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UNIT INDICES OF SOME IMAGINARY COMPOSITE
QUADRATIC FIELDS II

MlKIHITO HlRABAYASHI

Let K be an imaginary abelian number field of type (2, 2, 2, 2)
containing the 8-th cyclotomic field Q(\/—1, Λ/2). Using the
fundamental units of real quadratic subfields of K, we give a
necessary and sufficient condition for the unit index QK of K
to be equal to 2.

1. Introduction and Results.

Let K be an imaginary abelian number field and Ko the maximal real subfield

of K. Let E and Eo be the groups of units of K and Ko, respectively, and

let W be the group of roots of unity in K. Let Qκ be the unit index of if,

i.e.,

QK = [E: WE,}.

In the previous paper [4] we gave a necessary and sufficient condition for

Qκ to be equal to 2 when K is an imaginary abelian number field (whose

Galois group is) of type (2,2,2,2) not containing the 8-th cyclotomic field

Q ί\/—T, λ/2j In this paper we give such a condition when K contains

Q ( Λ / = Ϊ , Λ / 2 ) .

In this paper we use the following notation, unless otherwise specified.

N, Z, Q : the sets of natural numbers, rational integers and rational num-

bers, respectively,

= (resp. = in k) : the equality up to a rational quadratic factor (resp.

the equality up to a square of a number of a field fc),

rfl9 d2, , d7 : square-free positive integers such that d* = d2d3^ cf5 = d3dι,
2 2

d6 = G?iC?2, d7 = dιd2d3 and that d3 = 2.

ί ί = Q ysf-ϊ, yjdϊ, y/<h, \/%j = Q (v^-ΐ, Λ/2, \/^ϋ Λ/dί) : a n imaginary
abelian number field of type (2, 2,2,2),

: the group of totally positive units of

= Q

= Q
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σi: a generator of Gsl(K0/Ki), i.e., fa) = Gal(K0/Ki) (i = 1, 2, , 7),
ε» : the fundamental unit of k{ = Q(\/i)> ε» > 1 (i = 1,2, , 7),
N(x), Sp(x) : the absolute norm and the absolute trace of an algebraic

number x, respectively.

For a totally positive unit η of ϋf0, let

(2) 0 -

under the condition that

(3) y/ηησi e Kx and y/ξξ** e k3.

Let v be the number of i for which N(εi) = — 1 (i = 1,2, , 7), i.e.,

Remark 1. Using Lemmas 3 and 6 we can show that the above condition

(3) follows from the equations

v) = l i*Ki (< = 1,2,6).

Our result is

Theorem. (1) //1/ > 4, then Qκ = 1.

(2) Suppose that v — 3 and that

N(εs) = N(εt) = N(ε3) = - 1

for s,t e {1,2, ••• ,7} (s φ t) different from 3. If dsdt=d3 does not hold,

then QK = l
(3) Suppose that v < 2 or that v — 3 and dsdt—d3 holds for above 5,ί.

Then QK = 2 if and only if there exists a unit η in E$ such that

(4) η~-

^ , (aubj=0orl)

satisfying the following conditions (i), (ii) :

(i)
(a = 1,2,6),

NKo/κ0 (η) = 1 in Ko, but not in K0 (β = 3,4,5,7).
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(ϋ)
θ = θ{η) = (2 + Λ/2) dl'df in k3 = Q (>/£)

for some βι E {0,1}.
Moreover, in the representation (4) of η, the number of j ;s for which

bj — 1 is greater than one.

Remark 2. When v — 3 and dsdt—d3 holds for s,ί in Theorem, we have

examples of Qκ — 1 and Qκ — 2 :
If dγ — 5, d2 = 21, then ζ>κ = 1, which is checked by Proposition 1.

If dγ — 7, <i2 — 41, then Q K = 2. Because,

satisfies the condition (3) of Theorem. In fact,

0 = 0(77)=

Remark 3. In the Theorem, when

11 εj ~ εjiεj2l
N(ε3)=+1

it holds that djιdj2 — d3 — 2, as seen in Lemma 5 (2).

The assertions (1) and (2) of the Theorem are easily obtained in §3 from

Proposition 1. Let L be the composite of a 2-power-th cyclotomic field
Q(£) (ζ ~ exp(2πz/2m),m > 2) and n independent real quadratic fields
Q (y/D~i) where Dτ are square-free positive integers (i = 1, 2, , n), that is,

L = Q

// Dj = D2 = = Dn Ξ 1 (mod 4), ίften Q L = 1.

2. Characterization of 77 G Eo.

Our argument depends on

Lemma 1 (cf. [3, Satz 15]). QK = 2 if and only if there exists a unit

η e E£ such that KQ (y/η) = Ko ( y 2 + y/2 J.

Therefore, in order to determine the alternative Qκ — 1 or 2, we investi-
gate such η G EQ . We replace the definition of Eo in [4] by

EQ =
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Here we note that if η G J50, η is totally positive.

L e m m a 2 (cf. [4, Lemma 1]). For η G Eo, we have

Ί — bl b2 b7

for some ^ G Z .

Proof. For η G Eo, we can put

r/4 - ε?ε?> >ε? fo G Z).

In fact, for a (2,2)-extension if/λ; with Galois group Gal(K/k) = (σ, r) we
have

αl+σαl+r

for any α E if, a 7̂  0. By this formula we see that EQ C. E^ where E£ is the
subgroup of Eo generated by ±ε* (i = 1,2, , 7).

We show that every Xi is even.

Since Ko (v^) = K0(y2 + y/2j, we have η = ^2 + v ^ ) <̂o for s o m e

α 0 G Ko Then

(5)

Taking the norms NKo/k3 and NKo/ki (i 7̂  3) of this equation (5) and then

the positive fourth root, we have

= ε*° and 22NKΰ/ki(α0)
2 = ε*',

respectively. Here we recall that ε3 and Si are positive. These equations
show that ε** is square in ki and hence ^ Ξ O (mod 2) for every i. D

Lemma 3 ([2, Satz 1]). Let KY be α field with char(iίΓ1) φ 2 and Ko

a quadratic extension over Kγ. Let η be an element of Ko which is not a
square in KΌ.

(1) Ko (y/η) jKλ is Galois ^=^ NKo/Kl{η)=l inK0.

(2) Ko {y/η) jKx is an extension of type (2,2) 4=> NKo/Kl(η)=l inKλ.

(3) Ko (y/η) jK\ is cyclic <=> NKo/Kl(η)=l inK0, but not inK1.

Lemma 4 (cf. [4, Lemma 3]). Let η G Eo and put

η2 = ε?ε?---εψ (XieZ).
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(1) // there exists an even x i } then N(εj) = + 1 for each odd Xj.

(2) If X! ΈΞ x 2 = ••• ΞΞ x 7 = 1 ( m o d 2 ) , tfien JV(ε i ) - 7V(ε 2 ) = ••• =

N(ε7).

We can prove this Lemma 4 as in the same way in [4, Lemma 3].

L e m m a 5. Let η G Eo and put

(6) η2 = εϊ*ε?---ε? (XieZ).

(1) There exist at least two odd integers among the Xi 's.
(2) // Xi, Xj (i φ j) are odd and the others xk are even, then dι φ 2, dj φ 2

and didj = 2.
J 2

Proof of Lemma 5. (1) First we suppose that all xτ are even. Then 77 is a
product of some of ε^s. Noting that 77 is contained in (EQ)+ — E£ Π E£,
we see by [4, Proposition 1] that 77 is, up to a square, a product of some of
following totally positive units :

ε{ (when Nfa) = +1),
ηij := ειε^εk (when dzdj=dk and N(ει) = iV(ε7 ) = N(εk) — —1),

2

Vijk : ~ £%εjεkε\ (when did3dk—dι and N{ε^) — N(εj) -
2

For a unit ε{ with N(εi) = +1 we have

where η = ε̂  and ξ" = ε$ + 1. For 77 = 77̂  or 77̂ ^ we also have by

[5, Proof of Zusatz 1] or by [4, Lemma 6] that

ηSp(ξ)=ξ2

where
ξ = ε ^ ε* - εz - ε̂  - εfc

or

ξ = ε^ε^ε^ε/ + 1 - (ε,ε7 + ε̂  ε^ + ε*^ + ε^ + εάεt + ε^εz),

respectively. Therefore, Ko (-y/iί) ,K0 (y/ηϊj) and Ko (y/ηϊjk) are 2-elemen-

tary extensions over Q and so is Ko (y/η), which contradicts η G Eo.
Next we suppose that x{ is odd and the other xk are even. Choose Kj for

which yfdi $L Kj. Taking the norm NKo/Kj of the equation (6), we have

(^.\2 Λ77cr \Xχ c^Xu c^X^ JlXyo

V) —M^i) εu ευ εw
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where Kj = Q {yfd^, y/d^) and dw=dudv. Hence, JV(ε») = +1 and so i φ 3.

(Then, as for above j , we can take j = 3,4,5 or 7.) Moreover, since xu,xυ

and xw are even, we have

NKo/Ki(η) =<"<%"<%• =1 inX,,

Therefore it follows from Lemma 3 that Ko (y/η) /Kj is of type (2, 2). How-

ever, the extension Ko (y/η) /Kj = Ko ί y 2 + \/2 j / J ^ is itself a cyclic ex-

tension of degree 4. Thus we get a contradiction.

(2) Choose k e {1,2, , 7} for which y/dl G Kfc and ^/d" £ Kk. Taking

the norm NKo/Kk of the equation (6), we have

where % is a unit of if^ Hence N(EJ) = +1 and so dj Φ d3 = 2.
By exchanging z and j , we also have N(si) = +1 and d* 7̂  d3.
Finally we show that d{dj == 2. Assume that this is false. Then, Kι :=

Q (y/dids, y/djd3) contains neither y/dl nor \/dj. Taking the norm NKo/jζι

of (6) and then the positive square root, we obtain

where da=dids^dβ=djd3 and dΊ=dOίdβ, because, xa,Xβ and # 7 are even.
2 2 2

Therefore, it follows from Lemma 3 (2) that KQ (y/η) /K\ is an extension
of type (2,2). However, by the definition of Kh K\ does not contain y/d^
and so Kt φ KUK2 or K6. Hence Ko (y/η) /Kx is a cyclic extension of degree
4, which is a contradiction. D

3. Proofs of Proposition 1 and Theorem.

Proof of Proposition 1. Let f(χ) be the conductor of a Dirichlet character

χ. For any even character χ 0 of L, we have 2 \ / ( χ 0 ) or 2 3 | / ( χ 0 ) and

l/(Xo). Then, from [2, Satz 22] it follows that QL = 1. D

Remark 4. Proposition 1 is also proved in [1 (14.7) Corollary and the

comment on p. 87 - 88].

Proof of (1), (2) of Theorem. By the assumption we have

K = Q (>/=ϊ, Λ/2, >/£, >/*) , iV(εs) - ΛΓ(εf) = N(ε3) = - 1

for suitable (4,0^ 7̂  c?3. Then for every odd prime p dividing dsdt, we have
p = 1 (mod 4). In fact, for example, by N(εs) = —1 we have x2 — dsy

2 = —4
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for some #, y G Z. Then, for an odd prime p dividing ds, x2 = —4 (mod p)
and hence (—1/p) = (—1)^" = 1, where ( / ) is the Legendre symbol. Thus
we get p = 1 (mod 4).

Therefore

K = Q (>/=4, χ/2, V<DΓ, \/A)

for some Ds,Dt e N , D S = D t = 1 (mod 4). Thus Proposition 1 implies
that Qκ = 1. D

In the following we prove the assertion (3) of Theorem, for which we need

Proposition 2. Let K and KQ be as in the notation in §1. Let η be an
element of Ko which is not square in Ko.

(1) KQ {y/rj) /Q is a Galois extension if and only if

(7) NKo/Ki{η) = l inK0 (i = l ,2,--- ,7).

(2) KQ (y/η) / Q is an abelian extension of type (2, 2, 2, 2) if and only if

(8) NKo/Ki(η) = l ™K% (i = l,2,- - ,7).

(3) KQ {y/η) /Q is an abelian extension of type (2,2,4) and KQ {y/η) /k3

of type (2,2, 2) if and only if

( α - 1 , 2 , 6 ) ,

NKo/Kβ{η) = 1 in KQ, but not in Kp {β — 3,4, 5, 7).

Remark 5. This Proposition 2 remains valid if JKΌ — Q (Λ/2?

is replaced by KQ = Q (yfdϊ, y/dΰ, y/d^) with arbitrary d3 G N (d3 :
square-free, d3 > 2). Therefore, the condition (8) leads to the condition
(5) of [4].

For the proof of Proposition 2, we need the following two lemmas.

L e m m a 6. Let k be an algebraic number field. Let K0/k be an abelian
extension of type (2,2). Let Kχ,K2 and K3 be the intermediate fields of
K0/k. Let η be an element of KQ.

(1) KQ {y/η) jk is a Galois extension if and only if



100 MIKIHITO HIRABAYASHI

v) = l irxKo (i = 1,2,3).

(2) Suppose that Ko (y/rj) /k is a Galois extension. Let

μ = #{i\i = 1,2,3 ]NKo/Ki(η) = l inK,}.

Then, KQ (y/rj) /k is quaternion, abelian of type (2, 4), dihedral or abelian of

type (2, 2, 2) if and only if μ = 0, 1, 2 or 3, respectively.

L e m m a 7. Let G be a group of order 16. Assume that there exists a normal
subgroup N of G of order 2 with quotient group G/N of type (2,2,2). Then
G is isomorphic to one of the followings :

(a) a 2-elementary group
(b) an abelian group of type (2,2,4)

(c) a central product of an abelian subgroup A and a dihedral or quaternion
subgroup B of order 8 such that AB — G , i Π B = N. (A is the center of
G.)

Lemma 6 is an immediate consequence of Lemma 3. Lemma 7 is a special
case of [6, (4.16) and Theorem 4.18].
Proof of Proposition 2. (1) Suppose that Ko {y/rj) /Q is a Galois extension.
Then, for any quadratic subfield k of Ko, Ko (y/rj) /k is also a Galois exten-
sion. Hence, by Lemma 6 (1) we have

NKo/Ki (η) = 1 in Ko

for every intermediate field K{ of K0/k.

Conversely, suppose that the condition (7) is satisfied. For an automor-
phism σ of the algebraic closure Q of Q, the restriction σ\Ko of σ to Ko

belongs to the Galois group Gal(K0/Q) = {σ0 = 1, σu , σ7}. Then

for some i. By the assumption, we have

ηησi = η

2.

for some η{ G Ko. Therefore,

is contained in Ko (y/rj) and whence Ko (^/η) /Q is a Galois extension.
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(2), (3) At first, we suppose that Ko (y/η) /Q is a Galois extension with
Galois group G. Let TV be the subgroup of G corresponding to Ko.

Here we assume that G is not abelian. Then, it follows from Lemma 7
that G is a central product of an abelian subgroup A and a non-abelian
subgroup B of degree 8. Let k be the subfield of Ko (y/η) corresponding to
B. Since AΠB = N and since B is of order 8, A; is a quadratic subfield of Ko,
i.e., k = ka for some a E {1, 2, , 7}. Then, Ko (y/η) jka is a quaternion or
dihedral extension. Let K[ (i = 1,2,3) be the intermediate fields of K0/ka

and let

μ = #{i\NKo/κ.(η) = l inK't}.
2

Then, by Lemma 6 (2) we have μ — 0 or 2.
Now, suppose that the condition (9) is satisfied. Then, Ko (y/η) /Q is a

Galois extension with Galois group G. If G is not abelian, then, for above
μ and α, we have by the condition (9) that μ — 3 or 1 according as a = 3 or
not, which is a contradiction. Therefore G must be abelian.

Moreover, the equations

MKO/KMJ1 n o t i n g (0 = 3,4,5,7)

imply that Ko (y/η) /Kβ is cyclic. Hence it follows from Lemma 7 that
Ko (y/η) /Q is an abelian extension of type (2, 2,4). And the equations

imply that Ko (y/fj) /k3 is an abelian extension of type (2, 2, 2).
Next, suppose that the condition (8) is satisfied. In a similar way we see

that KQ (yjrj) /Q is an abelian extension.
We show that Ko (y/rj) /Q is of type (2, 2, 2, 2). Assume that this is false,

i.e., assume that Ko (y/rj) /Q is of type (2,2,4). Let, as above,

G = Gal (Ko (y/η) /Q),N = Gal (Ko (y/η) /Ko).

Then,

G/N = Gal(K0/Q)

is of type (2, 2, 2). By the assumption there exists an element σ of G of order
4. Since the order of the coset σN of G/N is at most 2, σ2 is contained in
N. Hence N = (σ2), because N has order 2. Let K{ be the subfield of Ko

corresponding to (σ). Then Ko (y/η) jK% is cyclic. Hence, by Lemma 3 (3),
we have

V) = 1 not in Ki,
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which is a contradiction to the condition (8).

Thus we have proved the sufficiencies of (2) and (3) of Proposition 2.
Conversely, their necessities are immediately deduced from Lemma 3 .

D

For the proof of (3) of Theorem, we also need

L e m m a 8 ([4, Lemma 5]). Let Kλ be an algebraic number field and Ko

a quadratic extension ofK\. Let Ko (y/rjo) (rjo E Ko, η0 φ Kι) be a bi-
quadratic bicyclic extension of Kι with Gal (Ko (y/ηo) /Kι) = (σ->τ)
Gal (Ko (Λ/TJO) /KO) = (r). Let F be the intermediate field of Ko

fixed by σ. Then we have

F = K

Proof of (3) of Theorem. Suppose that QK = 2. Then, by Lemma 1 there

exists a unit η in E£ such that

Ko (y/η) = K

By Lemma 2 we have

r?2 = ε^εf- -εr

for some ^ G Z (i = 1,2, , 7). And we see by Lemma 5(1) that there are

at least two odd integers among x^s.

If all Xi are odd, then it follows from Lemma 4 (2) that

N(εi) - 7V(ε2) = N(ε3) = • = N(ε7) - - 1 ,

and so v = 7, which contradicts our assumption v < 3. Then there exists

at least one even integer among x^s. Hence Lemma 4 (1) implies that

iV(εi) = +1 for odd xiβ Therefore we may represent the η in question as

xx j (αi,6j = 0 or 1),

and Lemma 5 (1) shows that there are at least two b3? = 1.

Since Ko {y/η) — Ko I γ 2 + \/2j is an extension of type (2,2,4) over

Q and of type (2,2,2) over k3 = Q (λ/2), Proposition 2 (3) implies the

condition (3) (i) of Theorem.
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Moreover, it follows from Lemma 8 that Kλ (y/ξ) — Kγ

is the intermediate field of Ko (y/η) /Ki fixed by σ or rσ, where σ is an
automorphism of Q over Q such that <J\KQ = σi, (σi) = Gal(K0/Kι) and τ
is a generator of Gal (Ko (y/η) /KQ). Consequently we have Kx (y/ξ) φ Ko.

Similary we can show that k3 (Vθ) is an intermediate field of Kx (y/ξ) jk3

and that k3 (y/θ) φ Kx. Therefore

(y/θ) = k

for some e{ £ {0,1}. Thus we obtain the condition (3) (ii) of Theorem.
Conversely, suppose that there exists a unit η E E$ satisfying the condi-

tions (3) (i), (ii) of Theorem. Then, it follows from Proposition 2 (3) that
Ko (y/fj) is of type (2,2,4) over Q and of type (2,2,2) over k3 = Q

By Lemma 8, we see that Kγ (y/ζ) is an intermediate field of Ko (y/rj)
and Kγ (y/ξ) φ KQ. Then we have

In the same way we get

Kx (y/ξ) = K, (Vθ) .

Therefore,

Ko {y/η) = Ko (y/ξ) = Ko (Vθ) .

By the condition (3) (ii) of Theorem we have

- Ko (\f2W2) .Ko

Thus we obtain

Ko (y/η) = Ko U/2 +

from which Lemma 1 implies QK — 2, as desired. D
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