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A NOTE ON A PAPER OF E. BOASSO AND A. LAROTONDA

C. Oττ

E. Boasso and A. Larotonda recently introduced a spec-
trum for complex solvable Lie algebras of operators, which
agrees in the abelian case with the Taylor spectrum for sev-
eral commuting operators, and proved that their spectrum
also satisfies the projection property. This result is correct,
but there seems to be a misunderstanding of a theorem of
Cartan and Eilenberg in the proof. In this paper we prove
the projection property of this generalized Taylor spectrum
with the help of the projection property of the approximate
point spectrum.

1. Introduction.

Let L be a finite dimensional complex Lie algebra, X a complex Banach
space and p : L -» L(X) a representation of L in X. As usual we denote
the exterior algebra of L by Λ(L). For all p E Z we define a linear map
dp(ρ) : X ® Λp(Zf) -» X ® Λp_i(L) by

p

dp(p)(x ® CL\ dp) = / . ( — i Y p ( c b i ) x ® Q>ι o>i - dp

for all x E X and au... , αp E 1/ (wherermeans deletion). Then dp_ι(p)dp(p)
— 0 for all p G Z , i.e.

is a chain complex, the Koszul complex of p (see [Ko50] or [CE]). J.L.
Taylor used this chain complex for his functional calculus, first in the abelian
case (see [Ta70a] and [Ta70b]), but later also in the nonabelian case (see
[Ta72]).

Let L' \— [L,L] be the commutator subalgebra of L and L := {a E L* :
a\Lι = 0} the set of all characters of L. For each a E L one gets a new
representation p — a := p — α id of L in X. For each p E Z define

σp(p) := jα G ί : randp +i(p — a) Φ keτdp(ρ - α
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Then the set σ(p) := \JPezσP(p) ιs caHed the Taylor spectrum of p. If L is a
Lie subalgebra of L(X), the inclusion map i : L -» L(X) is a representation
of L in X and the above defined set σ(i) agrees with the spectrum Sp(L, X)
defined in Definition 1 of [BL93].

Boasso and Larotonda stated the projection property of this Taylor spec-
trum in the following form ([BL93, Theorem 3]): For each solvable Lie
subalgebra L of L(X) and each ideal / of L it holds:

πSp(L,X)=Sp(I,X),

where π : L* —> /* is the restriction map. This result is correct (see the
proof in Section 3), but there is at least a gap in the proof of [BL93].
Boasso and Larotonda claimed that the coadjoint representation Ad* of the
simply connected Lie group G(L) of L leaves Sp(/, X) invariant, i.e. that
h := Ad*(g)f = f o Adfo-1) E Sp(/,X) for all / E Sp(/,X) and g E
G(L). To prove this claim they use Theorem VIΠ.3.1 from [CE] for the
automorphism ψ := Ad{g) of the universal enveloping algebra U(I) of /.
But in this situation the theorem gives only the obvious isomorphism

where C(/) (resp. C(h)) is the one dimensional left C/(/)-module induced by
the character / E / (resp. h E /), X carries the natural right C7(/)-module
structure (defined by xa := —a(x) for all x E X and a E /) and for each
[/(I)-module A, the module Aφ is obtained by carrying back the structure
of A by φ (so that for example C(h)φ = C(/)). Boasso and Larotonda used
the following isomorphism instead:

which is not established by Theorem VIII.3.1 from [CE] (but true if you
prove the projection property because in this case h — / ) .

2. The Approximate Point Spectrum.

Let L be a finite dimensional complex Lie algebra, X a non-zero complex
Banach space and p : L —> L(X) a representation of L in X.
Definition 2.1. Let a E L*. Define

Ea(p) ~ {x £ X : p(α)α; = α(α)x for all a E L}.

α is said to be in the point spectrum σp(p) of p if Ea(p) Φ {0}. α is said to
be in the approximate point spectrum σap(p) of p, if there exists a sequence

m X such that \\xk\\ — 1 for all A: E N and

lim (p(a) — a(a))xk — 0 for all a E L.
k->oo
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Remark 2.2.
σp(ρ) C σap(p) C L.

The following lemma is a Banach space version of a well known lemma of
Lie theory. The proof is motivated by the proof of Lemma 1 from [Po92].

Lemma 2.3. Let I be an ideal of L and a G σp(p|j). Then p leaves the
eigenspace Ea(p\i) invariant.

Proof. It is enough to show that «|[/,L] — 0. Let a G 7 and b G L. The
commutator subalgebra V = [7,7] of 7 is a characteristic subalgebra of 7
and therefore also an ideal of L. So one can easily prove that p leaves the
null eigenspace W :— E0(ρ\I>) invariant. Since [α, [α, &]] G I' it follows that

[p(α)k, [p{a)\w,p{b)\w]] = p([α, k &]])|w = 0.

Therefore the operator [p(α)|w,p(&)|w] = P([α>fr])|w ι s quasi-nilpotent by
the Kleinecke-Sirokov Theorem (see [K157]). Since p\j leaves the subspace
E := Ea(p\i) of W invariant the operator p([α, 6])|# is also quasi-nilpotent.
But p([α, b])\E = a{[a, b]) idE by the definition of E. So α([α, b)) = 0. D

The ultrapower technique (see for example [He80]) helps us to reduce the
proof of the projection property of the approximate point spectrum to the
above lemma about the point spectrum. We only need the following two
elementary lemmas about ultrapowers. For each nontrivial ultrafilter U on
N let Xu be the ultrapower of X with respect to U, and for each Banach
space Y and every linear operator T G L(X,Y) let Tu G L(Xu,Yu) be the
linear operator induced by T with respect to U.

Lemma 2.4. Let U be a nontrivial ultrafilter on N. For each a G L define

pu(a) := p(a)u G L{XU).

Then pu is a representation of L in Xu and

°aP{p) = °a

Lemma 2.5. Let U be a nontrivial ultrafilter on N, Y a Banach space and
T G L(X), S G L(X,Y) linear operators such that the operator Tu G L(XU)
leaves ker Sy invariant. Then

|ker Su
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Now we are in a position to prove the projection property of the approxi-
mate point spectrum. Our proof is a nonabelian version of Lyubichs proof in
the abelian case (see [Ly], "basic lemma" on page 115 or [Ly71, Lemma 2]).

Theorem 2.6. Let I be an one codimensίonal ideal of L. Then

Proof. The inclusion "D" is obvious. Let a G σαp(p|j), (α o ,α l 5 . . . ,αn) a
basis of L such that (oi,... ,αn) is a basis of / and let U be a nontrivial
ultrafilter on N. Then a G σp{pu\i) by Lemma 2.4. Therefore pu leaves the
(nontrivial) eigenspace Ea(pu\i) invariant by Lemma 2.3. Now consider the
operators T := ρ(a0) G L(X) and S G L(X,Xn), defined by

Sx := ((p(αi) - a(a±))x,... , (ρ(an) - a{an))x)

for all G X. Then Tw = pu{o>o) leaves ker Su = J5α(p^|j) invariant. Therefore

^pί^l/|kerSM) — ̂ ap(Tu\keτSu) 7̂  0

by Lemma 2.5. Let λ G crp(Tκ\kersu) and define /3 G L* by /5|/ := α and
β(a0) := λ. Then /? G σp(pw) = σflp(p), and so a G σβp(p)|j. D

Corollary 2.7. Lei / be an ideal of L such that L/I is solvable. Then

σap(p\i) = crαp(p)|/.

In particular if L is solvable then the above equation holds for every ideal I
of L and σap(ρ) φ 0.

The following Banach space version of the well known theorem of Lie will
be the key step in our proof of the projection property of the Taylor spectrum
in Section 3. In [BL93] it is proven as a corollary of the projection property
of the Taylor spectrum.

Corollary 2.8. Let L be solvable. Then p(a) is quasi-nilpotent for all
aeLf.

Proof. Let a G V \ {0} and λ G σap(p(a)). Because L is solvable, V is
nilpotent. In this situation it is well known that there exists a subideal
chain

{0} = Lo < Lλ < < Lk = V < < Ln = L

with a G Li and dimL^ = i for all i G {0,1,... ,n}. By Theorem 2.6 there
exists a character a G σap{p) with a(a) = λ. Because of σap(p) C L and a G
L' it follows that λ = a(ά) = 0. Therefore p(a) is quasi-nilpotent. D
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3. The Taylor Spectrum.

Let I/, X and p be as in Chapter 2. The following remark, which gives an
inductive description of the Koszul complex, is an obvious generalization of
Lemma 1.3 from [Ta70a] (see also [S177, Definition 1.1]).

Remark 3.1. Let I be an one codimensional ideal of L and α0 E L\I. For
each p E Z define a linear map fp:X®Ap(I) —> X ® Λp(7) by

fp{x ®aι ' ap)= ρ(ao)x ® aλ ap

for all α l 5 . . . ,α p E 7 and x E X. Then f := (fp)pez is a chain map of the
Koszul complex Λ(p|j), and the Koszul complex A(p) is isomorphic to the
mapping cone M(f) of f in the following sense: For each p E Z consider
the decomposition

X 0 AP(L) = X ® Λp(7) Θ I ® Ap_!(7) α0

Then the operator dp(ρ) : X®AP(L) —> X®ΛP_1(L) has the following matrix
form with respect to this decomposition:

In particular one gets a short exact sequence

0 —> Λ(p|/) - A Λ(p) - ^ Λ(p|7)- —> 0

o/ chain complexes, where ip : X ® Ap(I) -ϊ X ® ΛP(L), ω ^ (cu7, 0) is ίΛe
inclusion map, πp : X ® AP(L) 4 l 0 Λp_!(7), (α;, z/) i-> v is the projection
map onto the second component with respect to the above decomposition for
all p E Z and

TΛe homology lemma now gives an exact sequence

^ ( p l j j Λ ί ^ .

where Hp(p) := kerdp(p)/rano?p + 1(p).
This remark immediately implies the easy half of the projection property

of the Taylor spectrum, which we state in the version of Slodkowski (see
[S177], Theorem 1.7 in the abelian case).
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Proposition 3.2. Let I be an one codimensional ideal of L. Then

for each p G Z. In particular σ{p)\j C σ(p|j).

Proo/. Let p G Z and α G £ with α|j £ σp(p\i) U σ^" 1 ^/) . Consider the
representation μ := p — a instead of p. Then the above remark gives a long
exact sequence

> Hp(μ\i) = W —> flp(μ) —> flp-i(μ|j) = {0} —> • • .

It follows Hp(μ) = {0}, i.e. a 0 σp(p). D

Corollary 3.3. Let L be nilpotent and let a G σ(p). Then a(a) G σ(p(a))
for each a G L.

Proof. Let a G L \ {0}. Since L is nilpotent there exists a subideal chain

{0} = Lo < Lx < < Ln = L

with a E Li and dimLj = i for all i G {o,... , n}. By Proposition 3.2 it
follows that α | L l G σ(p\Ll), i.e. α(α) G σ(p(α)). D

Now we can prove the other half of the projection property of the Taylor
spectrum (in the version of Slodkowski, see [S177, Theorem 1.7]).

Theorem 3.4. Let L be solvable and let I be an ideal of L. Then

σp(p\i) C σ*(p)\j

for all p G Z. In particular σ(p\i) C σ(p)|j, and by Proposition 3.2 we have

Proof. Since L is solvable we can assume / to be one codimensional. Let
a G σp(p\i). Since / is one codimensional, / contains ZΛ So a\L> G σ(p\L>)
by Proposition 3.2. Since V is nilpotent, Corollary 3.3 implies that a(a) G
σ(p(a)) for all a G IΛ But σ(p(α)) = {0} for each a G V by Corollary 2.8.
Therefore α|χ,/ = 0, i.e. β G L for all /? G L* with /3|/ = α. The remainder of
the proof is as in the abelian case (see [S177, Theorem 1.7]). D

Acknowledgements: I am indebted to E. Boasso for sending me a preprint
of the paper [BL93] and to Professor V. Wrobel for helpful discussions con-
cerning the contents of this paper.
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