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SUBALGEBRAS OF LITTLE LIPSCHITZ ALGEBRAS

NIK WEAVER

We present a version of the Stone-Weierstrass theorem for
lip(X) and use it to characterize the closed subalgebras of
lip(X) which contain the constant functions.

Let X be a compact metric space. Then the Lipschitz space Lip(X) is
the Banach space of all real-valued Lipschitz functions on X with the norm

where

m = sup \ΰ?\ψ

is the Lipschitz number of /.
Let X be the disjoint union of X (as a topological space) and the space

X2 -{(x,x) :xeX}

and define a linear map Φ : Lip(X) -> Cb(X) (= the bounded continuous
real-valued functions on X) by Φ/(#) = f(x) and

This map is an isometry. The little Lipschitz space lip(X) is then defined
to be the subspace of Lip(X) consisting of those functions / with the prop-
erty that for every e > 0 there exists δ > 0 such that ρ(x,y) < δ implies
\Φf(x,y)\ < e. It is easy to check that lip(X) = φ-ι(C0(X)).

All of our results hold for complex as well as real scalars, provided that
in the complex case one assumes all subalgebras under discussion are self-
adjoint (i.e. if / G Λ then / G Λ). Thus the restriction to real scalars is
simply a convenience.

The purpose of this paper is to investigate the structure of closed subal-
gebras of lip(X) which contain the constant functions. It is known ([Sh], p.
249; [He], Corollaries 1 and 2) that there can exist such subalgebras which
separate points but are not equal to lip(X), so that a naive version of the
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Stone-Weierstrass theorem fails to hold. However, Hedberg ([He], Theo-
rem 1) showed that for a certain type of metric space X a sort of "locally
uniform" separation property suffices to imply the desired conclusion. We
discuss this result, and related results due to Bade-Curtis-Dales and Hanin,
following Theorem 1.4 below.

The Stone-Weierstrass theorem allows one to easily characterize the closed
subalgebras of C(X) for compact Hausdorίf spaces X ([St], Theorem 5): for
any closed subalgebra A of C(X) which contains the constant functions,
there is an equivalence relation on X such that A is naturally isometrically
isomorphic to C(Y), where Y is the topological quotient. In contrast, us-
ing the "pseudo" Stone-Weierstrass theorem to determine the structure of
subalgebras of lip(X) is surprisingly nontrivial. This result (Theorem 3.4,
the main theorem of this paper) states that for every closed subalgebra A
of lip(X) which contains the constant functions, there exists a nonexpansive
image Y of X such that A is naturally isometrically isomorphic to lip(F).
(See the start of §3 for the exact definition of Y.)

I wish to thank the referee for suggesting a way to simplify the exposition
of §1 as well as several other improvements. This material is based upon
work supported under a National Science Foundation graduate fellowship.

1. The pseudo Stone-Weierstrass theorem.

In this section we present a version of the Stone-Weierstrass theorem for
little Lipschitz algebras (Theorem 1.5). Most of the results of this section
have already appeared elsewhere in some form; furthermore, our pseudo
Stone-Weierstrass theorem is closely related to results in [BCD] and [He].
Thus no great novelty is claimed here. However, from the point of view of
applications, we feel that our version of the result is the simplest to use; we
give an example to illustrate this point at the end of the section. We also
use it in §3.

The following proposition is standard (e.g. see [Sh], §1.1).

Proposition 1.1. Let X be a compact metric space. Then lip(X) is a closed
subalgebra of Lip(X) which contains the constant functions.

We write A < lip(̂ Γ) to indicate that A is a closed subalgebra of lip(X)
which contains the constant functions. The next proposition is essentially
([He], Lemma 2). (That result is stated for the case where the metric oLX
is of the form pa for some metric p and a G (0,1); but the proof is also valid
for a = 1, i.e. the general case.)

Proposition 1.2. Let X be a compact metric space and let A < lip(Jf).
Then A is a sublattice o/Lip(X).
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A proof of Proposition 1.2 which is possibly simpler than that given in
[He] goes as follows. Note first that since / V g — (f + g + \f — ί?|)/2 and
fλg = (f+g — \f — g|)/2, it suffices to show that |/ | G A whenever / G A.
Wlog we may assume that | | / | | L < l Now the derivative g of the function
G : x t-> \x\ on [—1,1] is a step function; approximate it in L1 norm by a
polynomial h such that ||/ι||oo < l Let H — J h and observe that H is a
polynomial, hence H o f £ A, and that \\G — ϋ~||oo is small. Finally show
that H o f approximates G o / — |/| in Lipschitz norm, hence |/ | G A. (In
the last step, use the fact that (G-H)of has small Lipschitz number, since
||G - ϋΊU is small and / G lip(X) )

We mentioned in the introduction that to get a Stone-Weierstrass type
theorem we have to set some kind of uniform separation condition on A.
The relevant condition is the following:

there exists a > 1 such that for any rr, y G X? some f G A
satisfies \\f\\L < a and \f(x) - f(y)\ = p{x,y).

We say that A has the separation property if it satisfies this condition.
The next result gives an equivalent formulation of the separation property.

A more general form of this result appears as Proposition 3.1 of [Wl]. Note
that the proposition relies on the fact that joins and meets do not increase
the norm, i.e.

and similarly for / Λ g. (See [W2] for a full discussion of the rich interplay
between lattice structure and norm in Lipschitz spaces.)

Proposition 1.3. Let X be a compact metric space and let A < lip(X).
Then A has the separation property if and only if there exists b > 1 such
that for any g G Lip(X) and finite subset S C X, some f G A satisfies
II/IIL < b- \\g\\L and f\s = g\s-

Proof. =>) Suppose A has the separation property for some a > 1 and
let S C X be a finite subset and g G Lip(X). Wlog suppose | |^ | |L — l
Then for each pair of distinct elements x, y G S we can use the separation
property to find a function / G A such that | | / | | L < Q> and \f(x) — f{y)\ —
\g(x) — g{y)\, since the latter is < p(x,y). Multiplying / by ±1 we may
assume f(x) — f(y) — g(x) — g(y). Now define

fxy(z) = ((/(z) + g(x) - /(*)) Λ 1) V - 1 .

In other words, shift / so that it agrees with g at x and y, and then truncate
at ±1. Then fxy belongs to A by Proposition 1.2 and satisfies fxy(x) = g(x),
fxy{y) = g(y), and \\fxy\\L < a- Finally let

/ == V /\ Jχy:>

xes yes
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this also belongs to A by Proposition 1.2, it agrees with g on £, and it
satisfies | |/ | |L <a = a- \\g\\L.

<=) Suppose that the condition given in the statement of the proposition
holds and let x,y E X. Extend the function x \-ϊ p(x,y)/2, y ι-> —p(x,y)/2
to a function g E L'ψ(X) with \\g\\L < max(l,p(a;,y)/2) (see Theorem 1 of
[Me] for the required extension theorem). Then apply the assumed condition
with S = {α,y}; weget/ eA such that \f(x)-f(y)\ = \g(x)~g(y)\ = p(x,y)
and

\\f\\L<b \\g\\L<b.max(l,Δ(X)/2),

where Δ(X) denotes the diameter of X. As the right side is independent of
x and ?/, this completes the proof. D

By Theorem 3.6 of [BCD], if the metric of X is of the form pα and A
is a closed subspace of lip(X) which satisfies the condition in Proposition
1.3, then A = lip(^0 This result easily generalizes to arbitrary compact
metrics ([Ha], Theorem 3); from the general result and Proposition 1.3 we
immediately obtain the following theorem.

Theorem 1.4 (pseudo Stone-Weierstrass). Let X be α compact metric space
and suppose A < lip(^) has the separation property. Then A = lip(X).

This theorem is only meaningful in the case that lip(X) itself has the
separation property. In general the right condition on A is that there should
exist a constant c > 1 such that for any x, y E X and any g E lip(X), some
/ € .4 satisfies ||/| |L < c-\\g\\L and \f(p)-f(q)\ = \g{p)-g(q)\. UΛ < lippQ
has this property then Λ = lip(X); one can prove this by arguments similar
to those used to prove Theorem 1.4 or else as an easy corollary to Theorem
3.4 below.

We have already seen the close relation between Theorem 1.4 and results
of [BCD]. In addition, Hedberg ([He], Theorem 1) proved a related theorem
in the case that X has a metric of the form pa for some metric p and a E
(0,1). There our separation property was replaced by a more complicated
but equivalent "local" version, which can be formulated as follows:

Λ separates points, and for every x E X there exist numbers
Mx,δx > 0 such that for every y within δx of x there exists f E Λ
with \f(x) — f{y)\ — pi^iV) and such that \Φf(w,z)\ < Mx for
all w,z within the ball of radius ρ(x,y) about x.

It is clear that our global property implies the local property: just take
Mx — a for all x and choose δx arbitrarily. For the converse, suppose the
global property fails and for each n choose xn,yn E X such that for / E A,
\f{xn) - f(yn)\ = p{xn,yn) implies | |/ | |L > n. Let (x,y) be a cluster point
of the sequence (xn,yn) C X x X\ it is then easy to see that if x φ y
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then the existence of / E Λ such that f(x) φ f(y) leads to a contradiction,
while x = y more directly contradicts the local property. Thus Hedberg's
separation property is equivalent to ours, as claimed.

According to ([Ha], Theorem 1), lip(X)** is isometrically isomorphic to
Lip(Jί) by the natural map if and only if lip(X) satisfies the condition given
in Proposition 1.3 for all b > 1. The forward direction is a simple application
of weak* density of the unit ball (Goldstine's theorem), and one can similarly
draw the conclusion that lip(X) has the separation property for all a > 1.
Interestingly, however, by an obvious generalization of ([BCD], Theorem
3.5) one can show that the reverse direction of Hanin's theorem only requires
satisfaction for some b > 1 (or equivalently, for some a > 1). Thus, in
general, satisfaction for some constant implies satisfaction for all constants
and is equivalent to the above duality statement.

In the case of complex scalars the argument of the preceding paragraph
carries over without alteration. This circumstance is somewhat mysterious
since typically one is only able to directly check satisfaction for b > Λ/2.
Thus, to get the duality result a [BCD]-type argument is needed in the
complex case even though the much simpler argument of [Ha] suffices for
the real case.

To illustrate the utility of the pseudo Stone-Weierstrass theorem, we now
use it to give a quick proof of the important result ([BCD], Corollary 3.7).

Corollary 1.5. Let X be a compact metric space and let a E (0,1). Let Xa

be the set X together with the metric pa. Then Lip(X) is dense in lip(Xα).

Proof. The fact that Lip(X) C lippΓ"*) is well-known and easy. We show
that the closure of Lip(X) in lip(Xα) has the separation property with a —
2 • max(l, Δ(Xα)), where A(Xa) denotes the diameter of Xa. Fix x, y E X
and define

f(z) = 2(pa(x,z)-pa(x,y)/2)V0.

Then the norm of / as an element of Lip(Xα) is < a and |/(a;) — f(y)\ =

pa(χ,y)
To show / G Lip(X), define g 6 Lip(X) by g(z) = p(x, z) and h : R ->• R

by
h(t) = 2(ta-pa(x,y))V0.

Then h is Lipschitz on the interval [0, A(Xa)] since it is piecewise differen-
tiable with bounded derivative. Since / = hog this implies that / G Lip(X) *
as desired. D

Note that Corollary 1.5 implies that lip(Xa) has the separation property
([BCD], Lemma 3.3).
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2. Quotients of metric spaces.

In this section we collect some fairly trivial material on quotients of metric
spaces. Here we do not require compactness.

Let ~ be an equivalence relation on a metric space X. We shall now
describe a "quotient" metric space with a certain universal property. It will
be constructed by first defining a "quotient pseudo-metric" on X, then iden-
tifying elements to get a metric space. We need the following terminology:
for / : X -> Y and any pseudo-metric p' on X, we say that / (resp. p')
respects ~ if x ~ y implies f(x) — f(y) (resp. ρ'(x,y) — 0).

Our first candidate for a quotient pseudo-metric is defined as follows. Let
Px be the set of all pseudo-metrics p' on X which respect ~ and which
satisfy p'{x,y) < p{x,y) for all x,y G X. (As usual, p is the original metric
on X.) Then define the pseudo-metric p2 by

Pxix.y) = sup{p'(z,y) : p1 G Px}.

Similarly, let Fx be the set of all nonexpansive functions / : X —> R
which respect ~, and define another possible quotient pseudo-metric p2 by

p2(x,y)=snp{\f(x)-f(y)\:fEFx}.

Finally, we have the following third candidate. For rr, y G X let a chain
from x to y be a finite sequence #i, j/i,... , xn > y n of elements of X such that
x1 ~ x, yn ~ y, and yι ~ x i + 1 for 1 < i < n. Let Cxy be the set of all chains
from x to y. Then define /53 by

Ps(x,y) = inf{p(xuyι) + ... + p(xn,yn) : (xuyu... ,xn,yn) €Cxy}.

We call the number p(xuy1) + . . . + p(xn, yn) the length of the chain.
It is fairly easy to see that pi, p2, and ρ3 are pseudo-metrics on X which

respect ~; we leave this task to the reader. In fact, they are all actually the
same pseudo-metric.

Proposition 2.1. Let X be a metric space and let ~ be an equivalence
relation on X. Then the pseudo-metrics p 1 ; p2; and Pz defined above are all
equal.

Proof. Let rr, y G X.
Pi(#,y) <ί P2(α;,y): F° r a n y p' ̂  -PY? the function / : X —» R defined by

f(x) = pf(x,y) belongs to Fx and satisfies

\f(x)-f(y)\=p'(x,y).

Hence every number in the sup which defines px (#, y) is also in the sup which
defines p2(x,y), so pι{x,y) < ρ2(z,y).
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f>2(x,y) < P3(x,y) Let f £ Fx and let xuylj... ,xn,yn be a chain from

x to y. Then since / respects ~ we have f{x) = f(x\), f(y) = /(yn)>
/(^*+i) for 1 < i < n. So

- f(y)\ < |/(*i) ~ f(Vi)\ + + \f(xn) ~ f(Vn)\

ι) + ...+p(χn,yn)

(The last inequality holds because / is nonexpansive.) Thus every number
in the sup which defines p2(x,y) is < every number in the inf which defines
Pz(χ,y), so p2(χ,y) < p3(z,y).

Pz(x > y) < Pi (a;, y): We know that p3 is a pseudo-metric on X that respects
~, and it is clear that p3 G F j . Thus p3(x,y) belongs to the sup which
defines pi(#, y), so that p3(x,y) < βι(x^y) as desired. This completes the
proof. D

Let X be the set X modulo the equivalence relation which sets two ele-
ments equal if their pi -distance is zero. Note that this equivalence relation
may be strictly stronger than ~; this certainly happens if ~ is not closed
(i.e. not a closed subset of X x X), but, as the reader may check, there also
exist counterexamples even when ~ is closed and X is compact.

The pseudo-metric p\ = p2 = Pz defines a metric on X\ we call the
resulting metric space the metric quotient of X by ~.

For any map / between metric spaces (X, p) and (Y, σ), we define L(f) =
supσ(/(x),/(y))/p(x,y). This agrees with the definition we gave earlier of
L(f) for maps into R. Now X has the following universal property.

Proposition 2.2. Let (X,p) and^(Y,σ) be metric spaces, let ~ be an equiv-
alence relation on X, and let X be the metric quotient of X by ~. If
f : X —>> Y is a Lipschitz function which respects ~ ; then its lift f : X —» Y
is α Lipschitz function and satisfies L(f) = £(/).

Proof. First define a pseudo-metric p; on X by setting

Then p' E F x and this shows that the lifted map / is well-defined.
L(f) > L(f) since p2(x,y) < ρ{x,y) for all x,y G X. The converse

inequality will show that / is Lipschitz and complete the proof.
Let #, y G X and consider the map g : X -> R defined by

( J "
Now g E Fx, so

σ(f(χ),f(y))
\g(χ) -g(y)\ =

L(f)
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that is, σ(f(x)J(y)) < L(f) p2{x,y). This shows that L(f) < L(f) as
desired. •

3. Subalgebras of lip(X).

Let A < lip(X). Then for x,y G X we define x ~ y if f(x) = /(y) for all
f £ A, and we define X^ to be the set X/~ with metric given by

PA([X], M) = sup{|/(x) - f(y)\ :fEΛ, \\f\\L < 1}.

We now aim to show that A is naturally isometrically isomorphic to lip(X^);
we do this in Theorem 3.4.

Note that it is generally not true that A is naturally isometrically isomor-
phic to lip(X), where X is the metric quotient by ~. This even fails in the
case that A separates points, i.e. X — X; see ([He], Corollaries 1 and 2) for
a method of constructing counterexamples.

We mention that Lip spaces can be defined for noncompact metric spaces
and that the following theorem remains true for noncompact X.

Lemma 3.1. Let X be a compact metric space and let ~ be an equivalence
relation on X. Let X be the metric quotient of X by ~ and let π : X —> X be
the natural map. Then the map Tπ : / f-» / o π isometrically embeds L'ιp(X)
into Lip(X).

Proof. Let / £ Lip(X); it is clear that ||/||oo — ll^π/lloo Since π is nonex-
pansive, L(Tπ/) < L(f). For the converse inequality, let a — L(Tπf). Then
L(Tnf/a) = 1 and so Tπf/a G F x ; thus for all x,y G X

Λfoy) > \(Tπf/a)(x) - (Tπf/a)(y)\ = \f([x]) - f([y])\/a.

That is, \f([x]) ~ f([y])\ < a p2(x,y). This shows that L(f) <a = L(Tπf).
We conclude that | |/ | |L = | |T π / | | L , so that Tπ is an isometry. D

Lemma 3.2. Let X, ~, X, π, and Tn be as in Lemma 3.1. Then

Tπ(Lip(X)) Π lip(X) C Tπ(lip(X)).

Proof. Let / E lip(X) and suppose / = Tπ(g) for some g G Lip(X); this
implies that / respects ~ and that g = fr, the lift of / to X. We will show
/Glip(X). Let e > 0.

Find δ > 0 such that p(x,y) < δ implies \f(x) — f{y)\ < e ρ{x,y),
and choose x,y G X such that p3(x,y) < δ. For any α G R such that
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/33(α;, y) < a < δ, find a chain #1, y l 5 . . . , # n , ?/n from rr to y whose length is
< a. Then p{xi,yi) < a < δ for 1 < i < n, hence

< \f(χχ) - /(i/OI + + |/(χn) - f(yn)\

< e p(xi, 3/1) + ... + e p(xn, yn)

<ea.

Since this holds for all a with ps(x,y) < a < δ, we conclude that
/ < e ρ3(x,y). Thus we have shown that p3(x,y) < δ implies

/ D

Lemma 3.3. Let X be a compact metric space and suppose Λ < lip(̂ sΓ) sep-
arates points. Let Y be the set X with the metric p^ Then Λ is isometrically
contained in lip(y).

Proof. Let / G Λ and let /' denote the same map with domain Y. Then
obviously ||/||oo = ll/'lloo; L(f) < L(f') since the identity map from X to Y
is nonexpansive; and L(f) > L(ff) by the definition of PA- SO ||/||χ, = | | / ; | | L

This shows that Λ is isometrically contained in Lip(y).
Now we must show Λ C lip(^). Let / G Λ\ we may assume | |/ | |L = 1.

Let 0 < e < 1.
FindO < δ < 1 such that p(x,y) < δ implies \f(x)-f(y)\ < e p(x,y). We

claim that there exists δ' > 0 such that PA(%, y) < δ1 implies p(x, y) < eδ. For
if not then we could find a sequence {xn^yn) C X2 such that ρ{xn,yn) > eδ
for all n and pA^n^Vn) -> 0. Taking a convergent subsequence (xnk,ynk) —>
(a:, y), we get PA(XI y) — 0 a n ( l p(χ, y) Φ 05 which contradicts the assumption
that Λ separates points.

We now claim that for any x, y G X, PA{X->y) < δ1 implies \f{x) — f(y)\ <
e pΛ(Xjy)] this will establish that / G lip(^) and complete the proof. To
verify this claim, suppose x,y G X satisfy pΛ(x^y) < δ1. Then

\f(χ)-f(y)\<p(x,y)<eδ.

Without loss of generality suppose f(x) > f(y) and define

this is in Λ by Proposition 1.2. Note that

iΐg(z)<f(y)

if f(y) < g(z) < f(χ)

iΐg(z)>f(χ).
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Now for any xf,y' G X, if p(x',y') < δ then

\Φg(x',y')\<\Φf(x',y')\<e;

and if p(x',y') > δ then

W) - 9(y')\ < \f(x) - f(υ)\ <eδ<e

hence again \Φg(x',y')\ < e. So L(g) < e, and also

Thus \\g\\L < e, so we get

PΛ(X,V) > \g(χ) -g{v)\/e = \f(χ) -

as desired. D

Theorem 3.4. Let X be a compact metric space, let A < lip(X), and let
π : X —> XA be the natural projection. Then Tπ : f H* / o π takes lip(X^)
isometrically onto A.

Proof. Set x ~ y iff f(x) = f(y) for all f E A and let X be the metric
quotient of X by ~. Then X and XΛ have the same underlying set (i.e.
in this case the equivalence relation determined by p\ coincides with ~)
and we may also consider π as a map from X onto X. Since every func-
tion in A respects ~, Proposition 2.2 implies that A C Tπ(Lip(X)). Since
Tπ : Lip(X) —> Lip(X) is an isometry by Lemma 3.1 it therefore suffices to
show that T~ι(A) C Lip(X) is isometrically isomorphic to lip(JΓ^) (via the
identity map).
_ By Lemma 3.2, T'^A) C lip(-Y), so that (with T'^A) in place of A and

X in place of X) this reduces us to the case where A separates points and
π : X —> Xj[ is the identity. In this case Lemma 3.3 shows that A C lip(XvΛ)
isometrically. It is clear from the definition of p^ that A has the separation
property for XΛ for any α > 1, so we finally get A = lip(X^) by the pseudo
Stone-Weierstrass theorem. D
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