x {z}, z € V, and let p, be the strictly positive smooth den-
sity on M, corresponding to the I'-invariant smooth density on M through
the canonical identification of M, and M. Set

H, = L? (E'maﬂ'zc) )

where E, is the restriction of E to Mm Then the collection H = (H,)zcv
together with the space C,( ~) of compactly supported continuous sections
of the bundle E over M x V, defines a continuous field of Hilbert spaces over
V. The I'-action on M xV and E gives rise to an action on H. We denote this
action by & — g€, for g € T, and a section & of H. The space Endr(H) of I'-
equivariant bounded measurable fields of operators T = (T,), T, € B(H,),
is a C'*-algebra, where the norm is given by

IT|| = sup{||Te||;z € V}.
There is a faithful representation p : K. — Endp(H). For f € K., the
operator p(f) is defined by

(22) p(F)atlm) = [ £(m,m,2)e(r) dp(m),
for £ € H,. The norm-closure of K, with respect to the norm

AN = 1e(HIl = sup{llo(f):ll;z € V}, f € K,

is, by definition, the C*-algebra C*(X,F, E) of the foliated bundle (X, F)
with coefficient E.

Let C(V) x T be the reduced crossed product C*-algebra arising from the
(left) T-action on C(V') given by

(ga)(z) = a(zg), g€ C(V).

The C*-algebra C(V) x I is exactly the reduced C*-algebra associated with
the following groupoid. As a topological space this is V' x I'. The space of
units is V, with s(z,g) = zg and r(z,g9) = . Thus C(V) x I" contains the
following dense *-subalgebra C,(V x T') :

(ab)(z,9) = ) _ a(z, h)b(zh,h ™ g),

hel’

a*(z,9) = a(zg,97")
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for a,b € C.(V x I'). For each z € V, one has
s (z) = {(zg7",9) €V xT; geT}.
Define a *-representation L, of C.(V x I') on I*>(s~!(z)) by

[Lo(a)él(zg™",9) = Y _ a(zg™", h)é(zg ™ h,h™"g),

hel

where a € C,(V xT') and ¢ € 1?(s7*(z)). Then
lla|| = sup{||Ls(a)||; = € V} < o0,

and C(V) x T is the completion of C.(V x I') with respect to the norml|]| - ||.

If U, denotes the characteristic function of V' x {g}, then U, belongs to
C.(V x T), since V is compact. Any a € C,(V x TI') can be expressed as a
finite sum

a=>Y aU,, a,€C(V).
g€l

The *-algebra C.(V x T') is generated by C(V') and (U,)er, subject to rela-
tions: U,Uy = Uy, g,h €T, U; = Uy-1, and U,aU; = g(a), a € C(V).
Remark 2.3. The collection {l{?(s™*(z))}sev forms a continuous field of
Hilbert spaces, and the correspondence z — L,(a) is a continuous field of
bounded operators.

Proposition 2.4. There ezists a Hilbert C(V) x I'-module € such that
C*(X,F,E) is isomorphic to the C*-algebra K(€) of compact operators of €.
In particular, C*(X,F, E) is strongly Morita equivalent to C(V) x T.

Proof. Choose a base point * € M. The image T of {#*} x V in X is a
complete transversal of F, where GT. = s™'(T) Nr~'(T) and Gr = s~ (T)
are identified with V x I" and M x V, respectively. Then Proposition 3 of
[14] implies the assertion. g

We now describe the module €, as we will need the description later. Let
S = C.(E). A right C.(V x I')-action on S is defined by

€f)(m,z) =) flzg™' 9)(g €)(m,z), E€S, feC(VxT)

g€er

A C,(V x I')-valued inner product (-,-) on S is defined by

(€,6)(3:9) = [ ((m,2), (962)(m, 2)) s disa(m),

E]
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where (-, )z is the Hermitian product in E. The module € is the completion
of S with respect to the norm ||¢]| = ||(¢, €)[|*/2.
The representation of C*(X,F, E) on € given by Proposition 2.4 is:

(FrOm = [ 10E0 T ),

for f € C.(G,E), £ € C.(Gr,r*E). Through the identification G = (M x
M x V)/T, the left C.(G, E)-action is described as

(F+€)mz) = [ f(m,n,2)é(n, ) dua (),

where (m,z) € M xV = Gg, and f is regarded as a I'-invariant family
of integral kernels on M x M x V. Proposition 3 of [14] says that the left
C.(G, E)-action extends to a faithful representation of C*(X, F, E) on ¢, and
that the image of this representation is precisely the space K(€) of compact
operators of the Hilbert C*-module € over C(V') x T .

Let C° (E) be the space of compactly supported sections of E over MxV
of class C* ([6]). In an obvious way C>°(E) can be regarded as a subspace
of sections of the field . Consider the *-algebra of intertwining operators
of # which map C°(E) into itself. Its C*-closure in Endp(#) is denoted
by B.

Proposition 2.5. There exists a *-monomorphism ® from B into the
C*-algebra L(€) of all bounded operators of the Hilbert C*-module € over
C(V)xT.

Proof. For & €~CC°°’O(E), denote by £, the restriction of £ onto M,. Then
¢ € H, = L*(E,). For f € C.(GY), define S; .(f) € C>°(E) by

Sea(f)m) =Y _(97'€)(m, ) f(zg7", 9).

ger

For u € C°(E), define T; ,(u) € C.(GY) by

Ti,z (u)(mg_l,g) = ((g_lg)mu)za

where (), is the inner product of H,.
We need the following lemma.

Lemma 2.6. The linear maps S¢, and Ty , extend to bounded maps

SE,I : 12(GZ) - H:m
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and
Te . : H, — 1*(GT).

Moreover,
(1) S¢, is the adjoint of T .;

(2) for &,n,¢ € CXO(E) and f € I>(GT), one has
Sﬁ,zTn,z(cﬂv) = (f(ﬂ,O)z,
Téﬂsﬂvz(f) = Lz((éunv ))fa

(3) &Il = sup{l|S¢.ll; € V} = sup{||Te|l; z € V},
where ||£]| is the norm of £ in €.

Proof. By a straightforward computation,

<SE,$(f), u)m = (f» Tg,a:(”)):
where f € C,(GT) and u € C(E), and the right-hand side is the inner

product in 2(GT). Let a € C.(V x I') and ¢,n € C°(E). Then
SE,I(U"GZ) = (éa)mv
From this
St Tna(C2) = S ((n,$)ler)
= (£(n,¢))a-

As for the second equality in the assertion (2), we have

Tt 2 Sne(f) = T,z ((na)z)
= (¢,1a)|G7
= ((¢,ma)|G]
= L.((&,m)f,

where a is an element of C,(V x I') such that a|gr = f. Thus

IS¢ (DI = (Se.o (£); See () = (F5 La (€, D) -

From this and facts that C.(G7T) is dense in [*(GYT), and that L,(({,¢)) is
positive, it follows that S¢ , extends to a bounded linear map, and

1Sezll = I L2 (& EDII-
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Consequently, T¢ , also extends to a bounded linear map, and

I Teoll = [15e.qll-
Finally,
EIP = 1€, O = sup || L. ({& )
= sup || Sg..||”
= sup ||T¢ .||
This completes the proof of the lemma. 1

We return to the proof of Proposition 2.5.

Assume that P = (P,) € Endr(H) and its adjoint P* = (P}) preserve
the space Cg"”O(E). Since P is I'-equivariant, it is readily seen that P defines
a C.(V x I')-module homomorphism P of C>°(E). Furthermore, for ¢ €
C>Y(E), one has

(2.7) 1P(€)]] = sup ||Spe).|
= Sup”PzS£,z”
< sup || P, | sup || S.c ||

= [P ]IE]l-

Thus P is a bounded operator of e. Similarly P* defines a bounded operator
P~ with
(P&;m) = (& PTn)

for £,7 € e. Therefore P € L(e).
We show that the correspondence P — P is injective. From the inequality
(2.7),
1Pl < 1Pl

Assume that P = 0. Let P = lim; o PY) in norm in Endp(#) where we
have that P preserves C®°(E). Then, for £ € C>°(E), we have

lim ||PY)(€)] = 0.
Jj—o0

Notice that any £ € CfO*O(E) is written as £ = «a(8,~) for some «, 3,y €
C>°(E). Then

Pz(j)gz = Pz(j) (a</87 7))1 = ngj)Sa,zTﬁ,z(%)'
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Therefore

sup ”Pz(j)€z || < sup ”Px(j)Sa,z” sup “Tﬂ,m ()l
< C|P9(a)|

for some C > 0. Thus sup [| P&, || — 0 as j — co. Hence P¢, = 0 for all
z € V. This means that P = 0 in Endp(H). Thus P — P is an injective
*-homomorphism, and in particular,

I1Pllcco = I1PIl = sup || P .
This ends the proof of Proposition 2.5. 1

Remark 2.8. The foliation C*-algebra C*(X,F, E) is a subalgebra of B,
and the restriction to C*(X, F, F) of the embedding of 8 into L(e) is exactly
the isomorphism

C*(X,F,E) - K(e)

given in Proposition 2.4.

Remark 2.9. When the I-action on V does not satisfy the Condition 2.1,
the structure of the holonomy groupoid is more complex, and C*(X, F, E) is
not strongly Morita equivalent to C(V')xI'. Thus the arguments above do not
apply to this case. However, if one uses the C*-algebra of the fundamental
groupoid, in place of the holonomy groupoid, then the results in this paper
remain valid.

3. Algebra of Pseudodifferential Operators.

For a given foliated bundle (X,F), the C*-algebra C*(X,F, E) defined in
the preceding section contains pseudodifferential operators. In this section
we will introduce a dense Banach subalgebra 2 of C*(X, F, E) and will show
that 2 is holomorphically closed. .

Let E° and E' be I'-equivariant Hermitian vector bundles over M x V.
Let P : C®0(E®) — C~°(E') be a continuous linear map. We say that P
is a I'-equivariant family of pseudodifferential operators of order r if

(1) P is T-equivariant, _

(2) for each z € V, the operator P restricts to M, to give a pseudodiffer-
ential operator of order r

P, : C®(E?) — C=°(EY),

(3) the distributional kernel of P has I'-compact support.
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Conditions (1) and (2) imply that the distributional kernel is regarded as
a distribution on M x M x V and is T-invariant.

Denote by UL (EO, El) the space of all I'-equivariant families of pseudod-
ifferential operators of order < r from E° to E'. When E° = E! = E, we use
Ur.(E) instead of UL (E’O, El) . A basic fact is that if P € U~ (EO, El) , Q€
s (El,E?) , then QP € T+ (EO, E?) IfP e (E’O, El) , then its formal
adjoint P* belongs to UL (E‘l, EO) . So, in particular, U2(E) is a x-algebra.

Recall [11] that by a tangential operator we mean a continuous linear
operator D : C®°(E°) — C>~°(E') such that D is I-equivariant and
that for each z € V, D restricts to Mz to give a continuous linear operator
D, : C®(E%) — C=(E}).

Let A, be the Laplacian on Mz twisted by Em. Then A, acts on the
sections of E,. Denote by W:(E) the completion of C* (E,) with respect to
the Sobolev s-norm:

1152 = (f, (T + 82)" f)a,

where (-,-), is the inner product of H, = L?(E,). We obtain a continuous
field W2 (E) = (W;(E)) y of Hilbert spaces over V, which we shall call a

TE

tangential Sobolev field [15, p. 78].
A tangential operator D is smoothing if D induces a bounded operator

W:(E) - WL(E)

for all s,z € R. A smoothing operator is compactly smoothing if its distribu-
tional kernel has I'-compact support.
For a tangential operator P, and s,t € R, set

1Pulloe = sup { (I1Petllse)/lleas € € C2(En)},
and

1Plls = sup{|| Pells0; =€V},

Of course, ||P;||s,, [|P|ls,: might be infinite. However it is true that if P €
UL(E), then
1 Plls—r,s < o0,

for any s. In particular, P extends to an intertwining operator

WE(E) » W:(E).
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If P belongs to Ur®(E) = O\Il’ (E’) then P is a compactly smoothing oper-

ator. Moreover, one can see that U °(E) is contained in C*(X, F, E), here
E is the lifting of E to M x V.

Let S*F be the unit cosphere bundle of F, and let = be the canonical
projection S*F — X. Let E° E' be Hermitian bundles over X, and let
E°, E" be the liftings to M x V of E°, E', respectively. The principal symbol
map is o, : \IJ;(EO,EI) — C®(S* F, Hom(n* E°, 7* E')). We say that P €

wy (E°, B) is elliptic if o, (P) is invertible.

Proposition 3.1. ([15, Prop. 7.12], [6, p. 128]). Let P € xp;(EO,E’l) be

elliptic. Then there exists Q € V5" (E’I,E'O) such that I — PQ and I — QP
are compactly smoothing.

The operator @ given by Proposition 3.1 is called a parametriz of P.
Every P € U2(F) is regarded as an intertwining operator in Endp (WO(E)) .

Thus U2(E) C B. Let gy denote the C*-closure of ¥2(E) in Endy (WO( ))
The principal symbol map o, extends to a *-homomorphism

o:py — C(S*F,End(n*E)),
and the sequence
0= C*X,F,E) = po > C(S*F,End(n*E)) = 0

is exact. B
Fix an N > dim M. For P € ¥5' = U5 (E), set

WPl = max (|| P|li-~, -~ llPlIv,n-1) -

Then by the interpolation method of Calderon, for all -V < s < N —1, one

has
”P”ss — ”PHS—Hs S ”IP”I

Certainly, |||-]|| is 2 norm on U5'. A staightforward computation shows that
PRI < 112 HQI

for P,Q € ¥;'.
Let 21 be the Banach algebra completion of U with respect to ||| - |||-

Lemma 3.2. There exists an injective homomorphism a : A — .

Proof. Since ||Plloo < |||P]||, there exists a homomorphism o : A — .
We prove the injectivity of a. Let {P;} be a Cauchy sequence in U' with
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respect to ||| - |||. It suffices to show that if a(P;) — 0 in o, then P; — 0 in
2A. Since {P;} is a Cauchy sequence in 2, it is a Cauchy sequence also with
respect to || - ||s41,5, —N < s < N — 1. Therefore, there exist intertwining

operators P®) of fields of Hilbert spaces W#(E) — W:+!(E) such that
[|P; — P®)|| 41, =0 as j— oo.

Recall that C>°(E) is a total subspace of W*(E). For ¢ € C>°(E) and
for s > —1, we have
1PNl < [1(P; = P)ello + 1Piéllo
<|I(P; = PO)Ellsrr + [1PilloolI€llo
<Py = PO losn,s €l + 11P5loollEllo — O

as j — oo. 5
Hence P®)¢ = 0 for all ¢ € C°(E). Consequently P = 0.
Assume, now, that s + 1 < 0. Then
PO 11 < 1(P = PO)Elsgr + |1 Piéll st
< 1By = POYel g1 + [ Pi€llo
<P = PO, l1€lls + 11 Pillool €]l — O

as j — oo. N
Hence P(®)¢ =0 for all ¢ € C>°(E). Thus P; — 0 in 2. O

From now on, we regard 2 as a subalgebra of g,. In particular, an element
P € 2 is interpreted as a collection of operators P = (P;) such that P, :

~ ~

W:(E) - WEtH(E) is bounded for —N < s < N — 1, and such that
P,W!E)=P, if s<t.

Let A" be 2 with unit adjointed. As an algebra, A" is identified with the
algebra generated by 2 and the identity I of g,. Then a sequence {\;I + P;}
in At converges to AI + P in A" if and only if

Ai — A in (C,
and
PP in 2.

Theorem 3.3. The dense subalgebra AT of C*(X,F, E)* is holomorphi-
cally closed.

In order to prove Theorem 3.3 we need the two lemmata below.
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Lemma 3.4. If P+1, P € %, is invertible in C*(X,F, E)*, then (I+P), :
W:(E) — WstL(E) is invertible for |s| < N.

Proof. Let 0 < s < 1. Obviously, (I + P), : W(E) — W2(E) is injective. By
the Open Mapping Theorem, if (I + P); is surjective, then it is invertible.
Let n € WO(E) Since (I + P)q : W2(E) — W2(E) is invertible, there exists
afe WO(E) such that (/+ P){ =7. Then{ =n—P{ € Wl(E) +W:(E) C
W:(E), since P¢ € WX(E). Thus (I + P), : W2(E) — W2(E) is injective.

By an induction, using the fact that P maps WN-1(E) into WX (E), we
can show that (I + P), is invertible for 0 < s < N.

As for —N < s <0, use the nondegenerate pairing

W*(E) x W:(E) - C

and the fact that (¢,(I + P),n) = ((I + P*)_s&,n) to deduce the conclu-
sion. ]

By Lemma 3.4, we know tgat when I+ P is invertible, it induces invertible
operators at each level W*(E) — W?(E).

Lemma 3.5. Let I+ P, P € U5, be invertible in . Then (I+P)~! € AT,

Sublemma. If Q € U2 is invertible in o, then there ezists a sequence {A;}
in U such that I — A;Q is compactly smoothing, and that

[l —AiQlls: =0 as i —o00 forall s,t.

Proof of Sublemma. Since Q is invertible in gy, its principal symbol o(P) is
invertible, i.e. Q is elliptic. Then there exists R € U2 such that I —QR, I —
RQ are compactly smoothing.

Since Q is invertible in g, there exists a sequence {B;} in ¥ such that

Q™ = Biljoo = 0 as i — oo.

have

I-A4,Q=(I-RQ)I-BQ)I—-RQ).
Since S = I — RQ is compactly smoothing,

1T — A;Qllse = |IS(Q™" — B:)QS]||s
< ISls0llQ7" = BilloolIQllool|Sllos =0 as i— oo,
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and the sublemma, is proved. O

Proof of Lemma 3.5. By the sublemma, there exists a sequence {4;} of order
zero DO’s such that I — A;(I + P) is compactly smoothing, and such that

I —A;(I+P)lss =0 as 1—0 forall s,t.

Notice that I — A; = A;P+ (I — A;(I+ P)) belongs to ¥;'. Thus A; = I+ B;
with B; € Ur'. Set

T,=1—-(I+B;)(I+P)ec¥r™.

We have (I +P)~' —I = B;+Ti(I+ P)~'. The operator (I + P)~' — I maps
W:(E) into WitH(E) for —N < s < N — 1. Therefore

” ((I"‘P)_—l - I) - Bi“s+1,s 1S ﬁnite,

and
(I +P)7" = 1) = Bills1,s = 1T+ P)]ss1,6
< HEHSH,SH(I‘}‘P)_IH&S —0 as @—o00.
This means that (I+P)~! = I+Q, with Q € 2. Thus (/+P)~* € A*. O

Proof of Theorem 3.3. The proof uses the well-known fact that an algebra
is holomorphically closed if and only if the resolvents are contained in the
algebra itself. Since 2 is an ideal of C*(X,F, E)*, no elements of 2 are
invertible in C*(X,F, E)*. So it is sufficient to consider elements of the
form I + P, P € 2. Since P € , there exists a sequence {P;} in ¥;' such
that

I|1P;=P||| >0 as i — oo.

Then, in particular, ||{(I + P) — (I + P;)|lop — 0 as ¢ = oco. As I + P is
invertible in C*(X, F, E)*, one may assume that I 4+ P; is also invertible in
C*(X,F,E)* for all i. From

(I+P)'—I=(I+P)'"I-(I+P)=—-I+P)'P
it follows that (I4+P)~! —I maps W?(E) into W+ (E) for —-N < s < N—1.

As bounded operators on W#(FE), one has that
NI +P)™ = (I +P) s
< (NI +P) ~ (T + Bl + P12,
(L4 +P) = (L + P, l[(T+ P) )
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From this, it follows that sup {||(I + P;)™!||ss; ¢} < co. Moreover, one can
see that sup {||(I + P;)!||s,s; ¢, || < N} < 0o. Then we have

”((I+P)—1 —I) - ((I+P1)‘1 —I)Hs+1,s
< ||(I+P)_1 - (I+Pi)‘1||S+1,s
SN +P)7HI + B) = (L+ P + P) ™ lsrws
<N+ P) MosrortllPi = Pllosrsll(I 4+ P) 7 ls,s-
Since ||(I 4+ P;)7*||s s is uniformly bounded, as i — oo one has

(I +P)™ =1I) = ((I+P)™" = D)|lss1,s = 0.

This means that |||(I+P)~* —(I+P;)7!||]] = 0. By Lemma 3.5, (I+P;)"! €
A+, Consequently (I + P)~! € A™*. O

Applying Theorem 3.3 to the bundle E* one obtain that M (2)* is holo-
morphically closed in M (C*(X,F,E))*. From this we get the following
(see [3)).

Proposition 3.6. The canonical inclusion A C C*(X,F, E) induces an
isomorphism

Ko = K,[C*(X,F, E)].

4. Modular Automorphism Groups.

A volume form on the fibre of the foliated bundle (X, F) gives rise to a weight
on C*(X,F, E). We will show that the modular automorphism group, asso-
ciated with the weight, leaves the Banach algebra 2l invariant, and induces
a one-parameter group of automorphisms.

Throughout the rest of the paper, assume that V' is oriented, and I' acts
on V by orientation preserving diffeomorphisms. Let wy be a volume form
on V. For g € T', a positive real-valued function )\, on V is determined by

Agwy = g(wy).
The correspondence g — ), satisfies the cocycle condition:
(41) )‘gh = g()‘h)/\gv g»h er.

Let ¢ be the state on C(V) x I associated with the volume form wy. Then

W0 = | faov
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F=>Y fU,€C.VxT).

The modular automorphism group (o;) of ¢ leaves C(V) x I' invariant.
We have
o(f) =D 2" f,U,
for f =3 f,U,. Actually, o, is implemented by the following unitary A% on
L?(V) ® I*(T") defined by

[A™¢] (z,9) = A, *(x)é(zg).

Let @ be a I'-invariant volume form on A]I/f . Choose an orientation on X so
that for a I'-invariant volume form w on M x V, there exists a positive smooth
function 1 on M x V such that

WAwy = Yw.

As above, let E be a I'-equivariant Hermitian bundle over M x V. Recall
S = C.(F). Define a linear operator A (¢t € R) on S by

(4.2) AME) =y, LES.

Lemma 4.3. The linear operator A" extends to a bounded operator A™ :
€ — € which satisfies:

(1) (A™(E),A%(n) = oe((&m),  &mEe

(2) A"(a) = (A"(¢))oi(a), L€, acC(V)xT,

(3) ABA*(E) =ACHI(E),  tseR (EE.

Proof. (1) By the definition of C(V') x I'-valued inner product and (4.2), the
equality holds for {,7 € S, t € R. Then

sup {[|A*(©I/Ilel); € € S, & #0)
= sup {|lou (&, DI/ I €€ 8, € £ 0} =1.

Hence A" extends to a bounded operator on a Banach space ¢, and the
equality holds for all £ € e.

(2) A straightforward computation shows that the equality (2) is true for
£ €€ a€ C(V)xT. By continuity, the equality holds for all £ € € and
aeC(V)xT.

(3) From the definition of A" and continuity, the conclusion follows.

O



500 HITOSHI MORIYOSHI AND TOSHIKAZU NATSUME

Statement (2) of Lemma 4.3 means that A* is not C(V) x I'-linear.

Lemma 4.4. (1) IfP € L(¢), then A*PA~ € L(e), and ||ATPA|| =
|IP]]-
(2) We have A®K(e) A% C K(e).

Proof. (1) Let £ € ¢, and let a € C(V) xT'. By Lemma 4.3,
(A*PA™) (¢a) = A*P (A ““(5 )e-o)
= A% (P (A7(8)) 0-4(a)
= (A*PA ().
We have also that
((A*P*AT") (€),m) = o, (P*AT*(£), A" (n))

= 0,(A7*(§), PA™"(n))
= (¢, A"PA™"(n)).

This means that (A*PA~#)* = A#P*A~%, Obviously, A*PA~# A#pP*A~i
are bounded. Thus
A*PA~" € L(e).

Since A% : € — € is a surjective isometry,
|A*PA™|| = ||P]l.

(2) Let &,n € €. By the definition of rank one operators 6¢,, and Lemma
4.4,
Ait0£,,7A_zt = HA:-!&,AH,,.

Therefore A*K(e)A~* C K(e). O
Definition 4.5. For P € L(e), set

5,(P) = A*PA~* € L(e).

Proposition 4.6. The operator {G;}icr on L(€) amounts to a one-parameter
group of automorphisms of the C*-algebra L(€). Moreover, {5;} preserves

K(e).

Proof. 1t is easy to see that ¢t — &, is strongly continuous. The conclusion
follows from Lemma 4.4. O
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Notice that A% preserves C(E).
Lemma 4.7. If P € UL(E), then A“PA~ € UL(E).

Proof. We only have to show that A* PA~# is I'-equivariant. (Other prop-

erties of elements of W.(E) are obvious.) For g € ', £ € C®(E), we
have
g(A™(€)) = g(™E) = g(v)*g(€) = A;* Y "g(€) = X, *A™(€).
Hence
g(AitPA—it) — /\;—itAitgPA—it — /\g—itAitPgA—it
— Ag_itAitPA;tA_it — (AitPA—-it)g’

because the multiplication by A¥ € C*(V) commutes with operators A*
and P. O

Lemma 4.8. The linear operator A% extends to a bounded operator on
W3(E) for all s.

Proof. Recall that the L?-inner product induces a well-defined pairing
(Ve :WEXW 2 —>C

such that [(€,7)z] < ||&|ls[72]]s. Let s > 0. Set @ = 9*A**p~*. Thanks to
Lemma 4.7, Q € V¥ (E). We have

A" (©)a]IF = (A™(€)s, A A¥(£)-)
= (£, (@6)a)
< Nellsl1Qalell-s
< e llsl1Qzll-s,s 1] -

Therefore A" : W#(E) — W2(E) is bounded for s > 0. Then by nondegen-

eracy of the pairing W? x W * — C, we see that A" : W2(E) — W2(E) is
bounded for all s. O
By Lemma 4.8, there exists a constant C' > 0 such that

lA*PAT*| < CIIP|l| for P e Ur'(E).

By continuity, 6;,(P) = A¥PA~" P € 2, gives rise to an R-action on the
Banach algebra 2. Denote by d the generator of (5;), i.e.

5(P) =limi(3.(P) - P)/t, PeL.
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Then ¢ is a closed derivation of 2, whose domain contains Ur'(E). Set
@ = log 1. Then by a straightforward computation we obtain that

6(P) =[p,P] = pP — Pp, PeU7'(E),
where ¢ is regarded as pointwise multiplication operator.
Proposition 4.9. If P € U7Y(E), then 6(P) € U;2(E).
Proof. Recall first the definition of 1, i.e.

0 Awy = Yuw.

From this, g(©) A g(wy) = g(¥)g(w), g € T. Since @ and w are I'-invariant,
and g(wv) = A,wy, we have

A@ A wy = g(P)w.

Therefore we have

(4.10) AY=9(), gerT,
and
(4.11) log Ag + ¢ = g(¢).

Since ¢ € C®(M x V), both P and P are continuous linear operators
C2O(E) — C29(E), and (pP), = ¢, Py, (P9)s = Py, are $DO’s on M,
for every z € V. By asymptotic expansion of the symbols, we can see that
@z P, — Py, is a ¥DO of order —2. Hence we only have to show that [y, P|
is I'-invariant. We have

9(pP — Pyp) = g(p)Pg — Pg(yp)g
= (9(¢)P — Pg(p))g
= (P — Py)g + (log \;,P — Plog \,) by (4.11)
= (pP — Pyp)g,

because log A\, commutes with P.
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5. Godbillon-Vey Classes.

Throughout this section, V' denotes the circle S* with the canonical volume
form dz. The foliation F on X = M xr V is transversely orientable and
codimension one. To such a foliation, a characteristic class gv(F), called the
Godbillon-Vey class, is assigned. In this section we will give a description of
gv(F) in terms of function ¢ introduced in the preceding section. We will
use this description in Section 8.

Let 6 be an arbitrary 1-form on X defining F. By integrability, there
exists a 1-form 7 such that df = n A 8. The Godbillon-Vey class then given
by [n A dn] € Hpp(X) ([13]).

Let 6,7 be the lifting of 6, n respectively to M x V. Let  be the pullback
of by M xV — M. Thenw = QA0 is a I-invariant volume form on M x V.

Since 6 and wy = dz define the same foliation on M x V, there exists a
nowhere vanishing smooth function f on M x V such that § = fwy. Then

w=0QA0=FfQAwy = fw.
So f = 1/4. Consequently, 6 = (1/4)wy . From this
do =7 A0 = (1/)7 Awy.
On the other hand
df = d(1/pwy) = d(1/9) Awy,
for wy is closed. From these,
(5.1) (1/Y)n Awy = d(1/9) Awy.

Recall that ¢ =log® and @ A wy = Yw. Thus —dp Awy =nAwy.
The tangent bundle T of M x V has a splitting

T — TI®TII,

where T (resp. T") consists of vectors tangential to M,, z € V (resp.
{a} xV, a € M). Set

Qn,m — COO(AH(TI)* ® Am(TlI)*).
The exterior derivative d splits as
d=d +(-1)"d" on Q™™

where d’ and d” are exterior derivatives in the direction of M and V, respec-
tively.
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The (1, 0)-component and (0, 1)-component of the 1-form 7 are denoted 7'
and 7", respectively. Since the wedge product with wy induces an injection

QI,O — Ql,l
it follows from (5.1) that
~dp=—(dp) =17

Then

(5.2) Adif = +7")Ad@ +7")
— _,;:]-'I /\d”ﬁ’ +ﬁl /\d’ﬁ”,

because dij' = —d'd'¢ = 0 and Q™™ = 0 for m > 1. We have

(5.3) d(ﬁl /\ ﬁ”) — (d,ﬁl _ dllﬁ'l) /\'ﬁ” - 'ﬁ’ /\ (dl;,:’-fll + d/l,,':’-'ll)
— _,,‘,‘]'I /\dlﬁ”.

Notice that ' A7" is I'-invariant, sine the I'-action on MxV preserves the
decomposition T'=T"' & T".

Proposition 5.4. The Godbillon-Vey class of F is given by the cohomology
class

[~d'oAd'dp] € H}r(X).
Proof. By (5.2) and (5.3),
gAdy=—doANd'dp—di AT").

Since 7 Ad7j and 7' A7’ are I'-invariant, so is d'¢ A d"d'¢. Therefore —d'p A
d'"d'¢ defines a 3-form on X, and

[nAdn) = [-d'p Ad"d'¢] € Hyr(X).

O

Remark 5.5. Equality (4.11) together with the fact that log A\, on MxV

o~

is constant in the direction of M implies that d'y is I'-invariant.
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6. Cyclic Cocycles.

In this section we will construct a densely defined cyclic cocycle on the
algebra 2. This cocycle can be interpreted as an analytical variant of gv(F).

As in the preceding sections, let E be a given I-equivariant bundle over
M x 8. Define a new right [-action by

(6.1) v-g = A\ (z) vy, v E E'(m,z), gerl,

where vg is the given I'-action. Denote by E’ the vector bundle E equipped
with this new action, and denote by g[¢] the action of g € I" on & € CX°(E").
Then

(6.2) 9l€] = Ay9(8).

With respect to the new action (6.1), the Hermitian metric of E is no
more I'-invariant. However, we have the relation

(v-g,w-g) = N(@) 2(v,w), W E Ema-

This enables us to obtain continuous fields of tangential Sobolev spaces.
Let P € UL(E). Then

glP(&)] = Xg(P(8)) = g[¢] = A, P(9(£))
= P(Agg(ﬁ))

here we used the fact that P commutes with the multiplication operator A,.
Thus P € U,(E). B
Conversely, if Q € UL(E'), then

Ag9(Q(€)) = 9[Q(&)] = Q(g[¢])
= Q(Agg(é))
= X,Q(g(£))-

Since ), > 0, we have g(Q(¢)) = Q(g(¢)), i.e. Q € UR(E).

Denote by 8,¢ the partial derivative of ¢ in the direction of S*. Regard
the pointwise multiplication by 8¢ as an operator C®°(E) — C™°(E'),
and consider the commutator of operators

(020, P] = (3,0)P — P(Byp) for P € UL(E).
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Proposition 6.3. We have [0, P] € Ui Y(E, E').

Proof. The proof is similar to that of Proposition 4.9. We only have to show
that [0, P] is ['-equivariant. We then have

9[(B2p) P — P(020)] = Agg((820p) P — P(B2¢p))
= A (9(0ap)gP — Pg(02)9)
= Ay9(820) Pg — A Pg(02¢0)g
= (O2p + 02 (log A\y))Pg — P(0:p + 02(log Ay))g
= ((G2p) P — P(0:9))g + O2(log Ag) Pg — PO, (log Ay)g.

Since log A, is constant along M,, z € S, so is 8, (log Ag). Thus 09;(log A,)
commutes with P. Hence

9(02¢, P] = [0y, Plg,

i.e. [0y, P] is '-equivariant. O
Let N be as in Section 3,~an£1 let N > r > 0. As in Section 3, we can
define a norm [|| - ||| on ¥"(E, E') by
[1P(ll = max {||P||-n+4r,—~, || P||v,n-r} -

Denote by OP:"(E, E') the completion of ¥r” (E,E' ') with respect to
I - ]I]. Tt is easy to see that if P € UR(E), Q € UL(E, E'), then PQ, QP €
\I,P-HJ(E E')

Proposition 6.4. The space OP7%(E, E') is a Banach A-module.
Proof. Straightforward. O

Notice that the correspondence P — [82<p, P] is an unbounded derivation
from 2 into OP72(E, E') with domain U5(E). Closability of the multipli-
cation operator 9,y implies that the derivation P — [y, P] is closable.
Denote by 4, its closure with domain Dom(4;).

Consider the multiplication operator A% on both E and E'.

Proposition 6.5. If Q € UL(E, E'), then A*"QA~ € UL.(E, E').
Proof. 1t is sufficient to show that A*QA~" is I'-equivariant. Let { €
C°(E). Then
(6.6)  gl(A*QATM)E] = A g(ATQAT™E) = X,g(A™)g(QAT™E)
= g(A")A\,9(QAT*E) = g(A™)g[QAT™¢]
= g(A™)Q(g(A7*))g(8).
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By (4.10), g(A%) = A™. Hence the equality (6.6) is equal to
ASEARQAIAT(€)) = (A*QAT)(¢).
This is the end of the proof. O
For Q € Ur2(E, E'), set 54(Q) = A*QA~, t € R.

Lemma 6.7. The linear operator G, extends to an automorphism of
OP:*(E,E").

Proof. By Lemma 4.8, the operator A* is bounded on Sobolev spaces. There-
fore

HAitQA_itHs,s—Z < CSIIQ”s,s—2'
In particular, there exists C > 0 such that
A" QA™™||_Ny2-~n < Cl|Q|=Nt2,-n,
[|A®QA™||n N2 < C||Q||Nn.N—2-
It follows that ||[3:(Q)|I| < CI/|Q]I|. O

It is clear that (0}) is a one-parameter group of automorphisms. Denote
by &5 the generator of (5;), and by Dom(d}) its domain.

Proposition 6.8. If Q € UV:-*(E,E'), then Q € Dom(d}), and 84(Q) =
[p, Q.

Proof. Same as that for the derivation d,. O
Proposition 6.9. If P € U5 (E), then 6,(6:(P)) = 8,(6,(P)).

Proof. From Proposition 6.8 and the definition of §;, the conclusion fol-
lows. O

Recall that the underlying Hermitian vector bundle structures of E and E
are the same. Therefore L%(E) = L2(E'). Then, if Q € ¥5"(E, E'), r > 0,
the operator P, can be regarded as a bounded operator on LQ(EI). Let o
be a compactly supported smooth function on MxS ! and let o, be the
restriction of o to M,, = € S*.

Proposition 6.10. Let s > dim M. Then crmA;S/2 and A;%/%c, are Hilbert-
Schmidt class operators.

Proof. Recall that A = (I + A)!/2. For the Laplacian A’ on M, we have that

(I+AY2¢ P forany p> dimM.
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From this, ((I + A')Y/?)~%/2 is a Hilbert-Schmidt class operator. If Q is
a DO of order —1/2 on M, then @ is a Hilbert-Schmidt class operator,
because /2

Q=Q(U+ay”)” (u+ayr)

In particular, the Schwartz kernel of () is measurable and square-integrable.

Let P € U;*/*(E). Then the Schwartz kernel of P is measurable [6].
The observation above, combined with ['-compactness of the support of the
Schwartz kernel, implies that o, P, and P,o, are Hilbert-Schmidt class op-

erators.
Let P € U;*/*(E) be a parametrix of A*/2, so that T = PA/2 — T is a
compactly smoothing operator. We have

A;*? = P, — T, A%/,

as operators on L2(E,). From this, 0,A;*/> = 0,P, — 0,T,A;*/%. Since
both o0, P, and T,o, are Hilbert-Schmidt class operators, so is oxA;“’/ 2 As
A;*? is self-adjoint, we see that A7*/20, is also a Hilbert-Schmidt class
operator. O

Corollary 6.11.  Let 0,0’ be compactly supported smooth functions on
M x S'. Then for every P € U;°(E, E") with s > dim M, the operator
0. P.ol is a trace class operator on L*(E,), for any z € S*. Moreover, there
ezists a constant C > 0 such that

| Tr(02P205)| < Cl|Plls/2,~s/2-

Proof. We have
0, Pp0, = (UzAz_s/z)(A:/ZPzA;/z)(A;s/za;)-
Consequently, o, P,0., is of trace class, and

[Tr(0:Pao})| < ll(02A7"2) (A PA?) (A7 200y
< ||UzA_$/2|I HAs/ZP AS/Z“OOHA —s/2 IH
< llowA*ILIIAZ 20, o 1A P AL (Lo 2, 2,

where || - ||; (resp. || - ||2) is the trace class norm (resp. Hilbert-Schmidt

norm).
Continuity of the family (A;*/?), implies the existence of C > 0 such that

lloaAz >z, 1Az a5l < C.
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Thus
[Tr(0.Proy)| < C||P|ls/2,-s5/2-

O

Let o be a compactly supported smooth function on M x S such that

> gl0)* =1;

ger
i.e. {g(0)*},er is a I-invariant partition of unity on M x St
Definition 6.12. For P € U5*(E, E') with s > dim M, set

(6.13) tracer(P) = | Tr(o.P.o0,)dz.
S1

Notice that the integrand in (6.13) is continuous. A modification of the
proof of Lemma 4.9 of [1] shows that tracer(P) is independent of the choice
of 0.

Let P € U;*(E, E'), Q € ¥;"(E) = Ur"(E").
Then PQ, QP € U*"(E, E').
Proposition 6.14. Let r + s > dim M + 2. Assume that either 0 < r < 2,

or 0 < s <2 Then
tracer (PQ) = tracer(QP).

Proof. Since P and @ have ['-compact Schwartz kernels, there exists a finite
subset S of I satifying:
i §=87,
(ii) suppg(o), Nsuppo # & = g € 5,
(i) o0,P,Xg(0); = 0, P, X g(0)s, and
0:Q:59(0)s = 0:Q.%'9(0)s,

where the summation ¥ (resp. ¥') is taken over all g € T" (resp. g € S).
Then

Tr(0(PoQa)0z) = Tr(04(P:9(0);Q:)02)
=Tr(o,(P,X'9(0)2Q,)02)
= Z'Tr(aszg(o)xg(G)zQz%)-

The last expression is equal to

ZlTr(g(a)zonzamng(a)w)>
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because either o, P,g(0), or g(0),Q,0, is a trace class operator, by Corollary
6.11 and our assumption on s, 7.

Let U(g) be the canonical unitary mapping LQ(E’W) — L*(E,). It is easy
to check that, as multiplication operator,

9(0): = U(g)oz,U(9)~".
Then we have

9(0)2 Q20,0 P,g(0),
=U(9)0,U(9) "' Q.U(9)U(9) " (02)’U(9)U(9) "' P,U(9)02,U(g) "

Since Q is I'-equivariant, U(g) ™' Q,U(g) = Q.,. As for P, we have
U(9) ' PU(g) = Ag-1(2) "' Poyg = Xg(z) Py
Hence
tracer (PQ) = . Y'Tr(9(0)2Q:0:0,Prg(0);) dz
=[BT r(00gQzg9 ™ (0)2g9 ™ (0)2gAg (%) Prg0sy) dz
=/ S Tr(02Qeg9™ " ()99 (0)ag Prg0izg) d(9)
= [ ETr(0:Qug™(0):97(0):Pec) da
= [ BTr(0.:0:9(0):9(0). Pec) da
= /. Tr(0.Q:X' (97" (0):) Pros) dz

= [ Tr(0.Q.X(97"(0).)*Pp0.)dz

Sl
= tracer(QP).
O
By Corollary 6.11, tracer is continuous with respect to || - ||s/2,—s/2, pPro-

vided that s > dim M. This implies that tracer extends to a continuous
linear functional on OP;*(E, E') with s > dim M. (Caution: our tracer is
not the same as tracer of [1]. Our tracer is not an actual trace on any
algebra, it is just a linear functional, while Atiyah’s tracer is an actual trace:
on an algebra.)

Lemma 6.15. (1) tracer([dxp, P]) = 0 for all P € U;*(E) with s >
dim M.
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(2) tracer(05(Q)) = 0 for all Q € U5*(E, E') with s > dim M.
Proof. (1) Notice that P,o, and P,(0p),0, are trace class operators. Then

TT(Uz(a2(p)szUz) = T"‘(on'zaw(aﬂp)z)
=T7r(Py(020)20:0)
=Tr(0. Py (02)204).

Thus T'r(o,[02¢, Pl.0.) = 0. Hence tracer([d2¢, P]) = 0.
(2) The proof is the same as that of (1). [l

Furnish € = Dom(d;) N Dom(d,) with the locally convex topology given
by the graph norms associated with §; and §,.

We will construct a densely defined cyclic cocycle on 2. Let us first con-
sider the case where dim M = 2. Set

(6.16) 7 (P° P', P?) = tracer (P°4, (P") &, (P?))
— tracep (P%3, (P') 6, (P?)) for P°,P',P’c&C

Proposition 6.17. The trilinear functional T, is a cyclic 2-cocycle.
Proof. If P°, P!, P? € &, then the products
P°, (P°) 6, (P°) and P°, (P°)d; (P°)

belong to OP; 5(E E' ). Since §; and é, are derivations, 7, is a Hochschild
cocycle By Proposition 6.14 and Lemma 6.15, 7, is a cyclic cocycle on
Url(E) C €. Then by continuity and the fact that W' (E) is dense in &, we
can see that 7, is a cyclic cocycle on €. (]

Proposition 6.18. The densely defined cyclic cocycle 15 is a 2-trace on AU
in the sense of [8].

Proof. We have that

75 (a’dz'a'dz?®) = tracer(a®0;(z')a' 6y (z?)) — tracer(a®dy(z')a sy (z?)),
and

| tracer (a°61 (¢1)a'dy (z*))] < C|]a®31(z")a' 82 (2?)|]3/2,-3/2
< Cl|‘10“3/2,1/2||51( Hl/2,1/2||a1||1/2,—1/2||52(1U2)”—1/2,—3/2
< Cullla®ll] lla[1],

for some constant C; , depending only on z! and z°.
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Similarly
| tracer (a%02(z")a' 6 (2%))| < Ciollla®ll] [lla*(]l-
This completes the proof. 0O

Let us now consider higher dimensional cases. Let dimM = 2n. The
formula (6.16) defines a cyclic cocycle on ¥ *°(E), but not on € when n > 1.

Consider the cyclic 2n-cocycle S"~17,, instead. For P°,... , P?" we have
(6.19) ((n — 1)) (2mi) S 1y (PY,... , P??)
> {tracep(P°P"-.. P*724,(P* ") P*
1<i<j<n

..p21‘—152(p2j)p21‘+1 cee P2n)
— tracep(P°P! - .- P*~26,(P*~ 1) p%
.. P2j—161 (P2j)P2j+1 . P2n)}

Denote by 7y, (P°,...,P?") the right-hand side of (6.19). Notice that
Ton (PY, ..., P?") makes sense when P°,... , P™ € €.

The proof of Proposition 6.18 can be generalized to show that m,, is a
2n-trace on 2.

Definition 6.20. When dim M = 2n, the Godbillon-Vey cyclic cocycle gv
is the 2n-trace
gv = (n — 1)!12,.

By [8, Lemma 2.3; Corollary 2.4], gv extends to a cyclic 2n-cocycle on
a holomorphically closed dense subalgebra of 2, consequently it induces an
additive map from K, [2] into the scalars. By Proposition 3.6, the canonincal
inclusion % C C*(X, F, E) induces an isomorphism of Kj-groups. Hence gv
induces a map K,[C*(X,F, E)] — C. In Section 8 we will compute the value
of this map on a specific class in K,[C*(X,F, E)].

7. Dirac Operators and Graph Projections.

In this section we will show that the graph projection of a longitudinal Dirac
operator belongs to the domain of the 2n-trace gv on 2.

Let M be as in the preceding sections. Assume further that M is even-
dimensional and is furnished with a I'-invariant spin structure. Denote by
D the associated Dirac operator on M [ acting on the bundle S of (complex)
spinors. Since M is even, the bundle S has a Z,-grading €. Thus

(7.1) §-5a§,
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where §* are +1 eigenspaces of ¢, respectively. With respect to the decom-
position (7.1), the operator D has the form

~ 0 D~
b= (5% );

where D# are first-order, elliptic differential operators. Since the I'-action
on S preserves S* respectively, D* are T'-equivariant operators. Moreover,
D is essentially selfadjoint and has a closed extension. The closure D** of

D has the form
~. (0T

where T is the closure of 13*, and D** is selfadjoint.
The graph G(T) of T is, by the definition of T, a closed subspace of
L?(S*) @ L?(S~) = L*(S). Denote the corresponding orthogonal projection

by e, and set
~. (0T 10\ _ [(0-T
X=D €“<T 0) <0—1>_<T 0 )

Lemma 7.2. We have

(I + ’T*T’)—1 (I + T*T)—IT* 10 .
. (T(”T*T)“l T(I+T*T)—1T*) = (I+X) (0 0) (I+X)™,

Proof. Define 1 : L2(S+) — L*(S) @ L*(S™) by

I em—tjz _ [ (I +T*T)71/?
b= (T) I+TT)7" = (T(I+T*T)—1/2>'

It is easy to see that +*» = 1. Since (I + T*T)~'/? is an isomorphism from
L*(S*) onto the domain Dom(T') of T, the image of : is precisely the graph
G(T). Thus the projection e is given by

. {UI+TT) I+TT)T
e=U T\ + ) TU + TT) T

As for the second equality, from the equality

I R N (Geape | Ry
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it follows that

e=(I+X) (ég) (I +X)!

Set

(10 _ (o0
by = 00 ) p- = 01 .

Set u = (I + X)e. Then
=T+ X)e(I+X)e=I+X)I-X)=1-X?,

because Xe = —eX.
Let € = e — p_. Then using the equality

e=(I+X)py —p-(I+X),

we can see that

(7.3) e=e—p_. =T+ X)p,(I+X)"'—p_
= (I +X)py —p-(I + X)) + X)™
=e(l+X)™!
=yl

From this,

(7.4) @ =u?= (- X2

A straightforward computation shows that

oo (U+TT) (I4T°T) T
(7:5) ©= (T(I +T*T)™ —(I +TT*)™ )

As in the preceding sections, suppose that I' acts on St by orientation pre-
serving diffeomorphisms. For each z € S*, identify M, = M x {z} with M
in a natural way. Via this identification, we obtain a vector bundle S, and
a differential operator D,. By abuse of language, denote the family (ﬁ ) by
D. It is clear that D is a I- -equivariant family of elliptic operators, acting on

a T-equivariant vector bundle § = (S,), i.e.

D € UL(S).
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The T'-equivariant differential operator D on M x S! descends to a longi-
tudinal elliptic operator D on X = M xp S'. which we call a longitudinal
Dirac operator.

The operator D is of the form

~ 0 D-
D = -
<D+0>’

and D* = (D}) € WL(S*,57). Consequently, we can consider a continu-
ous field e = (e,) of projections: each e, is the orthogonal projection of
L*(SH)® L*(S; ) onto the graph of the closure of D;. The matrix p_ can be

regarded as the orthogonal projection of (L2(§Z)> o onto (L2(§; ))

z€S?
Then, obviously p_ € ¥9(S).

We devote the rest of the section to show that € belongs to the domain
of the cyclic cocycle gv. For this purpose we employ the method of bounded
propagation [20], [21], [23]. Since the Dirac operator D is the lifting of the
Dirac operator on a closed manifold M, it has bounded propagation speed.

Recall that the space S°(R) of symbols of order zero is the collection of
all C*-functions f on R such that for each j =0,1,2,... , it holds that

sup{(1 + |z|)?|fY(z)] : = € R} < oo.
We need the following:

Proposition 7.6. ([15, Thm. 7.25], [20, Thm. 21]). Let P € U} (E) be
a longitudinal, tangentially essentially selfadjoint, first-order elliptic differ-
ential operator of bounded propagation speed. If the Fourier transform f of
f € 8°(R) is compactly supported, then

f(P) € UA(E).

If the Fourier transform § of a Schwartz function g is compactly supported,
g(P) is compactly smoothing.

Let py : R — [0, 1] be a C*-function such that
pr =1 on t<1-04,
and
pr =0 on t>1+496
for some sufficiently small 0 < 6 < 1. Set p_(t) = p,(—t). For A > 2, set

palt) =pr(t—=(A=1))p_(t+A—1)
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to obtain a C°-function p,(t) : R — [0, 1] such that
() =1 on [t|<A—-1-4,
and
() =0 on |t|>A—-1+4.
Lemma 7.7. For any positive integer i, there ezists a positive constant C;

such that
PP <G forall At

Proof. By the construction of p,, it is straightforward. a
Set
(7.8) ox(z) = (@) [ oy () dt
R

Lemma 7.9. (1) The function p, belongs to S°(R), and its Fourier
transform is py(t)e 1.

(2)  The function y(z) = (2m)"/2(1+2?)px(x) — 1 is a Schwartz func-
tion with compactly supported Fourier transform.

(3) As X\ — oo, 1 converges to zero in Co(R).

Proof. (1) Using integration by parts twice, we get that

1 ® ' iT— ; -
(710) (@1 pr(a) = ;oo + /O Pl ()el= D iz — 1)~2 dt

0
+ / pl(t)e ™ (iz 4+ 1)"2 dt.

From this, it follows that sup{(1 + z®)|p\(z)|; z € R} < oo. This, in turn,
means that ¢, € L(R), because ¢, is continuous. Then by the Fourier
inversion formula,

Pa(t) = pa(t)e M.

For a given nonnegative integer j, consider

ha(t) = (i) pa(2)-
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Notice that A’ (0) =0 for k =0,1,... ,j. Then

(2m) 20 (1) = [ (i) pa (00 dt

00 0
=/ h,\(t)e(”“l)tdt-i—/ ha(t)e= TVt gt
0 —0o0
= (1) [ BP0l i~ 1) de
0
0 . ) .
+ / B (£)el =+ (i 4 1) dt.

It is easy to see that there exists a constant C' > 0 such that
o ()] < C(liz — 1|77 + iz + 1|77) forall z.
Thus ‘
sup{(1 + |z} (2); = €R} < oo.

(2) The equality (7.10) implies that ¥, € Co(R). We need the following
Sublemma, which we will prove later.

Sublemma. As distributions, we have the identity

a2\
(1 - Zz’t?) e 1t = 24,

where g s the delta function at t = 0.

We now have that

- d?
(7.11) Py = (1 - @) pre 1 — 5,

= —ple 1t 4 20\ e tlsgn(t) (as distributions).

Since both sides of (7.11) are compactly supported C'*°-functions, they are
actually equal as C°°-functions. It is now clear that 1, is a Schwartz func-
tion.
(3) The Fourier transform induces an isomorphism from Cy(R) onto C*(R).
So R R
lallcom) = lalle@) < [¥allr®)-

By our construction, pY, p are bounded uniformly in A. Therefore the equal-
ity (7.11) implies that

||12;,\||L1(R)-—>0 as A — oo.

This concludes the proof of Lemma 7.9. O
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Proof of Sublemma. Let f(t) = e~ !!l. For g € C®(R), applying integration
by parts twice, we obtain that

[rwg@a= [~ rogwdas [ o0
= ~2(0) + [ 1(g(t) .
Therefore
(5(-a)59) = (r3 ()9

== [ f(t)gt)dt — = [ F(t)g"(t)dt

For P € \IIF(E), by a straightforward computation we get that
(7.12) Pl sr = 1T + A2 P(I + A)~*FD72 g 0.

In the definition of tangential Sobolev spaces for the bundle S, we can use

D? in place of the Laplacian, thanks to the standard elliptic estimate. Thus
we may assume that the Sobolev s-norm is given by

el =[(1+5)"¢|  ror cec.

Consider an (unbounded) intertwining operator T = (T) of wo(S) =
(L%*(S;))z, where T, is the closure of D}. As before, set

0-7
- (27)

(7.13) e=(+X)e(1+D7) .

Then

By Proposition 7.5 and Lemma 7.9,

pr(D) € T2(3),
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and
(D) = V2r (1 + [72) (D) — I € U(5).
These imply that ¢, (D) € Ur?(S). Hence
(I + X)epr(D) € T:H(S).

The equality (7.13) means, in particular that € is an operator of order —1.
Therefore we can consider the norm “8— V2 (I + X)epy (D)“k -

By (7.12)

”E —V21(I + X)epy (15)“

kk—1

= (7 +X)e (1+D5?) " = Van(I + X)epa(D)

kk—1

= (I+ f)z)k/z I+ X)e ((I+ 52) -1 \/z—n%(ﬁ)) (I+ 52)(1—k)/z

0,0

= (I +X)e <I+D2 —V2mp\(D >(I+l~)2>1/2
= |+ X)e (1+ ) ( —V2r (I+ D?) p(D))
<+ X)e (T+ NI Var (1+D?) p(D HO,O.

In this computation we have used the fact that (I + D?)'/2 commutes with
(I + X)e(I + D*)™' —27px(D). Now by Lemma 7.9, (3),

“6—\/57?(I+X)6cp>‘(ﬁ)“kk —0 as A — oo.

Thus € is in the closure of ¥5'(S) with respect to the norm ||| - |||. Therefore
ee
We show that € belongs to the domain of J,. Recall that € = u™! =

,_.

(I+X)e)™t = (D+¢)~. If ¢ is bounded, then the commutator [p, (D+&)~
is a bounded operator, and

]

lim [cp, Vor(I + X)E%(E)] = [90, (D + e)-l] .

Unfortunately, ¢ is unbounded in general (see (4.11)). Thus [go, (D + s)‘l] is
defined only on a subspace which may not be dense. So, even if [(p, (D + 6)‘1]
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extends to a bounded operator, the extension may not be unique. However,
“formally” we have the equality

[e. D+ =eD+e)™ ~(D+e)
=D +e) ' [D+e¢l(D+e)t,

and (D +E)‘1~[E +¢,¢]|(D+¢)"" is a bounded operator, because [D +¢, ¢] =
[D, ] € $L(S). Thus it is natural to expect that

6,8 = (D +¢)7[D +¢,9)(D +¢)7".

Notice that [, (D+€)v/27 %( D)] € U72(S), and that (D+¢)~'[D+e, ¢](D+
€)~! is an operator of order —2 (not a 1Y DO). We will show (Proposition 7.17)
that

“ [ (5+s)\/ﬂ<px(ﬁ)] ~ (D +¢)? [5+5,¢] (D + )~ o

$,8—2

as A — oo for any s. It is enough to show that
| +2) [0 (D +e)Vampa(D)] (D +€) = (D +e¢]] | =0

as A — o0o. Recall that ¥, (z) =1 — (1 + z?)px(z)-
Lemma 7.14. We have
” [(p, (D) (I+ 52)] “0,0 —0 as X — oo.

Proof. For simplicity, set a(z) = (1 + 2®)9x(z). Then
(D) (I+ 132) =a,(D) = /&)\(s)eis5 ds.
Since [¢p, l~)] extends to a bounded operator, by Duhamel’s formula,
[cp, d)A(D I+ D2 / / isgt[(p,is 5]6“5(1‘“ dtds.
From this
[, 92B) (1+8)]]|,, <1l Dllas [ [as(s)l sl ds.

By the deﬁmtlon of 1, when A\ — oo, the integral [ |@x(s)||s|ds behaves
like Ae™*; i.e. there exists a constant C' > 0 such that

/ 1y (s)| 5| ds < CAe>.
R
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Thus B B
o 1+ DY), = 02>
O
Lemma 7.15. We have
H [()01 ¥a(D) (I—l— E2)1/2} —0 as X — oo
0,0

Proof. We have

Then
[l (1)
<Nfots® (14 B, |+ 597
(1) (1 2] (1 57)
(42"

(notice that [(I + D?)'/2,¢] is an operator of order 0). By Lemma 7.14, we
get the conclusion. a

+ |la(D)]lo,o

0,0

+ |[1oa(D)llo,0

0,0

Lemma 7.16. We have
H [go,v,bﬂﬁ)] Hs L 0 as A — oo.

Proof. By (7.12),
(1-s)/2

e, _, = ” (1+0°)" lp,wa (D) (1 + ?) o
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Case (i). s > 0. In this case

(I + 52)5/2 [(p, %(f))] (I + 132)(1—3)/2
(1-5)/2

=145 o 9n(B) (1+5%)" " + [p0n(D)] (1+ D7)’

1-s)/2

b

— (D) [(I+l~72 5/274 (I+52)(1—s)/2

~.\5/2 ~
here we have used the fact that [(I + D2) ,go] € Ui 1(S) provided that
s > 0. We have

)(l—s)/2

” [(z + 52" ,90] ¥a(D) (1 + D?
<|[+ 29"

which converges to zero as A — oo.
Similarly,

0,0
(1-5)/2

(1+0?)

-

0,s s—1,0

(1—s)/2
—+0 as X\ — oo

(D) [(I + 52)5/2 , 4 (I + D?)

0,0

Then, by Lemma 7.15, we obtain the conclusion.

Case (ii). s < 0. In this case —s/2 4+ 1/2 > 0 and [p, (I + D?)1=9)/?] is
a ¢¥DO. Making use of [, (I + D?)(=9/2] in the place of [(I + D?)*/?,¢] in
Case (i), we can deduce the conclusion. a

Proposition 7.17. The element € is in the domain of d2, and

5@ = (D+e) ' [D+e,¢)(D+e)?
= (D +¢)7'D,¢)(D +¢).

Proof. As mentioned above, it is sufficient to show that

(D+e) [, (D + e)V2mp\(D)| (D +e)

converges to [D + ¢, ¢] as A — 0o, as operator of order zero. By a straight-
forward computation,

[f) te, <p] —(D+e) {go, (D + 5)\/2—7;90,\(5)] (D +e)
= [D +¢,@la (D) + [0, (DD +¢).
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We have that

12, er (DD +€)lls,s < 11]sps Y (D)]l]s,5-1 11D + ll1.-
Then by Lemma 7.16,

I, ¥r(D)(D +¢€)|]ss =0 as A — oo.

By construction, 1/))\(5) commutes with (I —+ 132) . Hence

[ha(D)|]s.c = “ (1+ 52)3/2 (D) (I + 52)—5/2

:H@bx(ﬁ)”o,o—%o as A — o0o.

0,0

From these it follows that ||[D+¢, @]ihx(D)]ls.s — 0 as A — co. Consequently,
[cp, (D + 5)\/27%(15)] S (D+e) D +e,¢)(D+e).

Recall that (D + €)v/2mp, (D) — € in UA. Therefore, by closedness of &, we
obtain that N B N
52(6) = (D + o) (D +,0)(D +e) "

O

By the same argument, we can verify that € is also in the domain of §,,
and that

(7.18) 5:(€) = (D + €)' [D + &, 8,9)(D + ¢)~".

8. Main Theorem.

In this section we will compute the pairing between the 2n-trace gv and the
class of the graph projection of the longitudinal Dirac operator. Throughout
this section dim M = 2n.

Let D be the longitudinal Dirac operator for the foliated S*-bundle (X, F).
Denote by C*(X,F,S)~ the C*-algebra generated by C*(X,F,S) and the
projection p_ in gpy. We then have a split exact sequence:

0—-C"(X,F,S) »C(X,F,5)" - Cp_ —0.
In Section 7, we showed that

e=e—p_ € ACC(X,F,S).
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Set © = [e] — [p_]. Then © € K,[C*(X,F,9)].
Proposition 8.1. The class © is equal to ind(D™).

Proof. Recall [9, Lemma 6.1] that

na0) = | (5, S0 29[ (00)] e e ox 7.0

where (@ is a parametrix of D*, and

So =1—-QD* € C*(X, F,S8%),
S, =I-D*Q e C*(X,F,5).

Set
= (BB S B0 )
D*(I+D-D*)'D¥Y(I+D-D*)'D-)’
and
Y (~50 I+ SO)Q~> _
D*Sy DH(I + So)@Q
Then,
u,v € C*(X,F,S)~,
and

wo— [ 55 SoI+50)Q
S$iDt I1-8t )’

and vu = e. Thus

ind(D*) = © in K,[C*(X, F, S)].

O

Denote by C*(X,F,S)* the C*-algebra C*(X,F,S) with unit adjoined.
Notice that C*(X,F,S)" is identified with the C*-subalgebra of g, gener-
ated by C*(X,F,S) and I € gy. The 2n-cocycle gv, constructed in Section

6, extends to C*(X,F,S)* by setting

guv(a®,a',... ,a®") =0,
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if one of a®,a!,... ,a® is a scalar multiple of I.
In terms of C*(X,F,S)*, the class © is expressed as a difference
© = [p] —[g],
where

(I+D-D*)~* 00 (I+D-D*)'D-

3 0 00 0

p= 0 01 0 ’
D¥(I+D-D*)"*00D*(I+D-D*)"'D-

and

0000
_looo0o0
= 10010
0001

Notice that p,q € My(C*(X,F,S)*). Then it is easy to see that

(g, [p] — [q]) = (271)*"nlgu(e, ... ,©).
The main focus of the section is to explicitly compute gv(e,... ,€).
We have
gu(&,...,8) = (n—1)1) {tracep (€' 6, (€)e™ 6, (€)™ *%2)
— tracep (€216, (€)e¥ 6, (e)e® 2~ 2)},

where the summation is taken over all ¢ and 7 such that 0 <, 7 and 1 45 <
n — 1.

Lemma 8.2. We have

(1) €2i+151 (€)€2j52 (6)6271—21'—2]—-2

)—(H-l) —(G+1)  ~

(D, 0, (1+D%) (D,

—(n—i—-j—1) ~

(D +¢)7,

= (I + D?
X (I + 52)

and
(2) &*t1s,(8)e¥ s, (e)en 22

— (1+5?) D) (14 57) "

[‘5: 62 (P]

—(n—i—j—-1

X (I+f52) )(D+e)—1.
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Proof. Recall that u = (I + X)e = D + €. In Section 7 we showed that
6(8) = (D + )7'[D +e, az‘P](E +e) = u—l[ﬁ,aﬂp]u—l,

and

Therefore
€2i+161 (A)A2]6 (A)Azn —21—-2j—-2
_ (u“l)z’“u_l[D, ach]u_l(u*l)”u“l[ﬁ, Qlut (ut)2n-2i-2-2
= (1+0°) """ (B0l (14 5°) " D,
(14 57)

Similarly we obtain the second equality. O

(D +¢)".

Fori,j with0<i4,j,and i+ 7 <n—1, let

AH _€Zz+16 ( ),\2]52( )A2n 2i—2j5— 2’

BU — g2z+1(5 (e)’\2]5 ( )A2n 2i—2j— 2
Then
gv(E,... ,8) = (n— 1)) _ (tracer (4*’) — tracer (B*)),

tracer (A7) = / tr (0, A% 0,) dz,
St

tracer (B*Y) = /1 tr (0.Bo,) dz,
s
where A% (resp. BiJ) is the restriction of A" (resp. B“J) onto M, =
M x {z}, = € S*. We must compute tr(0,A% 0,) and tr(oc,B>/0,). In order
to do so, we make use of Getzler’s symbolic calculus method [12]. Fix an
arbitrary z € S'. For a while we do analysis on the manifold M, =M. In
order to simplify the notation we supress the subindex, as long as it is clear
on which manifold we are working on.
Consider a one-parameter family of operators on M = Mz,

A¥(t) = (IT+ t2152)~(i+1) [tD, 5] (1 + t2ﬁ2)_(j W

~ ~.\ —(n—i—j-1)
x [tD,¢] (I +1*D?) !
( (I+#D-D*)~* (I+#D-D*)"tD )

_ R t>0.
tD*¥(I +¢*D-D*)"' —(I+#*D*D~)! >
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Similarly, define B*(¢).

In the symbolic calculus method, a key notion is that of asymptotic order.
Assign to the parameter ¢ the order —1, and to a Clifford multiplication the
order +1. The total order is called the asymptotic order. For instance, the
following symbols have the asymptotic order 0 [9]:

@ o ((A +20?) ‘) (m, ),

(i)  o([tD, f])(m,§) = tdfm, [€C=(M).

In (i) the operator (A\+tD?)~! is a »DO. However, its distributional kernel
does not have I'-compact support. In (ii) df,, is a Clifford multiplication
operator.

Although in [12] only compact manifolds are studied, the method devel-
oped there works for compactly supported ¥)DO’s. In particular, the follow-
ing “Fundamental Lemma” is valid for such 1)DO’s (we use the notation of
[12] and omit the proof).

Lemma 8.3. ([9], [12]). (1) If A= A(t) has asymptotic order 0, then
oi-1(A(t)) = a0(4) + O(1),

where 041 is the rescaled symbol, and o¢(A) is the asymptotic symbol of A.
(2) If A, B are operators of asymptotic order 0, then

Oo(AB) = 0'0(14.) * O'O(B),
where x is the Getzler multiplication of symbols.

(3) IfI(t) € OpS—°, then

Try(II(t)) = (2m)~ ™M T*Mtn(ot—l(ﬂ(t)))(maf) dmdg, t>0,

where dmd§ is the symplectic measure on T*M.
We return to the computation. It is easy to see that
tr (0 A% (t)o) = Tr, (Hfj(t)) ,
and
tr (0B (t)o) = Tr, (T5(1))
where

7 (1) = o (1 +¢2D?) VD, o) (r+ t252)‘(j+1)

—(n—i-j)

x [tD, ¢ (I + t2152) a,
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and

7 (t) =0 (I + t21~)2) m(n (tD, ] (I + tzﬁz)‘(j“)

)—(n—i—j)

X [t5,82cp] (I+ £2D? o.

Next, notice that the operators considered in [9] and [12] are the operator
V—1D. For simplicity, let ) = V=1D.Then P * = — P and P*= -D2.
We have [D, ] = —/=1[ P ,¢], and [D,dp] = —v/~1[ P , 85¢]. From this
it follows that

) = —o (I -2p 2)_(i+1) [t P 8] (I —2p 2) AR

—(n—i—j)

x[tD,ol(I-#D?) o.

Similarly,

w0 =o(1-20%) " p, g (1-2p?)
<[t P ,0p) (I -2 D 2)““”“” .
The operators I12; and II?; satisfy the assumption of Lemma 8.3. Therefore
(8.4) tr (A" (t)0) = Tr, (TI;(t))
= (2m)~n /T Lt (001 (1) ) (m, &) dm g

= @my=n [ tr, (o0 (114)) (m, € dm ds + O().
Similarly

(8.5) tr (0B (t)0) = (2m)>" /T T (00 (T15,)) (m, &) dm d¢ + O(#).

We compute the asymptotic symbols oy (Hg‘}j) and op (Hfj) . Symbols which
are independent of ¢ commute with those dependent on &, with respect
to Getzler multiplication. By [9, Example (3.2)], oo([tP ,¢]) = dy and
oo([tP ,0:¢]) = d(d2¢). Hence

%o (H;}J’) = —0d(0,p) N dpaay ((I —2p 2) “(n+2)) ’
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and
0o (Hfj) = —adyp N d(0xp)o0oy ((I —2p 2)—(n+2))
= ad(dyp) N dpoay ((I _ 2 P 2)"(n+2))

= —0p (Hfj) .
Using the formula:
(I 2D 2)_k—1 = % /Ooo ste~se’" P ds,
we obtain
%0 (H;}j) = —0d(dp) A dSOO’(n—i—l-)—! /Ooo s"e (e P ds.

By [9, p. 362],

1/2
2 D7\ ge — gng—n 8_R/2_>
./T*MOO(G Jdo = m"s " det (sinth/Q ’

where R is the curvature tensor of the I-invariant metric on M.
Applying the super trace, which amounts to multiplying (2/7)" and taking
the top degree term, we get that (8.4) is equal to

—(2m)% / o 7U0) Ao

- 1/2
n+l_-—s, n_,—n SR/2 >
x/o s™Hle=tpn s det <—sinth/2 ds dm d¢ + O(t)
R/2

= — (%)n (2m) 2" g™ /1\71 a*d(8yp) A dipo det (sinh R/2) 1/2-%— O(t).

Therefore

(8.6) D _[tr (cA™ (t)o) — tr (6B (t)o)]
= —Card({(4,7); 0< 14,5, and i+j <n—1}) 2(2m) 7"

2\ [ e R/2 )”2
x (Z) x/ﬂad(agcp)/\dgoadet (SmhR/2 +0(t)

2\"n ’IL+1
1/2

X /A} a?d(0yp) A dpo det (ﬁ%) + O(t).
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R/2 \'?
The piece of degree (2n—2) of det ( - ) is homogeneous of degree

sinh R/2
(n —1). Hence (8.6) is equal to the following (8.7)

_ (%)"(2W) =200 (4 1)(—~27)" L

—(1/2mi)(R/2)  \'
/M o2d(Byp) A dyo det ( h(— (1/27rz)(R/2))) + O(t).

Proposition 8.8. Ast — 0, the term Y [tr(c, A" (t),0,)—tr(o, B%(t),0,)]
converges to

- (g)n(%r) ratn(n 4+ 1)(=2m)" !

1

7ri 1/2
X /ﬂaid((%(p) ) Ad(p,) de t( ((1{12/27)5)7}32))) ’

Moreover, convergence is uniform in z.

Proof. Convergence follows from the equality (8.7).

Recall that we are dealing with a family of operators D= (D ) on M x S
such that D, D via the canonical identification of M, and M, and ¢, 0>¢
are smooth functlons It follows that, when one applies Lemma, 8.3, (1), one
obtains an estimate O(¢), which is uniform in z. Then the conclusion is
immediate. g

Proposition 8.9. We have that
Z/ [tr(0,A0,) — tr(0, B 0,)] dz,

= Z/ 0, A% (t),0,) — tr(c, B (t),0,)]dz  for all t > 0.

Proof. The right-hand side of the identity above is precisely

(n=1)N""gv(&,...,&),

where €; is the graph projection of the operator tD*, and &, = e, — p_.
Clearly, (e;) is a continuous path of projections. Therefore

le] —[p-]=[e] —[p-] in Ko.

Hence
gu(€, ... ,e) =gv(e,...,e) forall ¢>0.
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From Propositions 8.8 and 8.9, it follows that

gu(e,...,e) =gu(é,... &)

= %1_1}13 gu(€;, ... ,€)

= lim(n — 1)! Z [tr(c, A" (t),04) — tr(c,B" (t),0,)] dz
Sl

t—0

=(n-1)! Z hm[tr(a AW (t),0,) — tr(o,B" (t),0,)] dz

Sl

—(n + 1)}(27) 2™ (= 2mi)" G)n

ot ()
= —(n+ DI2r) 21" (—2mi)"" 1( )

- /5 /A} o’dd"p Nd'p A A(R)

—(n + 1)(2m) "2 (~2mi) (%)n/xd'd"goAd'gpAA(R),

where X = M x5!, and A(R) is the A-polynomial of M given in terms of the
curvature R of the I-invariant Riemannian metric on M. Since dd"oNdp
is D-invariant, so is d'd”¢ A d'@ A A(R). Consequently the integration of
dd"o Nd'p A E(R) on X is well defined. By Proposition 5.4, the 3-form
—d'd"p A d'p represents the Godbillon-Vey class gv(F). On the manifold X
the cohomology class of A(R) is exactly the pullback of A-class A(M) of the
spin manifold M. Thus

(8.10) gu(@, ... ;&) = —(n+ D)I(=1)"" (2mi) " / dd"o Ad'p A AR)
b'e
= (n+1)I(=1)"""(2mi) ™" (gu(F) U A(M)) [X].
Summarizing the arguments above, we have the main result:

Theorem 8.11. Let X be a foliated S*-bundle over a 2n-dimensional closed
spin manifold M, and let D be the longitudinal Dirac operator. Then

{gv,ind(D*)) = (=1)"" (n + 1)(2mi) "~ (gu(F) U A(M)) [X].
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Corollary 8.12. If (gv(F) U A(M)) [X] # 0, then the class © = ind(D*)
is nontrivial in Ko[C*(X,F, S)].

Example 8.13. Let (11X, F4) be an Anosov foliation associated with the
geodesic flow on the unit circle bundle 71 ¥ over a closed Riemann surface ¥
of genus > 2. Since dim ¥ = 2,

(gv,ind(D")) = —2(2m) *gv(FA)[T1 Z].

It is known [18] that gu(F4)[T;X] # 0. Therefore, © = ind(D) is nontrivial
in Ko[C*(T1 2, Fa,S)]. In the next section we will show that © together with
other known elements generates the whole Ky[C*(T1 X, F4, S)].

Remark 8.14. In (8.10), the righthand side is always purely imaginary.
This is due to the fact that the cyclic 2n-cocycle gv is purely imaginary, i.e.

gv(as,,a5,_1,--- ,a5) = —gv(@o, a1, ... ,Q2,)
for ag,-.. , a3, € Dom(gv).

9. A relationship between the cocycle gv and Connes’s cocycle.

In this section we will study the relationship between the cyclic cocycle gv
and Connes’s cocycle [8].
Let us recall his construction. Denote by 7; the transverse fundamental

class for C(S*) x I'. That is

00 = X [ fa(zady, @),

gog1=1

where f/ = 3" fiU, € C°(S* x T). Its derivative 7;, defined by

01 AU =lm =m0l ) - n (1)

is (o¢)-invariant. The cocycle which Connes studied is ip,(71). We will see
that there exists a homomorphism II from C(S') x T" into C*(X, F, E) such
that
IT*(gv) = ipy (1)
on
C®(§'xT)c C(S*) xT.
There exists a compactly supported C*°-function o on M such that

> gl0) =1;

ger
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i.e. {9(0)},er is a I'-invariant partition of unity for M. We can choose o
so that o takes the value 1 on some open set U. We may further assume
that the fundamental domain D is contained in suppo. Assume that E is
a I'-equivariant vector bundle on MxS ! which is the pullback of a vector
bundle E on M by the composition of two canonical maps

MxS - M3 M.

The bundle S of spinors considered in the preceding two sections satisfies
this assumption. Choose a section £ € C°(p*E) such that supp¢ C U, and

J 466 dutm) =1.

In a natural way, £ can be regarded as a compactly supported section of E.
By the choice of £, we have that

(9.2) suppé Nsuppg(é) = & unless g = 1.
Moreover
93) [ 4660 dsalom) = 1

M

for all £ € S'. From this follows that
(£,6)=1€C(8") «T,

where (-, -) is the C(S') x I'-valued inner product on € in Section 2.
In general, for a right Hilbert module over a unital C*-algebra 2, if there
exists an 7 € € such that (n,7)y = 1, then the map II defined by

(9.4) M(a) = 60y0n @€,

is a *-homomorphism from 2 into K(e), which induces an isomorphism of
K-groups. Apply this principle to £ above to obtain a *-homomorphism II
from C(S*) x T into K(e) & C*(X, F, E).

Let dz and @ be as in Section 5. Let 1 be a real-valued C*°-function on
E x S1. Tt is easy to see that w = 9® A dz is a I'-invariant volume form on
M x S* if and only if 9 is never zero, and 9 = g(¥))\, for any g € T". Set

=2 X9(0).

9€r
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Since {g(0)} is a partition of unity, and A, > 0, the function 1 is always
positive. Moreover

Xgg(¥) = D Xeg(Xn)(gh)(0)

= Anl(gh)(o) = 9.

hel’

Thus w = ¥ A dz is a I'-invariant volume form. Using the definitions given
in Section 5, obtain (A*) and (7).

Lemma 9.5. The section ¢ (as a section of E over M x S') has the property
that

A(E) =€, teR
Proof. Obvious from the fact that ) = 1 on supp&. O

Lemma 9.6. The x-homomorphism I given by (9.2) is R-equivariant; i.e.

6.((a)) = (oy(a)), forall a€C(S*)xT and teR

Proof. For each a € C(S*) x T and ¢t € R, by Lemma 4.3,

6,(I(a)) = A%, A™H
= Oaitga),ane)
= Oan@)oi(@.a%(0)
= Oeo(a)

= II(o¢(a))-
O

For a € C>(S* xT), the operator II(a) is a compactly smoothing operator.
Therefore tracer(II(a)) is well defined.

Proposition 9.7. For a°,a' € C>(S* x I'), we have

tracer (II(a®)d; (Il(a'))) = 71(a®, a).
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Proof. We have, using (9.2) and (9.3), that

tracer (I1(a%)8; (TI(a')))

-1/ / > (29,97 W)(8)(n, 7) — (D20) (m, 7))

g,h,g" b’
x a'(zg', g "'h')(&(nh, zh), &(ng', zg"))
x (E(mh',zh'),&(mg, zg)) dpg (n) dp, (m) dz

= /S‘l /D /A’/VI Z ao(azg, g_lh)((8290)(n7 55) — (62(,0)(771, x))al (:I)g, g_lh)
x [|€(nh, zh)||*||€(mg, z9)|[* due (n) dp, (m) dz

= [ [ [ S ma @h, k(@) n,2) ~ (@)om, )
x [|€(nh, zh)|[* ||€(mg, zg)||* du (n) dpz (m) dz.

Since 1 = 1 on supp{, we have (0y¢)(m,z) = 0 if m € D. Hence

tracer (TT(a%)6, (TT(a')))
-/, / / (e, ) o ) @), DS ) g, 20
i) s m) d

:/51 /IVIZao(x’h)al(xh’h_l)(BZW)(”aﬂf)Hﬁ(nh,xh)Hz d,uz(n) de.

If nh ¢ D, then ||¢(nh,zh)||*> = 0. By the choice of v, if ||¢(nh,zh)||* # O,
then

P(n, ) = Ap-1(z)h(0)(n),
and
p(n,z) = 1(h™")(z) + log(h(o)(n)).
Therefore (d"9)ms) = di(h~),. Consequently
tracer (T(a%)5, (TT(a"))) = zhj /S @z, h)a (e, h)di(h )

= ’i‘l(ao,al).
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Finally we can relate the two cocycles:
Proposition 9.8. For a°a!,a? in C®(S! x I'), we have

ip,(11)(a’,a’,0®) = (I"gv)(a’, @', a?).

Proof. This is immediate from Lemma 9.6, Proposition 9.7 and [8, Lemma

6]. ]
Remark 9.9. Suppose that E is the trivial line bundle. Then the formula

(9.10) / / /~ K°(m,n,z)d"k' (n,m, z) dndmdz
stJpJm

defines the transverse fundamental class on K.. The cocycle (k% k') —
tracer(k®8, (k')) = tracer(k°[d", k']) is the derivative, in the sense of (9.1),
of the cocycle (9.10) with respect to the modular automorphism group ().

10. The Kj-groups of the C*-algebras of Foliated S'-bundles.

In this section we will determine the generators of the group Ky[C*(X, F)]
for an arbitrary foliated S'-bundle over a closed Riemann surface.

Let ¥ be a closed Riemann surface of genus g > 2, and let I' = 7 (2). To
any (right)action of I" on the circle S* by orientation preserving diffeomor-
phisms, a fibre bundle with fibre S* is associated (Section 2). By evaluating
the Euler class of this bundle on the fundamental class of ¥, we get an integer
X, which is called the Euler characteristic.

This group T' is an amalgamated free product I' = F; *z F5,_». By [17] we
have an exact sequence, a part of which looks like

Ko(A1) ® Ko(Az) = Ko(A) = Ki(4o) = Ki1(41) @ Ki(42),

where Ay, = C(Sl) X Z, Al = C(Sl) X Fy, Ay, = C(Sl) X Fgg_z, and
A = C(S') x I'. The computations done in [16] enable us to obtain

(10.1) Ko[A|=Z* & Z & Z[XZ.

The subgroup Z?¢ in (10.1) is generated by Rieffel projections. It is straight-
forward to see that those 2g generators lie in the kernel of the map Ky(A4) —
C induced by the pairing with the cyclic 2-cocycle ip,(71) described in the
preceding section. The torsion subgroup Z/xZ is generated by the class of
the unit. As for the remaining generator, we know only of its existence, by
applying an exact sequence to compute the K-groups. We will show that this
missing generator is given by the class O associated with the Dirac operator.
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Recall that the upper half plane H, is the universal covering of ¥. The
I-equivariant Hermitian vector bundles § = S* & S ~, associated with the I'-
invariant spin structure on H., , give rise to a Hilbert C*-module ¢; over C*I"
in the fashion used to create € in Section 2. Let £ be as in Section 9. Then
¢ yields *-homomorphisms IT: C(S') x ' = K(e) and I, : C*T — K(ey),
which induce isomorphisms of K-groups.

Proposition 10.2. There ezists a *-homomorphism from K(e;) into K(e)
such that the diagram

cT s K(g)
C(SH) xT —2— K(e)
is commutative, where C*T' — C(S") x T is the canonical inclusion.

Proof. Recall that K(€) is generated by operators with I'-compactly sup-
ported, I-invariant C°-kernels. Let P € K(e;) have the kernel k. Then the
I-invariant C'*-kernel k defined by

k(m,n,z) = k(m,n),  (m,n,z) € H, x H, x S,

determines an operator P € K(e). Using the definition of norm, it is not hard
to check that the correspondence P — P extends to a *-homomorphism
Jj: K(er) = K(e).

Commutativity of the diagram is also easy. O

The Dirac operator D* on X lifts to a I'-equivariant differential operator
D*: CX(H,,S5%) - CE(H,,57).

The graph projection €t associated with D* is a bounded operator on
L?(H,, S* & S~) and determines a class

©o = [€7] = [p-] € Ko[K(ex)].
Proposition 10.3. The class ©y and the class of unit 1 € C*T" generate
Ko[l(:(fl)] = Ko[C*F] = ZQ.
Proof. By the fact that the index map from the K-homology of ¥ into
K.,[C*T] is an isomorphism [2, Thm. 3], we can see that Ko[C*T"] is isomor-

phic to Z? and is generated by the class of the unit and the index indp (D).
As in Section 8, it is not hard to see that ©, coincides with indr (D). a
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By the construction of j we can see that
jE* —p)=e-p_.

From this we see j,(©g) = O, where j, : Ko[K(e1)] = Ko[K(e)] is the
induced map.

Theorem 10.4. The class © is the missing generator of Ko[C(S*) x I'] =
Ky [K(e)).

Proof. We claim that ©, together with the known generators, spans the Kj-
group. Let Ay, A;, Az, and A be as above. We have a commutative diagram:

KolA1]® Ko[A2] ~ —— KolA] —— Ki[dg) ———  Ki1[A1]® K1[As]

1 T T T

* 5 * * *
Ko[C* F2] ® Ko[C* Fag_2] ———— Kp[C*T] ——— K3[C*Z] ——— K;[C* F2] @ K1[C* Faq_s],

where horizontal rows are exact, and all the vertical arrows are induced from
the canonical inclusions of C*-algebras.

The map K,[C*Z] — Ki[C*F;] ® K,[C*F5,_,] is a zero map, and the
kernel of K;[Ao] = K;[A:] ® K;[A,] is an infinite cyclic group generated by
the class of the unitary of C(S*) x Z corresponding to the generator of Z.

Since the class of the unit and the class ©y generate K,[C*T'], we see
that §(©p) must be the generator of K,[C*Z]. From this and the observation
above, 6(©) is the generator of the kernel of K;[A4y] — K;[A:] ® K;[As].
Therefore the class © and the image of the map Ko[A;] ® Ko[Az] = Ko[A]
generate Ky[A]. g
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