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ON RICCI DEFORMATION OF A RIEMANNIAN METRIC

ON MANIFOLD WITH BOUNDARY

YlNG SHEN

In this paper, we applied Hamilton's Ricci flow to study the
metric deformation on Riemannian manifolds with boundary.
We proved a short time existence theorem for manifold with
umbilical boundary. We also derived the Simons' identity for
the boundary under the Ricci flow. And as a corollary, we
show that any three-manifold with totally geodesic boundary
which admits positive Ricci curvature can be deformed to a
space form with totally geodesic boundary.

1. Introduction.

In 1982, R.S. Hamilton [Ham] introduced an evolution equation method

which is called the Ricci flow, and he proved that every closed three-dimen-

sional Riemannian manifold with strictly positive Ricci curvature admits a

metric of constant positive curvature. His work immediately brought many

mathematicians to the study of Ricci flow and other evolution equations

arising from differential geometry such as mean curvature flow, Yamabe

flow, Yang-Mills flow and curve-shortening. A large number of nice results in

geometry and partial differential equations have been obtained since then.

In this work, we study the deformation of a Riemannian metric on a

compact manifold with boundary via Hamilton's Ricci flow. From the ana-

lytic point of view, Ricci deformation of a given closed Riemannian manifold

is a Cauchy problem. Therefore, it is natural to consider boundary value

problems for the Ricci flow. In this paper, we only restrict ourselves to the

Neuman boundary value problem. The Dirichlet boundary value problem

and the mixed boundary value problem will be studied in the forthcoming

papers.

We remark that the boundary conditions for the Ricci flow are quite sub-

tle. By looking at the evolution equations

(1.1) —gτj =

203
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one might try to impose n\n~1) functions on the boundary and expect to
obtain some geometric theorems from the resulting boundary value problem.
It turns out that this is not possible. Unfortunately, we generally do not even
have the short time solution of the boundary value problem mentioned above
due to the fact that the equality

(1.2) ^ ( R i φ ) ) = R i c ( ^ ( f f ) )

holds for any diffeomorphism φ on M. Therefore, one should carefully study
the geometry of the boundary in order to set up a well-posed boundary value
problem.

Let (M, g) be an n-dimensional manifold. We adopt the convention that
Latin indices range from 1 to n, while Greek indices range from 1 to n-1.
Now suppose that the boundary dM ψ 0. Let h — (haβ) be the second
fundamental form of dM in M. We need the following definition:

Definition. We say that dM is weakly umbilical in M if the identity

(1.3) haβ = Xgaβ

holds on dM, where λ is a constant.

In case the constant λ = 0, we say that dM is totally geodesic.
Now we are going to state our main result in the paper.

o

Theorem 1. For any given Riemannian manifold (M, g), there is a short

time solution to the following equations:

' §-tgiά (x,t) = -2Rij (x,t) xeM

gij{x,0) =9i:j {x) x e M

<haβ(x,t) = \gap{x,t) x e dM.

Theorem 2. Let (M, #) be a compact three-dimentional Riemannian man-
ifold with totally geodesic boundary and with positive Ricci curvature. Then
(M,g) can be deformed to (M^g^) via the Ricci flow such that (M^g^) has
constant positive curvature and totally geodesic boundary.

Our proof will be presented in the following three sections. Section 2
will be devoted to showing the short time existence for the Ricci flow with
Neuman boundary data. In Section 3, we derive a parabolic version of
Simons' identity [Sim]. And we will give our proof of the long time existence
and convergence of the Ricci flow in Section 4.

We remark that Theorem 2 can also be proved by doubling the manifold

and then applied Hamilton's result on closed three manifold.
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2. Short time existence.
o

Let (M, g) be a given Riemannian manifold with weakly umbilical boundary
such that on dM:

o o

Λ=λ0,
o

where g is the fundamental form and λ be a constant. We are going to solve
the following system:

(2.4) \gij(χ,0)=ogij(χ) xeM

haβ(x, t) = \gaβ(x, t) x e dM

As is well-known, this system is not strictly parabolic. Therefore, we use
DeTurck's trick (see also [Sc] and [Shi]) to relate system (2.4) to a modified
system which is strictly parabolic with boundary and initial data that satisfy
the necessary "complimentary conditions"(see [Lady]).

Before we introduce the new system, we need the following lemma:

L e m m a 2.1. Let g be any background metric on M with Ricci curvature
Ric , then we have

(2.5) - 2 Ric +2Ric = T(g) - Lxg.

Where X is the tension field of the identity map from (M,g) to (M,g)7 the
covariant derivative ζ \' is taken with respect to g and

(2.6) Tij(g)=gklgijlkl+qij,

where qij involves only the lower order terms.

Proof. We use Γ^ and Γ^ to denote the Christoffel symbols of g and g,
respectively. Then we have

(2-7) Rij = Γ* ,k - Tk

ki,j + Tk

klΓ
ι

tj - Γ'WΓ*

and

where' ,' denotes the partial derivative and repeated indices are summed.
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Since

is a well-defined tensor, we have

j !A. - I?*.-^ + BklB{j - BβBki
(2.9)

where Q is the two tensor that consists only of the lower order terms of g
with coefficients involving g and its derivatives.

Define the vector field such that its components are given by

(2.10)
* - • » •

xk =

Now we can easily finish the rest of the proof.
We would like to mention that the vector field X can also be written as

k _ ik •*• ik ab

— 9 \i - 2# 9
_ ij (γ*k ~nk \

ab\i — 9 \Lij ~ L ij)9a

So it is the tension field of the identity map.
Now we are going to solve the following modified system:

(2.11)

'§-tgij(x,t) - Tiά(x,t) - 2Rij{x,t)

9ij{x,0) =9ij (x)

haβ{x, t) = \gaβ{x, t)

9na(x,t) = 0

Xn(x,t) = 0

xeM

xeM

x G dM

xedM

xedM.

Since dM is a hypersurface in M, we can choose a local coordinate chart
around a given point x G dM such that {^r} form basis for TxdM and ^
is transversal to TxdM. Therefore, it is easy to check that

d
en — (gnn)i dx*

is the unit vector that is normal to TxdM in a small neighborhood of x.

Hence the second fundamental form of (dM,g\dM) in (M,g) is

(2.12) -τ(9ia\β + 9iβ\a — 9aβ\i)
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The given boundary condition gna = 0 implies that gnoc = 0 and

(2-13) haβ

By definition, we know that

(2.14) xn = gii9nk

9ni\j ~ ^9ij\

29 9 9 a β l n 2^9 ' 9nn]n'

Hence the condition Xn — 0 is equivalent to

Therefore, system (2.11) is equivalent to

' §-t9ij (x, t) = Tij (x, t) - 2Rij (x, t)

(2.15)

{gnn)

λ

x e M
x £ M

x e dM

xedM

xedM.

Now we see immediately that (2.15) has a short time solution, and so does
(2.11).

Let g(x, t) be a solution of (2.11), then the ordinary differential equations

( 2 . 1 6 ) «™^

[0o = id

determines a one-parameter family of diffeomorphism y — φt(x) and

for small ί, where id denotes the identity map on M and the vector field X
has components Xh for k = 1,2, , n as defined by Lemma 2.1.

Let g(y,t) = (φ^1)*(g(xJt))^ then we can easily check that

(2.17) - Lx(g)
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Let h be the second fundamental form of (5M,g\βM) m {M,g), then we
have

(2.18) haβ = ((φ-1rW)aβ = λ9aβ

from the fact that Xn = 0 on dM. Therefore, we have proved that (2.4) has
a short time solution. •

3. A parabolic version of Simons' identity.

In this section, we set up the Simons-type identity which is of its own in-
terest to study other boundary value problems for the Ricci flow. Since
the metric is changing as time evolves, the orthonormal basis that we use
in the study of submanifolds will not be time independent and hence the
moving frame method should be applied carefully. We are going to derive
our evolution equation for the fundamental form of the boundary by using
a non-orthogonal moving frame.

We remark here that the formula that we establish in this section also
applies to any hypersurface in M.

The evolution we consider is | | = — 2Ric(#) + 2c(t)g, where c(t) is any
function of t. Let {ei,e2, ,en} be any moving frame such that, restriced
to <9M, the vectors βi, e2, , en_i are tangent to dM. By choosing the unit
normal

gnieι

we can easily check that

(3.19) haβ = (#nn)~^Γα/3

Therefore,

(3.20)

£ * - - ( l ( 9 "" r

r>nn 1

™h«0 + n(9nn)~*9ni(gaiφ + Uβi;a ~ fjaβ i) + c(t)haβ

9 Δ

r>nn QΠΪ
^Γ^ α 0 "" ( nn\\ (Riatf ~*~ R*β\<* ~ ^aβ ti) +

If we denote Rήa — Λ(en,eα), then we have by straight forward compu-
tation:

gfli

τ{Ria;β + Riβ ot + Raβ i) = Rfia β + Rfiβ a ~ Raβ ή-
2(gnn)
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So
β innn

(3.22) -^l^ocβ — 7^~haβ — {Rήa β + Rήβ a ~ Raβ ή) + c(t)haβ.

ot g

Now for a fixed time t, we may assume, without loss of generality, en = en

and take {ω1, ,ω n } as the dual frame of {βi, , en}.Then ωn = 0 on dMt.

If we denote Rijki and KaβΊ$ as curvature tensors of M and dM respec-

tively, then we have the following structure equations

dωι = — ωι- A ωj

(3.23) ( WjkiUkωι = Ω^ = dω) +ω\A ω)

and

(3.24)

where Ω^ and Θ^ are curvature forms of M and dM respectively. We know,

when restricting to 3M,

(3.25) 0 — dωn = — ω" Λ c*;α,

so Cartan's lemma implies: ω™ = haβω^', /i/3α = /ια/3 and

is just the second fundamental form of dM.

Since Dei = ω{ej and g(en, eQ) = 0, we have

(3.26) 0 = D{g{en, ea)) = ff(^ei? eα) + s(e n , <

hence

(3.27) ϋ£ = - α ; ^

or

(3.28) ω^ = - f f £ α # - -gβ

ahβΊω\

From the structure equations, we also have

(3.29) -Rβδω
yω --Kβδω

rω +ω n Λω
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Therefore

(3.30) Ka

0yS = Ra

0ΊS - gar>hηδh0δ + gar>hηΊh0δ.

Now exterior differentiate

We have

(3.31) dω°a = - ω ? Λ α/α + ^Rn

aβΊω
β A ωΊ

and

(3.32) dih^ω0) = dΛα/? Λ u / - /iα/3α;^ Λ α;7.

Define

(3.33) haβΊω
Ί = i?Λα/j = ^Λα/3 — haΊω

Ί

β —

then we have

(3.34)

which implies

(3.35)

or

Next, we differentiate

haβΊω
Ί = dhaβ — hayω

Ί

β — hβΊω
Ί

a

and define

^«j.«J< j '^aβ'yδ^ — U"J<xβ'Ί — ^**^α/?7 — ^<^/?7 α — "ΌL&'Ί β —

Then
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Also, by restricting the covariant derivative of RaβΊδ to M, we have

(3.39) Rnaβη δ = R naβjδ ~~ Rnan'yhβs — Rnaβnh>jδ + R^β^ηδ-)

where RnaβΊδ is defined by

(3.40) Rnaβyδω = dRnθLβΊ ~ RnδβΊ

ω

a ~ R"naδyω β ~ Rnaβδωy

Now we have

(3.41) Aha0 = gΊδhaβΊδ = gΊδ{KΊβδ - RnaβΊδ)

= 9Ί

By applying equation (3.38) and the Codazzi equation (3.36), we have

(3.42) hΊaβS — hΊSaβ — RnΊaδβ + ^aβ-y^ΉΊ + ^γβδ^ηa-

So

(3.43)

Ahaβ = Haβ — gΊ {Rnyaδ β + Rnaβr,δ) + 9* i^lβδ^VΊ + ^βδ^ηa)5

where the scalar i ϊ = ga(3haβ is the mean curvature of dM.

Using equations (3.30) and (3.42), we then obtain:

(3.44)

= Haβ — ̂ 7 (Rnjaδ β + Rnaβy δ) ~ \HRnaβn

+ (hlhηβH

We can also derive, by a straightforward computation, that

(3.45) Raβ n = Rnβ a ~ 9Ί Rnaβ-y δ + Ranβn n

So we have

(3.46)

o

TΓlh'aβ — —Rnnhaβ ~ R<xn;β + Raβ n ~ R nβ a + chaβ

at = {~Rnnhaβ + Ranβn n ~ Rnaφ) ~

= Ahaβ — Haβ + HRnaβn — gΊ \RΊOίδhηβ + Ryβδhηa

+2Rη

aβΊhηδ) - hη

ahη0H + hΊηh^haβ + Ranβn;n + chaβ.
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We notice that equation (3.46) is derived under the assumption that gnθί —
δna at point (x,t) G dMt. Generally, we have:

~Ξlhaβ — Δ/ια/3 — Haβ + HRftaβή — gΊ [Rη

ΊOίδhηβ

+2Rη

aβΊhηδ) + {\A\2haβ - hlhηβH) + R

where \A\ is the norm of the second fundamental form.
Beginning with the Simons-type identity established above, we see that

we can compute Rhahβ ή in terms of the other quantities on the boundary.
And this implies that:

fi

Rήή ή = Qa Έlhaβ + HRήh.

Also, by restricting the covariant derivative of Raβ to 9M, we have
Rfiβ a — Rfiβa ~~ Rήήhaβ + R βhηa.

So by the Bianchi identity, we can see that

K

Also, Raβ h c a n be computed from equation (3.45).

4. Long time convergence of the metric.

We assume in this section that the boundary is totally geodesic. Let us first
list the evolution equations for all three curvature quantities which will be
the basis for the a priori estimates we need for proving the convergence of
the metric. We refer the readers to [Ham] for details.

(4.47) -β-Rijki = ΔRijkι 4- 2(Bijkι — Bijίk + Bikjί — Biljk)

— gPq {RpjklRqi + RipklRqj + RijplRqk + RijkpRql) j

where Bijkl = gprgqsRpiqjRrksi'

(4.48) ^Rij = ΔRij + 2RikjlR
kl - 2RpiR

p

j

(4.49) —
ot
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In order to show the long time existence for the Ricci flow, we certainly
need to calculate the related quantities at the boundary. Since we assume
that h = 0 on M, we have from the Simons-type identity that we derived in
the last section,

(4.50) Λ W ; f t = 0.

From Codazzi equation, we know that

(4.51) RήθίβΊ = 0.

Also, from equation (4.51), we have

(4.52) Rήaβl.δ = 0.

Therefore, we have

Raβ-yδ ή ~ 0

and

(4.53) Rήβ;δ = 0,

and by a direct calculation and by using the equation (3.45),

(4.54) Raβ.ή = 0.

Also, we can easily see that

(4.55) Rhn,n = 0

and

(4.56) RaβΊδ]ή = 0

(4.57) Rήή]ή = 0.

Therefore, we conclude that the normal derivative of all curvature quan-
tities vanishes on the boundary.

The next lemma, which is similar to the Hopf maximum principle for
functions will be used to prove the long time existence theorem.

In order to state the lemma, we need the following definition:

Definition. Let Nτj = p(Mij,gιj) be a polynomial in M^ obtained by

contracting products of M^ with itself using the metric. We say that the
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Nij satisfy the null-eigenvector condition if NijVιvj > 0 for any vι which is
a null-eigenvector of M^ .

L e m m a 4.1. Let (M,g) be a Riemannian manifold such that Rij > — (n —

l)\gij. Suppose we have

—Mij = AMij + ukVkMiό + N^

for some constant λ > O,where N = P ( M ^ ,p^ ) satisfies the null-eigenvector
condition. If Mij.h > 0 with respect to outward normal, and uk\7kMij = 0
at any point of minimum eigenvalue of M^, then the condition M^ > 0 is
preserved under the flow.

Proof. We need to show that M^ >0on0<t<δ where δ is small compared
to a constant C which only depends on |M^| , as we shall see below. The
repeated application of this procedure will yield the result.

Let Mij — M^ + e(δ + t)gij. We claim that M{j > 0 on 0 < t < δ for any
e > 0. Then letting e -> 0 will finish the proof.

If Mij acquires a null eigenvector vι of unit length at some point x0 G dM
at time t 0, i.e.

MijV1 = 0

for \/j. We also denote the parallel extension of vι to a neighborhood of xo as
υ\ Let / = MijV

iυj', then f{xo,to) =0 Then we know that / is well-defined
in a neighborhood of xo and we have

(4.58) ^ = e + Δ/ + ΛΓ^V.
at

Define g = /' — ηv, where 77 is a constant to be chosen later,

R is the radius of a small disk B which is centered at (xχ,tι) and is tangent

to dM at (xo,to), and r = dist(x,x1). Now let B b e a small disk centered

at (x0,t0) with radius less than \R. We also denot D ~ B(ΛB,Y — dBΠB,

and Γ' - dB Π B.

Then we have on D that

(4.59) ^ = -2α(ί - ΐ o )e- α [ r 2 + ( ί - t o ) 2 1

(4.60) Av - V [-2arVre-at r2+(i- to)2]]

= [-2αrΔr + 4α2r2] e -
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By comparison theorem, we have

(4.61) Δr < — - ( 1 + jfcr).
r

We also notice that r2 > p2 on D and |t — ίo| £ p' for some constant
\R< p < R and 0 < p' < R.

Therefore, we see that

(4.62)^

— - Δ ) v < 2a[-2ar2 + (n - 1)(1 + kr) + R]e~
alr2+(t-to)2]

t )

< 2a[-2ap2 + (n - 1)(1 + kR) + R]e-
a^+^to^ < 0

for a laxge enough.
So

— - A) g > e + NijυW.

Since MijV'v^ = 0 by null-eigenvector condition, and

Nijv'υ* > -Ceό

at (xo,to) for some constant C mentioned before, we have

at {xo,to) if Cδ < 1.
So (^ — Δ)# > 0 in a small neighborhood D'of (x0, t0).
Also, we know that from the fact that /(xo^o) — 0, / > 0 in D — {xo?̂ o}i

so / > η' on Γ. So by choosing η > 0 small enough we have g > 0 on Γ.
Similarly, by choice of Γ;, we know g = f > 0 except at (rr0, ί0). Hence the
maximum principle tells us that

9>0

in D ; and the minimum occurs only at the point (x0, t0). The Hopf maximum
principle gives

(4-63) ^ U , t o ) < 0

with respect to the outward normal. So we obtain

(4-64) | f l(χo,to)<^l(χo, ί o)<0



216 YING SHEN

with respect to the outward normal vector to ΘM.

The above inequality immediately implies that

which contradicts our assumption. Hence the proof is finished. D

Lemma 4.1 immdiately implies that the condition agij < Rij < βgij will
be preserved under the Ricci flow.

Actually, if we assume that the evolution equation has a solution on the
interval 0 < t < T, we have the following lemma:

Lemma 4.2. // εRg^ < R^ < βRgij for some constants ε and β with

0 < ε < ^ < β < l a t t = 0, then both conditions continue to hold on

0<t<T.

The proof of this lemma is basically the same as in [Ham]. We apply the

Hopf maximum principle with

M- =βg- ~ i t

= I

_(RQij + 2SRij\
j ~ \ R? / ~ ^ j

where S = \ Ric | 2 and tensor Qiά - GRfR) - ZRRiά + (R2 - 2S)gij.

We only need to check that w^V^M^ satisfies the requirement in Lemma
4.1. It is easy to see that because the tangential derivative of M^ equals to
zero at its extremun and the normal derivative is zero due to the fact that
Rn = 0, Raβ.n = 0 and Rnn.n = 0.

In the following we are going to establish a key estimate which is called
the 'Pinching estimate'. We need an evolution equation.

S—-R2

Lemma 4.3. Let f — — ^ — ; then we have

(4.65) % =
#7+2

2

R-r+2

[(2 - τ)5 (5 - \lϊή - 2P]



ON RICCI DEFORMATION OF A RIEMANNIAN METRIC 217

where P = S2 + R(C -T),T = R^RkR) and C = \Qi5R
ij.

Hamilton proved that

Lemma 4.4. IfR>0 and Rio > εRgiJ7 then P > ε2S(S - | i? 2 ).

We can choose δ > 0 such that δ < 2ε , and let 7 = 2 — ί, / = —^— so
that we have the following

where uk = 2^Ί~ι'VkR. Since we have our boundary estimates on the cur-
vature quantities, we know that the maximum of / cannot be achieved for
t > 0, because that will imply that ukVkf vanish at that extrem point on the
boundary and hence the Hopf maximum principle says that Vn/ < 0 which
contradicts our computation that Vn/ = 0. Therefore, we have proved the
following lemma:

Lemma 4.5. We can find constants δ > 0 and C < 00 depending only on
the initial metric such that on 0 < t < T we have

S--R2<CR2~δ.
ό

From Lemma 4.5, we can establish an evolution inequality which is also
derived in [Ham].

Lemma 4.6. Let F = \S7R\2/R-ηR2 +168(5 - \R2). Then for any η with
0 < η < I we can find a constant C(η) depending only on η and the initial
value of the metric at t = 0 such that

f
It is easy to see from the evolution equation for scalar curvature S that

Lemma 4.7. If R> Rmin &t time t = 0 for constant Rmin, then T < 9 β

3 .

Now Lemma 4.6 immdiately implies maxFt < maxF0 + C(η)t and hence
F < C{η) for some constant C(η) depending only on η > 0 and the initial
metric. Therefore, we have

(4.66) IVR\2 < ηR? + C(η)R < ηR? + C(η)
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since η is arbitrary. We have proved

Theorem 3. For any η > 0, we have constant C(η) depending only on η
and initial metric, such that on 0 <t <T, the following estimate holds

(4.67) \VR\2 < ηR3 + C(η).

Similarly, we can also follow Hamilton [Ham] to show the following

Lemma 4.8. The evolution equation

has a solution on a maximal time interval 0 < t < T. If T < oo7 then
maxM\Rijkι\

2 -» oo as t -> T.

In particular, since R2 > S, so Rmaχ -> oo as t —> T. By equation (4.67),
we know that for every η > 0 we can find a constant C(rj) with

on 0 < t < T. Since lim^T Rmax -> +oo, we can find To with

C(η) < \

for To < t < T. Then |Vi?| < tfR^L for t > To.
Let x e M such that R(x) = iϊmαχ, then any geodesic out of x of length

at most s = ^Rmaxl/2 we have JR > (1 - η)Rmaχ' By Meyers theorem, we
know if 77 is small enough then all the geodesies of length greater than s
include the entire manifold M and hence

Rmin > (1 -V)Rmax-

Therefore we have proved

Lemma 4.9.

hm — = 1.
t->τ Rmin

We also quote the following without proof (see [Ham] for details).

Lemma 4.10. We have

ί = OO.
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Lemma 4.11.

/ rdt = oo
Jo

where r = ~ JM dωt and Vt is the volume of g.

Now the Lemma 4.5 implies that

S/R2 - ^ < CR~δ -> 0.

In order to prove the convergence, we need to normalize the Ricci flow
and we study the following normalized evolution equation:

It can be easily seen that this normalized equation have solution on 0 < t < T
with T = oo and

0 < ε < Rmin < Rmax < C

ij < Rij < Rgij

hm — = 0

R

lim

Actually, we know that Equation (4.67) also holds for 7 — 2. We can also

check that there is a constant δ > 0

AP
— > 4ε25//i?3 > Aε2f/3R > δf

S—-R2

and hence / = — φ — satisfies

with uk = ^SlR.
rί

The maximum principle enables us to conclude again that

/ < Ce~δt

and hence

Theorem 4. We can find constants C < 00 and δ > 0 such that

(4.68) S-\R2 <Ce~δt.
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Now we

Corollary 1.

If we let

then we have

1

3 J
<Ce -δt

f
Estimate (4.68) tells us that

R ' """ V" 3

672R (s - -R

^ < ΔF + Ce~δt - δF
at

for some C < oo, δ > 0, since R < C and r > Rmin > ε > 0. By the Hopf

maximum principle we have F < C( l + t)e~δt and this proves that

Corollary 2. We can find constants C < oo and δ > 0 sωcΛ ίΛαί

-it

The last two corollaries immediately give us

Corollary 3.
-δt<Ce

Therefore we have obtained the pinching of the Ricci curvature and scalar

curvature. Now the rest of the proof for our long time existence follows

exactly the same as in [Ham].
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