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GENERIC DIFFERENTIABILITY OF CONVEX FUNCTIONS
ON THE DUAL OF A BANACH SPACE

J.R. GILES, P.S. KENDEROV, W.B. MOORS AND S.D. SCIFFER

We study a class of Banach spaces which have the prop-
erty that every continuous convex function on an open convex
subset of the dual possessing a weak * continuous subgradi-
ent at points of a dense G§ subset of its domain, is Frechet
differentiate on a dense G$ subset of its domain. A smaller
more amenable class consists of Banach spaces where every
minimal weak * cusco from a complete metric space into sub-
sets of the second dual which intersect the embedding from a
residual subset of the domain is single-valued and norm up-
per semi-continuous at the points of a residual subset of the
domain. It is known that all Banach spaces with the Radon-
Nikodym property belong to these classes as do all with equiv-
alent locally uniformly rotund norm. We show that all with
an equivalent weakly locally uniformly rotund norm belong
to these classes. The condition closest to a characterisation is
that the Banach space have its weak topology fragmentable
by a metric whose topology on bounded sets is stronger than
the weak topology. We show that the space ôo(Γ), where Γ is
uncountable, does not belong to our special classes.

We say that a Banach space is a dual differentiability space (DD space)
if every continuous convex function on an open convex subset of the dual
possessing a weak * continuous subgradient at points of a dense Gs subset
of its domain, is Frechet differentiable on a dense Gs subset of its domain.
Spaces of this class include those with the Radon-Nikodym property, and all
those which can be equivalently renormed to be locally uniformly rotund. In
the paper [K-G, p. 472] it was shown that spaces which can be equivalently
renormed to have every point of the unit sphere a denting point of the
closed unit ball are spaces of this class, and in the paper [G-Ml, p. 264]
it was shown that spaces which can be equivalently renormed to have every
point of the unit sphere an a denting point of the closed unit ball, (a is
Kuratowski's index of non-compactness), are spaces of this class; Troyanski
[Tl, p. 306] and [T2, p. 179] has shown that spaces with either of these
properties can be equivalently renormed to be locally uniformly rotund. In
paper [G-M2, p. Ill], the denting point property was weakened using an
index of non-WCG.
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Information about the class of DD spaces is more easily obtained through
the study of a subclass defined by certain set-valued mappings having special
continuity properties. A set-valued mapping Φ from a topological space A
into subsets of a topological space X is upper semi-continuous at t G A if
given an open subset W where Φ(t) C W there exists an open neighbourhood
U of t such that Φ(U) C W. If X is a linear topological space and Φ(t) is non-
empty compact and convex for each t E A and Φ is upper semi-continuous
on A we call Φ a cusco on A. A cusco Φ on A is said to be a minimal cusco
if its graph does not contain the graph of any other cusco on A.

We say that a Banach space X is a generic continuity space (GC space) if
every minimal weak * cusco Φ from a complete metric space A into subsets
of the second dual X** for which the set It G A : Φ(t) Π X Φ 0 j is residual
in A, is single-valued and norm upper semi-continuous at the points of a
residual subset of A.

An open subset of a complete metric space is itself completely metrisable
and a continuous convex function φ on an open convex subset of a Banach
space generates a subdifferential mapping x ι-> dφ(x) which is a minimal
weak * cusco. The subdifferential mapping being single-valued and norm
upper semi-continuous at a point is equivalent to the convex function being
Frechet differentiable at the point . So the class of GC spaces is contained
in the class of DD spaces.

In Section 1 we show that for any Banach space X, minimal weak * cuscos
from a complete metric space A into subsets of the second dual X** which
satisfy a certain generic property are always single-valued and norm upper
semi-continuous at the points of a residual subset of A. We use this general
result to show that Banach spaces which satisfy certain geometrical proper-
ties are GC spaces. In particular, we show that those Banach spaces which
have an equivalent weakly locally uniformly rotund norm are GC spaces. In
Section 2 we show that a Banach space is a GC space if its weak topology is
fragmentable by a metric whose topology on bounded sets is stronger than
the weak topology. We conclude in Section 3 by showing that the Banach
space ^oo(Γ), where Γ is an uncountable set, is not a GC space.

1. A general property implying geometrical conditions for
membership of the class of GC spaces.

For our general result we need the following characterisations of a minimal
cusco.

Lemma 1.1. [G-Ml, Lemma 2.5]. Consider a cusco Φ from a topological
space A into subsets of a separated locally convex space X. The following are
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equivalent
(i) Φ is a minimal cusco on A,

(ii) given any open set U in A and closed convex set K in X where Φ{U) ^
K there exists a non-empty open set V C U such that Φ(V) Π K = 0,

(iii) given any open set U in A and open half-space W in X where Φ(U) Π
W Φ 0 there exists a non-empty open set V C U such that Φ(V) C W.

We also use a continuity condition defined in terms of Kuratowski's index
of non-compactness. Given a bounded set E in a metric space X such an
index is

a(E) = inf{r : E is covered

by a finite family of sets of diameter less than r}.

Given a set-valued mapping Φ from a topological space A into subsets of a
metric space X we say that Φ is a upper semi-continuous at t E A if given
e > 0 there exits an open neighbourhood U of t such that a(Φ(U)) < e. Such
a upper semi-continuous mappings have single-valued properties.

L e m m a 1.2. [G-Ml, p. 253]. Consider a minimal weak * cusco Φ from a
Baire space A into subsets of the second dual X** of a Banach space X. If
Φ is a upper semi-continuous on a dense subset of A then Φ is single-valued
and norm upper semi-continuous at the points of a residual subset of A.

The proof of our general theorem follows a similar method of proof as
was used to prove Lemma 1.2 which is similar to a theorem of Christensen,
[Chr, p. 651].

Theorem 1.3. A minimal weak * cusco Φ from a complete metric space
A into subsets of the second dual X** of a Banach space X where the set

( —w*Λ

E= it£A:Φ(t) CΦ(t)ΠX \

is residual in A, is single-valued and norm upper semi-continuous at the
points of a residual subset of A.

Proof. Given e > 0 consider the open set Oe = (J{open sets U in A : a(Φ(U))
< 2e}. Suppose that Oe is not dense in A. Then there exists a non-empty
open set Vo in A such that Vo Π O€ = 0. Consider a dense G$ subset JD.of
A contained in E. Now D is completely metrisable and we consider it with
such a metric d.

We proceed by induction. Consider tx E Vo Π D and xλ E Φ(ίi) Π X.
Now Φ(Vί)) $£ x\ + eB(X**) for otherwise V0Πθe φ 0. Since Φ is a minimal
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weak * cusco, by Lemma 1.1, there exists a non-empty open set Vi such
that Vι C VQ and Φ(Vi) Π (xx + eB(X**)) = 0. We may assume that the
d-diam(Vi Γ)D) < 1.

Suppose that the first n iterations of this procedure have been completed.
Then we have a non-empty open set Vn such that Vn C Vn~ι and Φ(V^) Π
(co{xux2,... ,xn} + eB(X**)) = 0 where x4 G Φ(ί<) Π X and U G ΐ^_i H P
for i G {1,2,... ,n}. Now consider ίn+1 G F n Π D and ϊ n + 1 G Φ ( ί n + 1 ) Π X.
Again Φ(Fn) £ co{£ l 5 z 2 , , ̂ n+i} + eS(X**) for otherwise Vo ΠO€ D Vn φ
0. Since Φ is a minimal weak * cusco, by Lemma 1.1 there exists a non-
empty open set Vn+ι with cί-diam(Vr

n+i Π D) < ^ such that F n + i C Vn and
Φ(Kι+i) Π (co{2i, x2,.. , ί n + i } + e5(X**)) = 0. Continuing in this way we
form a Cauchy sequence {tn} in D which converges to some t^ G Π

w

n€N

Then for each n G N, Φ ^ ) Π (co{ί1 ? ί2, , Sn} + e5(X**)) = 0 and so

Π ( U Cθ{ί!, ί2, . . . , $ „ } + €JB(X**) ) = 0.
VnGN /

So there exists an / G X*, which strongly separates Φ(too)ΠX and cδ \J {xn}
new

and so there is a weak * open half space W generated by / containing

) Π X and disjoint from co \J {xn}. Since t^ G £?, we have
n6N

PF. Since Φ is weak * upper semi-continuous at t^ there exists an open
neighbourhood U of t ^ such that Φ(E/) C W. However, for n G M sufficiently
large, tn G U and then xn e Φ(tn) Π X C W contradicting the separation by
/. We conclude that O€ is dense in A and that Φ is a upper semi-continuous
at the points of f| Oi. a dense G$ subset of A. Our result now follows from

Lemma 1.2. D

We can now make the following deductions from Theorem 1.3.

Corollary 1.4. A minimal weak * cusco Φ from a complete metric space

A into subsets of the second dual X** of a Banach space X where the set

It G A : Φ(t) C X\ is residual in A, is single-valued and norm upper semi-

continuous at the points of a residual subset of A.

A special case of a theorem of Namioka [N, p. 525] can be deduced from
Theorem 1.3.
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Corollary 1.5. A weakly continuous single-valued mapping from a complete
metric space A into a Banach space X is norm continuous at the points of
a residual subset of A.

A Banach space X is weak Asplund if every continuous convex function
on an open convex subset A of X is Gateaux differentiable on a residual
subset of A. A Banach space X belongs to StegalΓs class S if and only if
every minimal weak * cusco Φ from a Baire space A into subsets of X* is
single-valued on a residual subset of A. It has been shown [K-O, Corol. 4.5]
that a Banach space X belongs to StegalΓs class S if and only if every
minimal weak * cusco Φ from a complete metric space A into subsets of X*
is single-valued on a residual subset of A.

Corollary 1.6. A Banach space X is
(i) a DD space if its dual X* is weak Asplund,

(ii) a GC space if its dual X* belongs to StegalVs class S.

Proof. We consider only the proof of (ii). A minimal weak * cusco Φ

from a complete metric space A into subsets of X** has the set {t E A :

Φ(t) is singleton} residual in A. So if the set IteA: Φ(t) Π X φ 0 J is resid-

ual in A then the set 11 e A : Φ(£) C X i is residual in A and we deduce from

Corollary 1.4 that X is a GC space. D

We should note the Banach space ίλ has dual ί^ which is not weak As-
plund, [P, p. 13]. However ίx has the Radon-Nikodym property and so the
property given in Corollary 1.6 is a sufficient but not necessary condition for
a Banach space to be a DD space or a GC space.

It has recently been proved, that a Banach space belongs to StegalΓs class

S if it has an equivalent norm Gateaux differentiable away from the origin,

[P-P-N].

Corollary 1.7. A Banach space X is a GC space if the dual X* has an

equivalent norm Gateaux differentiable away from the origin.

We note that the equivalent norm on X* need not be a dual norm.

Corollary 1.8. A Banach space X is a GC space if it can be mapped into

a GC space Y, by a continuous linear mapping T whose conjugate T" has a

dense range.

Proof. Consider a minimal weak * cusco Φ from a complete metric space A

into subsets of X** where the set IteA: Φ(ί) Π X Φ 0 j is residual in A. As
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a conjugate, T" is continuous when X** and Y** have their weak * topologies
so T" o φ is a minimal weak * cusco from A into subsets of Y**. Since Y is a
GC space and the set | t G A : T'Ό Φ(t) Π Ϋ φ 0J is residual in A, so T" o Φ
is single-valued on a residual subset A. Since T" has dense range then T" is
one-to-one, so Φ is single-valued on a residual subset of A and we have by
Theorem 1.3 that Φ is single-valued and norm upper semi-continuous at the
points of a residual subset of A. D

It is well known that a closed linear subspace of a Banach space with the
Radon-Nikodym property has the Radon-Nikodym property. The following
is an extension of this result.

Theorem 1.9. If a Banach space X is a GC space then every closed linear

subspace Y of X is a GC space.

Proof. The conjugate of the inclusion mapping maps X* onto Y* and so the
result follows from Corollary 1.8. D

This subspace property holds for the larger class of DD spaces, but the
proof uses a different technique.

Theorem 1.10. // a Banach space X is a DD space then every closed
linear subspace Y of X is a DD space.

Proof. Consider φ a continuous convex function on an open convex subset
B of F* where the set [g e B : dφ(g) Π Ϋ φ 0} D E a dense Gδ subset of
B. Consider T the inclusion mapping of Y into X. The conjugate T" maps
X* onto Y*. Further, φ o T" is a continuous convex function on the open
convex set A = (T')~ι(B) in X*. Since T" is onto it is an open mapping and
therefore D = {T')~ι(E) is a dense Gδ subset of A. But further, if f0 G D
then exists a y0 G Y such that y0 G dφ(T'f0). Then

yo(T'f) - yo(T7o) < Φ{Tf) - φ(T'f0) for all / G A

so

Vo(ί) ~ Vo(fo) < (φoT')(f) - (φoT)(fQ) for all / G A;

that is, y0ed{φoT'){f0).

Then {/ G A : d(φ o T')(/) n ί ^ J D f l a dense G<5 subset of A. Since
X is a DZ) space there exists a dense G$ subset G of A where φoT' is Frechet
differentiate. That is, for / G G,
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exists and is approached uniformly for all g G X*, \\g\\ — 1. Using the fact
the T" is the restriction of each element of X* to Y and that each restriction
has a norm preserving extension on X then

λ

exists and is approached uniformly for all T'g G Y*, \\T'g\\ = 1. So φ is
Frechet differentiable on T'(G) which is a dense subset of B. Since the set of
points where a continuous convex function is Frechet differentiable is always
a Gs subset, [P, p. 15], φ is Frechet differentiable on a dense G$ subset of
B. We conclude that Y is a DD space. D

A Banach space X is said to be weakly locally uniformly rotund if for
each x0 G X, | |#o| | — 1? given e > 0 and / G X*, | | / | | = 1 there exists
a δ(e1x0:f) > 0 such that \f(x — xo)\ < e for all x G X, \\x\\ < 1 when

\\x + xo\\ > 2 — δ. A weakly locally uniformly rotund space is rotund but not
necessarily locally uniformly rotund. However, such a geometrical property
on a Banach space does have rotundity implications for the second dual
space.

L e m m a 1.11. Consider a weakly locally uniformly rotund Banach space

X. Given x0 G X, | |xo | | = 1, for every F G X**, | | F | | = 1, F φ ί0, we have

\\F + xo\\<2.

Proof Suppose that there exists an F G X**, | | F | | = 1, F φ x0, such that

IIF + Soll = 2. Since F φ x0 there exists an / 0 G X*, | |/o| | = 1 and an r > 0

such that |(JP — ϊo)(/o)| > r Since X is weakly locally uniformly rotund,

given 0 < 6 < I there exists a δ(e:xo^fo) > 0 such that \fo(x — rzro)| < e f° r

all x G X, \\x\\ < 1 when ||x + ^o|| > 2 — ί. Since the norm on X** is weak *

lower semi-continuous the set {G G X** : | |G + ί o | | > 2 — ί} is weak *open

in X** and contains F. By Goldstine's Theorem B (Xj is weak * dense in

i?(X**) so there exists some x G B [Xj such that ||x + 2 0 | | > 2 — δ and

\(F - x)(fo)\ < e. Then for such a n ί G f i (X) we have \fo(x — xo)\ < e and
therefore

\{F - x o )(/o) | < \{F - x)(fo)\ + \fo(x ~ xo)\ < 26 < r

which contradicts the initial separation property. D

We need the following property of minimimal weak * cuscos.

Lemma 1.12. [K-G, p. 471]. Given a minimal weak * cusco Φ from a
Baire space A into subsets of the dual X* of a Banach space X, there exists
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a residual subset of A at each point t of which, Φ(t) lies in the face of a
sphere of X*.

Theorem 1.13. A Banach space X is a GC space if it can be equivalently
renormed to be weakly locally uniformly rotund.

Proof. Consider X so renormed. Then since Φ is a minimal weak * cusco

on A we have by Lemma 1.12 that there exists a residual subset D of A at

each point t of which, Φ(t) lies in the face of a sphere of X**. So if the set

G = It E A : Φ(t) Π X Φ 0 j is residual in A then G Π D is residual in A.

But by Lemma 1.11, Φ is single-valued on G Π D and so Φ(GΓ\D) C X and

we deduce from Theorem 1.3 that X is a GC space. D

We do not need so strong a geometrical condition as weak local uniform
rotundity. To be a GC space it would be sufficient for the space X to
have an equivalent norm such that given x0 £ X, \\xo\\ = 1, ΐoτ every F G
X** \ X, | | F | | = 1 we have \\F + xo\\ < 2. Such an equivalent norm is not
necessarily rotund. However, it is difficult to find a characterisation of this
property on X.

2. Fragmentability conditions for membership of the class of GC
spaces.

We aim to find fragmentability conditions which imply that a Banach space
is a GC space.

Consider a bounded subset E in a Banach space X. Given / G X*, | | / | | =
1 and δ > 0, a slice of E defined by / and δ is the subset

S(E,f,δ) = {xeE: f(x) > sup f(E) - δ}.

A slice of a bounded set E in the dual X* defined by a weak * continuous

linear functional on X* is called a weak * slice of E.

We need the following local boundedness property of minimal weak *

cuscos.

Lemma 2.1. A minimal weak * cusco Φ from a Baire space A into subsets

of the dual X* of a Banach space X is locally bounded on a dense open subset

of A.

Proof. It is sufficient to show that there exists an open subset of A on which

Φ is bounded. For each n G N, consider the set

En = {teA: Φ{t) C nB{X*)}.
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Clearly, [JneNEn — A. Since A is Baire there exists an n0 G N such that
inti5n o φ 0. Consider an open set U C Eno. Suppose for some t0 e U \ Eno

there exists an / 0 G Φ(ίo)\ΉoS(-X"*). Then / 0 can be strongly separated from
n0B(X*) by a weak * continuous linear functional on X* which generates a
weak * open half space W containing f0 and n0B(X*) C C(W). Then since
Φ is a minimal weak * cusco, by Lemma 1.1 there exists a non-empty open
set V C U such that Φ(V) C W. But this contradicts the fact that there are
points of Eno in V which map into n0B(X*). D

The following characterisation of the class of GC spaces simplifies our
computation.

T h e o r e m 2.2. A Banach space X is a GC space if and only if every
minimal weak * cusco Φ from a complete metric space A into subsets of
X** where Φ(t) Π X φ 0 for all t G A is single-valued and norm upper
semi-continuous at the points of a residual subset of A.

Proof. Consider a minimal weak * cusco Φ from a complete metric space A

into subsets of X** where It G A : Φ(<) Π X Φ 0 j 2 Aλ a dense Gδ subset of

A. Then Aλ is completely metrisable, [K-N, p. 96]. Consider the set-valued

mapping Φx the restriction of Φ to i ^ Now Φx is also a minimal weak *

cusco on A\ and Φι(t)ΠX Φ 0 for all t G Aλ. So Φi is single-valued and norm

upper semi-continuous at the points of a dense G$ subset D of A± which is

also a dense G$ subset of A.

Consider t 0 G D. Since Φx is norm upper semi-continuous at t 0 there exists
an open neighbourhood U of ί0 such that Φi(ϊ7 Π Λi) C JB[Φ(ί0); e]. We will
show that Φ(Ϊ7) C B[Φ(to)\ e]. Suppose not, then since Φ is a minimal weak
* cusco, by Lemma 1.1 there exists a non-empty open set V C U such that
Φ(V) Π B[Φ(to);e] — 0. But this contradicts the fact that Aλ is dense in A
and Φi is norm upper semi-continuous at t0.

The converse is obvious. D

The following norm fragmenting theorem generalises a characterisation of

Banach spaces with the Radon-Nikodym property.

T h e o r e m 2.3. A Banach space X is a GC space if there exists a weak

* lower semi-continuous norm | | | | | | on X** and every non-empty bounded
subset of X has slices of arbitrarily small | | | \\\-diameter.

Proof. Consider a minimal weak * cusco Φ from a complete metric space A
into subsets of X** where Φ(t) Π X Φ 0 for alH G A. Consider the mapping
Φ from A into subsets of X defined by
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Given e > 0, consider the set

Oe = (J jopen sets V such that | | | | | | - diam Φ(V) < e | .

Now Oe is open; we show that it is dense in A. By Lemma 2.1 we may assume
that Φ is locally bounded. Consider any non-empty open set U in A where
Φ(U) is bounded. Then there is a weak * slice of Φ(U) with | | | |||-diameter
less than e. Since Φ is a minimal weak * cusco, by Lemma 1.1 there exists
a non-empty open set V C U such that Φ(V) lies inside this slice and so
HI |||-diam Φ(V) < e. So O€ is dense in A. Then D = ΠneN Ox is a dense Gδ

of A and Φ is single-valued and || | |||-upper semi-continuous at the points
oϊD.

Consider t0 G D. Suppose that there exists an Fo G Φ(£o) \ X- F° r r =
| | 11Fo—x0111, consider B\j1.111[x0 r]. Since 111 11 is weak * lower semi-continuous,
J5|||.|||[2o;r] is weak * closed. So Fo and J3|||.|||[2o; r] can be strongly separated
by a weak * continuous linear functional which generates a weak * open
half-space W containing Fo and 2?m.|||[a;0;r] C C(W). Since Φ is | | | |||-upper
semi-continuous at t0, there exists an open neighbourhood U of t0, such that
Φ(U Π D) C B|||.|||[ϊo;r]. Now Φ(U) Π VF φ 0 and since Φ is a minimal
weak * cusco, by Lemma 1.1 there exists a non-empty open set V C [/ such
that Φ(V) C VF. But this contradicts the fact that Φ(t) Π C(VF) 7̂  0 for
each t G F Π JD. So we conclude that Φ is single-valued on D and maps
into X. It follows from Theorem 1.3 that Φ is single-valued and norm upper
semi-continuous at the points of a residual subset of A. D

We note that the weak * lower semi-continuous norm || | | | on X** need
not be an equivalent norm for X**,

A Banach space has the Radon-Nikodym property if and only if every non-
empty bounded subset has slices of arbitrarily small diameter, [P, p. 72]. So
we could deduce the following known result from Theorem 2.3.

Corollary 2.4. A Banach space with the Radon-Nikodym property is a GC
space.

It is possible to give a characterisation for GC spaces in terms of the
behavior of set-valued mappings from a complete metric space into subsets
of the original space. To do this we generalise the idea of minimality for
set-valued mappings from the characterisation of minimal cuscos given in
Lemma 1.1.

We say that a set-valued mapping Φ from a topological space A into
subsets of a separated locally convex space X is minimal if for any open
half-space W in X and open subset U in A where Φ(J7) Π W Φ 0 there exists
a non-empty open set V C U such that Φ(V) C W.
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We use the following selection property of minimal set-valued mappings.

Lemma 2.5. Consider a Banach space X with a separated locally convex
topology τ where the norm closed balls are also τ-closed and a r-minimal
set-valued mapping Φ from a topological space A into subsets of X. If there
exists a selection Φ on a dense set D in A which is norm continuous on D
then Φ is single-valued and norm upper semi-continuous at the points of D.

Proof. Suppose that at t0 G D, Φ is not single-valued and norm upper

semi-continuous. Then there exists an r > 0 and in every neighbour-

hood U of t 0 there exists a tx G U such that Φ(£i) ^ B (φ(to);rj . Now

X\ E Φ{tλ)\B ί φ ( t o ) ; r j can be strongly separated from B Φ(£o); §] by a

r-continuous linear functional which generates a r-open half-space W con-

taining Xι and B Φ(t0); § C C(W). Since Φ is norm continuous at t0 there

exists an open neighbourhood U of ί0, such that Φ(U Π D) C B ί Φ(ί0); §)

But Φ is r-minimal and Φ(U) Π W Φ 0. So there exists a non-empty open

set V C U such that Φ(V) C W. But this contradicts Φ(VΠD) C C(W). So

we conclude that Φ is single-valued and norm upper semi-continuous at the

points of D. D

The following theorem characterises a GC space X by the behavior of

weakly minimal mappings into X.

Theorem 2.6. For a Banach space X the following are equivalent

(i) X is a GC space,

(ii) every weakly minimal locally bounded set-valued mapping Φ from, a
complete metric space A into subsets of X is single-valued and norm
upper semi-continuous at the points of a residual subset of A,

(iii) every weakly minimal locally bounded single-valued mapping φ from a
complete metric space A into X is norm continuous at the points of a
residual subset of A.

Proof, (i) => (ii). Consider a weakly minimal locally bounded set-valued

mapping Φ from A into subsets of X, and weak * cusco Φ from A into

subsets of X** generated by Φ where

φ(t) = p | {cόw*Φ(U) where U is a neighbourhood of ί} , [B-F-K, p. 472].

Since Φ is weakly minimal then from Lemma 1.1 we see that Φ is minimal
weak * cusco. But also Φ(t) Π X Φ 0 for all t E A. Since X is a GC space
we deduce that Φ is single-valued and norm upper semi-continuous at the
points of a residual subset of A, and then so is Φ also.
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(ii) =Φ> (iii) Obvious.
(iii) =Φ> (i) Consider a minimal weak * cusco Φ from a complete metric

space A into subsets of X** where Φ(t) Π X φ 0 for all t £ A. By Lemma
2.1, we may suppose that Φ is locally bounded on A. Consider a selection Φ
from A into X. Now Φ is a weakly minimal, locally bounded single-valued
mapping from A into X so is norm-continuous at the points of a residual
subset D of A. It follows from Lemma 2.5 that Φ is single-valued and norm
upper semi-continuous at the points of D. D

Although this characterisation enables our computation, it is somewhat
unsatisfactory in that it does not give us significant information about the
specific properties which identity GC spaces. When looking for a charac-
terisation of GC spaces, it is logical to look for a condition which includes
the sufficiency conditions which we have already given. A unifying condi-
tion can be found in the concept of fragmentability and its generalisation,
[Rl, p. 247].

Given a topological space X we say that a function λ : X x I - > R i s a
premetric on X if

(i) λ(x, y) > 0 for all x, y G X and
(ii) λ(x, y) = 0 if and only if x = y, [Sc, p. 225].
We define what we will call the λ-topology on X as follows. A subset U

of X is said to be λ-open if for every x0 G U there exists an r > 0 such that
{x G X : λ(x,x0) < r} C U. Given x0 G X and e > 0, a subset of the form
{x G X : λ(x,x0) < e} is fundamental in defining the λ-topology but it is
not necessarily λ-open. We say that λ fragments X if, given e > 0, for every
non-empty subset E of X there exists a relatively open subset U of E such
that

λ — diam([/) = sup{λ(:r, y) : x,y E U} < e.

We note that the λ-topology on a subset E of X is stronger than the

relative topology on E if for every x0 G E and open set W containing x0

there exists a δ > 0 such that {# G E : λ(α;, x0) < ^} Q W.
If a topological space X has a fragmenting premetric then there exists

a fragmenting metric on X, [Rl, p. 246]. A Banach space which has an
equivalent rotund norm has a fragmenting metric for its weak topology, [R2].
We recall that ^oo(N) can be equivalently renormed to be rotund but ^oo(Γ),
where Γ is uncountable, cannot, [D, p. 120; 123].

Theorem 2.7. A Banach space X is a GC space if it possesses a pre-
metric λ where every non-empty bounded set has slices of arbitrarily small
X-diameter, and where the X-topology on bounded sets is stronger than the
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weak topology.

Proof. Consider a weakly minimal locally bounded set-valued mapping Φ
from a complete metric space A into subsets of X. Given e > 0, consider the
set Oe = U{open sets V in A such that λ-diam Φ(V') < e}. Now Oe is open
in A] we show that it is dense in A. Consider any non-empty open set U in A
where Φ(U) is bounded. Then there is a slice of Φ{U) with λ-diameter less
than e. Since Φ is weakly minimal, there exists a non-empty open set V C U
such that Φ{V) lies inside this slice and so λ-diam Φ(V) < e. So Oe is dense
in A. Then D = f| Ox is a dense Gδ subset of A where Φ is single-valued.

nGN n

Since the λ-topology is stronger than the weak topology on bounded set, Φ
is single-valued and weakly continuous at the points of D. Now D is a dense
Gδ subset of the complete metric space A so D is completely metrisable,
[K-N, p. 96]. Then by Corollary 1.5 there exists a dense G$ subset E of D
and so of A where Φ|D is norm continuous . We conclude from Lemma 2.5
that Φ is single-valued and norm upper semi-continuous at the points of E,
Our result now follows from Theorem 2.6. D

We show that Theorem 2.7 includes Theorem 1.13. We do this using the
following premetric. Given a rotund normed linear space X and using the
notation [x,y] = {ax + (1 — a)y : 0 < a < 1}, we define the function
λ:IxI->Eby

\(x,y) = max{\\[x,y]\\} - min{||[z, j/]||},[Sc, p. 226].

Clearly, \(x,x) — 0. If x ψ y then by rotundity \(x,y) > max{||[,y]||} -
| | | x + y\\ > 0. So λ is a premetric on X.

We need the following properties of this premetric. Given x0 G X and
r > 0 we use the notation

Bx(x0',r) = {x E X : λ(x,x0) < r}.

Lemma 2.8. Given a rotund normed linear space X,

(i) \(Kx,y) < λ ( z , y ) + 2 | l - ί Γ H | 2 ; | | for all K φ 0 and x,y e X,

(ii) Bx(x; r) C (||x|| + r)B(X) for all x G X,

(iii) given x G X, for K > 1 and 0 < r < (K - l)| |x| |,

Bχ(x', r) C Bx(Kχ r + 2|1 - K| ||χ||) Π K\\x\\B(X).

Proof, (i) ForO < α < 1, ||aXa; + (l-a)i/|| < \\ax + (l-a)y\\+a\l-K\\\x\\,
< max{||[α;,y]||}+|l—iC| \\x\\. But also, | | α x + ( l - α ) y | | <

-K\\\x\l so min{\\[x,y}\\} < mm{\\[Kx,y]\\} + \l-
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HI Therefore, max{| |[i^,y] | |} - mm{\\[Kx,y)\\} < max{||[α;,y]||} -
{||[a:,y]||} + 2 | l - A Ί | | x | | .

(ii) and (iii) come directly from the definition of λ and (i). D

We notice that if X is a weakly locally uniformly rotund normed linear
space then given x0 G X, x0 φ 0 and e > 0 and / G X*, \\f\\ = 1, there
exists δ(e,x0,/) > 0 such that \f(xo — x)\ < \\xo\\e when x e \\xo\\B(X) and
||a; + zo|| > | |&o | | (2- ί ) . So if \(x,x0) < ||rco | |f and x G \\xo\\B(X) then

- | | x + xo|| > min{||[^,xo]||} > max{||[a;,a;o]||} - \\xo\\^

> IMI (i - ί )

so \\x + xo\\ > ||xo||(2 — δ) and it follows that \f(x0 — x)\ < H^olk

Propos i t ion 2.9. A Banach space X which has an equivalent weakly
locally uniformly rotund norm has a premetric λ where every non-empty
bounded subset of X has slices of arbitrarily small X-diameter and where the
λ-topology is stronger than the weak topology.

Proof. Consider X so renormed and the premetric λ defined above. Consider
a non-empty bounded subset A of X and write 5 = sup{||x| | : x G A}. If
s = 0 then it is trivially true. If s φ 0 then given e > 0 there exists an
/ e Γ , 11/11 = 1 such that the set E ΞΞ AnS{sB(X)J,e) φφ. For x,y G E
and writing r = max{||a;||, \\y\\} < s we note that x,y G S{rB(X), f,e+r — s)
and so λ-diami£ < e.

To show that the λ-topology is stronger than the weak topology it is
sufficient to show that each subbasic weak open set is λ-open. At 0 the norm
and λ-topologies agree so we consider neighbourhoods of x0 G X, Xo φ 0.
Given e > 0 consider the weak open subbasic set

W = {x E X : |/(a:) - f(xo)\ < 3e\\xo\\} where / € X*, \\f\\ = 1.

Now we have that there exists a δ(e,xo,f) > 0 such that \f(x0 — x)\ <
\\xo\\e when λ(x,a;o) < IWIf and x € ||α;o||-B(X). Choose 1 < K <

2 such that K — 1 < min< - , , i and then choose 0 < r <
18 |/(:roj| + l j

min {||aτo||f, (K — 1) | (rrr011} From Lemma 2.8(iii) we have that

Bχ(xo;r) C Bχ(Kx0;r + 2(K - l)\\xo\\) Π K\\xo\\B(X)

C Bx (Kxo;\\xo\\^\ Π K\\xo\\B(X)
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by the choice of K and r.

So Bχ(x0; r) C Bx(Kx0;K\\x0\\l)nK\\x0\\B(X). Therefore \f(Kxo-x)\ <
K\\xo\\e when x G Bx(x0]r). But then

- f(x)\ < \Hxo) - Kf(xo)\ + \f(Kx0) - f(x)\

<(K-l)\f(xo)\ + K\\xo\\e

<3e\\xo\\-

So Bχ(x0; r) C W and we conclude that the λ-topology is stronger than the

weak topology on X. D

It is straight forward to show that Theorem 2.7 includes Theorem 2.3.

This follows directly from the following lemma.

L e m m a 2.10. A Banach space X where there exists a weak * lower semi-
continuous norm | | | | | | on X** has the | | | \\\~topology stronger than the weak
topology on bounded subsets of X.

Proof. Consider a bounded subset A of X, x0 G A and a subbasic weak open

neighbourhood of x0 in A, W = {x G A : \f(x) — /(#o)| < e} for 6 > 0 and

/ G Γ , | | / | | = 1. Given r > 0 the closed ball J5|**.|||[xo;^] i s weak * closed

so Bj jf.mβo r] Π (A \ W) is weak * compact. If B^JXQ] %\n(A\W) φti

for all n G N then there exists an F G f| β m || |[ so; ~] ΓΊ (A \ W). But this

would contradict the fact that F φ x0. So there exists an r > 0 such that
B?njn(xo;r) C M7 and we conclude that the | | | |||-topology is stronger than
the weak topology on A. D

3. A Banach space which is not a GC space.

The Banach space ^ ( Γ ) , where Γ is uncountable, is not a GC space. To
show this we exhibit a complete metric space P and a weakly minimal, locally
bounded set-valued mapping Φ from P into subsets of ^ ( Γ ) where for each
p G P, Φ(p) is not singleton. Our argument is completed by an appeal to
the characterisation given in Theorem 2.6. The construction is based on an
example of Talagrand [Ta].

We denote by X the set of characteristic functions of countable subsets
of Γ with the topology of uniform convergence on countable subsets of Γ. A
base of neighbourhoods for x0 G X is given by sets of the form U{XQ, J) =
{x G X : x\j — XQ\J} where J is a countable subset of Γ.
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We use the technique of the Banach-Mazur game played on the topological
space X, [C, p. 115]. This is a game between two players a and β where
each player chooses alternately a non-empty open set contained in the other's
previously chosen set. Player β begins by choosing Uι. When β chooses Un

then a chooses Vn where Un D Vn\ when a chooses Vn then β chooses ί7n+i
where Vn D E/n+i. The sequence of open sets

Uλ D Vi D U2 2 V2 D • D Un 2 Vn 2

is called a play. The player a wins this play if f| Vn φ 0. The game is said

to be a-favourable if there exists a winning tactic by which a chooses Vn

dependent only on how β chooses Un so that α always wins.
Although the following lemma was proved in [Ta, p. 160], we will subse-

quently need to refer to the α-winning tactic used in our proof.

Lemma 3 1. The topological space X is a-favourable.

Proof. We define an α-tactic as follows:
For each open set U in X choose a point x E U and a basic neighbourhood

V = U{x, J) C U.

Each play, UΊ 2 Vi 2 U2 2 V2 2 * * • Ώ Un D Vn 2 generates a decreasing
sequence of basic neighbourhoods

Vi = U{xuΛ) 2 V2 = U(x2, J2)D-- Vn = U(xn, Jn) D • • • .

Clearly, Jn C J n + 1 for each n € N and each xn+i is an extension of xn\jn to
Jn+i So we can define a function x* on Γ as an extension of xn\jn for each
n G N on J Ξ |J Jn and zero on Γ \ J. Since J is countable, x* G X. But

also x* E Π U(xn, Jn) so we have an α-winning tactic. D

We note that U{x*,J) C p| U(xn,Jn) and C/(a:*, J) has infinitely many
nGN

elements.
In Lemma 3.1 we produced an α-winning tactic. We now consider the set

V of all plays

p = (Un,Vn) = U1DV1DU2DV2D"-DUnDVnD'-

which follow such an α-winning tactic, with metric p defined by

tP) — 0 f°r each p G ? and

P(P\P") — — where n is the first integer where U'n
Tί
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If for some n G N, U'n = U[[ then from the definition of the play for such an
a-winning tactic, V'n = V^'.

L e m m a 3.2. The metric space V is complete.

Proof. Consider a Cauchy sequence {pk = (£/"*, V^fe)} in V. Then for every
n G N there exists some kn > n such that £/*Λ — U^V^n = Vf whenever
1 < i < n and k > kn. So we can define a new play p* G V by

p* = (UΪr,Vf) and p(pk,p*) -> 0 as k -> oc.

D

A similar metric space was studied in [K-O, Prop. 2.1].
We now consider the natural embedding π of the topological space X into

the Banach space ^ ( Γ ) . For X\,X2 £ X-, X\ φ x2 we have that ||τr(xi) —
^(^2) I loo — 1 and so it is clear that this embedding is nowhere norm contin-
uous on X. However, the natural embedding π of X into ί^ (Γ) with its weak
topology is continuous at every point of X. We will establish this through
two preliminary lemmas.

Given x G X, we denote by s(x) the support of x\ that is, s(x) = {t G Γ :
x(t) — 1}. Our first result follows from Zorn's lemma.

L e m m a 3.3. Given f G ̂ ( Γ ) which is not identically zero on τr(X)

there exists a non-empty subset A of X which is maximal with respect to the

properties

(i) {s(x) : x G A} is disjoint family in Γ; that is, for Xι,x2 G A, X\ Φ x2

we have s(xι) Π s(x2) = 0, and

(ii) f{π(x)) Φ 0 for each x G A.

L e m m a 3.4. The set A is countable.

Proof. Given e > 0, consider the set Ae = {x G A : |/(π(α;))| > e}. Now
A = U Ax so it is sufficient to prove that for every e > 0, Ae is finite.

n<ΞN n

Suppose that for some r > 0, Ar is infinite. Then one of the sets A+ = {x G
A : f(π(x)) > r} oτ A~ = {x e A : f(π(x)) < —r} will be infinite. We may
suppose that A* is infinite. For any finite subset A' of A+ we have from
property (i) of Lemma 3.3 that ΣxeA' π(x) belongs to the closed unit ball
£(4o(Γ)). But f(ΣxeΛ'Φ)) = ΣxeA'f(Φ)) > \A'\r where \A'\ denotes
the number of elements in the finite set A'. But this implies that / is not
bounded on ̂ ( ^ ( Γ ) ) which contradicts the continuity of /. D

We are now in a position to establish our continuity property.
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Lemma 3.5. The natural embedding π of the topological space X into
^oo(Γ) with its weak topology is continuous at every point of X.

Proof. Consider / E ^ ( Γ ) . If / is identically zero on π(X) then the result is
obvious. Suppose / is not identically zero on ττ(X). Then from Lemma 3.4,

J* = [J{s(x) : x E A} is a countable subset of Γ.

Denote by x* the characteristic function of J* on Γ. For every x E X we
have x = x.x* + x.(l - x*), so f{π(x)) = f(π(x.x*)) + f{π{x.(l - x*))).
But s(x.(l - x*)) C s(x) Π (Γ \ J*) so x.(l - x*) E X \ A. Since A is
maximal with respect to properties (i) and (ii) of Lemma 3.3, we deduce that
f(π(x.(l - x*))) = 0. Therefore, f(π(x)) = f(π(x.x*)) for all x E X. Now
consider x0 E X and a basic neighbourhood U(xo, J*) For any # E U(x0^ J*)
we have x|j* = XO|J* sind so x.x* = x$.x*. Then f(π(x)) = f(π(x.x*)) =
f(π(xo.x*)) — f(π(x0)). This implies the required continuity of the natural
embedding π. D

We now consider the set-valued mapping Φ from P into subsets of ^oo(Γ)
defined for the play p = (Un,Vn) e V by

Φ(p) = Π π(ε/ n ) = Π π(Vn).
nGN nGN

It is this set-valued mapping which establishes that ^ ( Γ ) is not a GC space.

Theorem 3.6. The set-valued mapping Φ from V into subsets of ί^Y) is
weakly minimal, locally bounded and for each p £V, Φ(p) is not singleton.

Proof. Clearly, for each p£V, Φ(p) C ^ ( ^ ( Γ ) ) . For each play p=(Un,Vn)
we note from Lemma 3.1 that the set Ep = f| Un — f) Vn is a subset of X

n<ΞN nGN

which contains more than one point. So for each p G P , Φ(p) — Π π{Un) is
nGN

not singleton.
Consider / E ^o(Γ) generating a weak open half-space W in ^ ( Γ ) and

play p° = (U°, Vn°) E P such that x° E Φ(p°) Π W. Now by Lemma 3.5, the
natural embedding π of X into ^oo(Γ) is weakly continuous so π~1(W) is a
non-empty open subset of X. Given δ > 0 and n 0 E N such that n 0 > |
consider any play p' = (C/;, KJ E P such that C// - ί/̂ , V( = V;° for all
1 < i < n 0 and U'no+ι = i7^o+1 Π π " 1 ^ ) . Now ρ{p',p°) < ± < δ. But since
π (^n 0 +i) Q Ŵ  we have Φ(p') C VF. So Φ is weakly minimal. tH

Note added in proof
Professor Isaac Namioka has recently given an example to show that ί^ (N)
is not a GC space.
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