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THE COVERS OF A NOETHERIAN MODULE

JlAN-JUN CHUAI

In this paper we define the covers of a module and describe
some of their applications.

1. Introduction.

Let R be a commutative ring and A an iϊ-module. A cover of A is denned to
be a subset T of Max(i?) satisfying that for any x G A, x ^ O , there is M G T
such that 0 :R X C M. If we denote by J the intersection of all the maximal
ideals belonging to T and suppose that A φ 0 is finitely generated, then we
have JA φ A. This generalises the Nakayama's lemma; if, in addition, R is

oo

Noetherian, then Π JnA — 0. This is a generalization of a well-known result.
n=l

A key observation for the covers is that, in the case that R is Noetherian
and A is finitely generated, there is a cover T of A which is itself a finite
set. From this we have the following result: Let R be a Noetherian ring.
Then there is a finite number of maximal ideals Mλ,... , Mm of R such

oo m

that Π Jn = 0, where J — Π Mt. This generalises the KrulΓs theorem for
n=l i=l

Jacobson radicals. Using this result we can embed the Noetherian ring R
in the J-adic completion R of iΐ, which is a complete semi-local Noetherian
ring; besides, if R is a Cohen-Macaulay (C-M for short) ring, then R is a
C-M ring. We also use the covers to deal with the maximal component of a
finitely generated module over a Noetherian ring, which was introduced by
Matlis in [3].

Throughout the paper, R will denote a (non-trivial) commutative ring
with identity. Also, if T is a subset of Max(i?) we denote by ΠT (resp. UT)
the intersection (resp. union) of all the maximal ideals belonging to Γ.

2. The covers.
In this section we define the covers of a module and generalise some known

results.

Definition. Let A be an iϊ-module. A subset T of Max(i?) is called a
cover of A if for any x G A, x ^ O , there is M G T such that O ^ x C M.

Clearly, if T is a cover of A and B is a submodule of A, then T is a cover
of B. If T is a cover of i a n d T C T ' C Max(iϊ), then V is a cover of A. We
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say that T is a finite cover of A, or A has a finite cover Γ, if Γ is a cover of
A and Γ is itself a finite set. If Γ is a cover of A, we also say that Γ covers
A.

Lemma 2.1. Let T be a cover of A. Then each r E R — UΓ is A-regular.
Indeed if a E A — {0} and ra = 0, then r E (0 :R a) C M for some MET,
a contradiction.

Proposition 2.2. Let A φ 0 be a finitely generated R-module and T a
cover of A. Then JA φ A, where J — ΠΓ.

Proof. Suppose that JA — A, then there is r E J such that (1 -f- r)A = 0,
which contadicts Lemma 2.1. D

Proposition 2.3. Let A be an R-module, T a cover of A, and I <£. 0 :R A
an ideal of R. Set J = ΠΓ. If A/0 :A 7 is finitely generated, then JA + (0 \A
I)φA.

Proof. Since / £ 0 :R A, A/0 :Aφ 0. Let x E A/0 :A I and x φ 0. Then
0 :R x = (0 : Λ /) : Λ a; C 0 : Λ /α;. Since x 0 0 : Λ /, 7a; 7̂  0. Take r E 7 such
that rx φ 0, then 0 :R x C 0 : Λ ra:. it follows that Γ is a cover of 4̂/0 :A I. By
Proposition 2.2, J(A/0 :A I) φ A/0 \A 7, hence JA + (0 :A I) φ A. D

Proposition 2.4. Lei R be a Noetherian ring, A a finitely generated R-
00

module, T a cover of A, and I C ΠΓ an ideal of R. Then Π InA = 0.

Proo/. Set Π 7M = B. By KrulΓs theorem, there is r E 7 such that (1 +
n = l

r)J3 = 0. From Lemma 2.1, 5 = 0. D

Proposition 2.5. Lei Γ δe a finite subset ofMax(R) and A an R-module.
00

Set J = ΠΓ. 7/ Π JnA = 0, then T is a cover of A.

Proof. If it were not true, there would be a non- zero element x of A such

that for any M E Γ, 0 :# rr ^ M. Thus for any integer n > 0 we have

(0 : Λ a;) + Mn = R, so Mnα; = Rx. It then follows that Jnx = Rx, and thus

Π JnA φ 0, a contradiction. D
00

Π
n=l

Let i? be a Noetherian ring and 4̂ a finitely generated iϊ-module. We
know that Ass(A) is a finite set. Let Ass(Λ) = {Pi,... , Pn} Choose a finite
subset Γ of Max(i?) in such a way that for any P<? there is M{ E Γ such that
P% Q M{. Since for any x E A, x φ 0, there is Pj such that 0 :R x C Pu it
follows that Γ is a finite cover of A. Hence finite covers exist for any finitely
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generated module over a Noetherian ring. In particular, any Noetherian ring
(as a module over itself) has finite covers.

As a consequence of the above remarks and Proposition 2.4 we have the
following theorem.

Theorem 2.6. Let R be a Noetherian ring and A a finitely generated R-

module. Then there is a finite subset T of Max(i?) such that Π JnA — 0,
n—l

oo

where J — ΠT. In particular, if A — i?, Π Jn — 0.

It is clear that if R is a Noetherian ring and A is a finitely generated
i?-module, then for any cover T of A we have T D Ass(A) Π Max(iZ).

In general, if T is a cover of the module A and B is a submodule of
A, Γ is not a cover of A/B. For example, if T is a cover of the ring R and
T φ Max(i2), then for any M E Max(β) - T, T is not a cover of R/M.

Proposition 2.7. Lei R be a Noetherian ring, A a finitely generated R-

module, B a submodule of A, and T a finite cover of A. Then T is a cover

of A/B if and only if B is a closed submodule of A in the J-adic topology,

where J — ΠT.

Proof. Suppose first that B is closed, then we have Π (JnA + B) = B,

so Π Jn(A/B) = 0. By Proposition 2.5, T is a cover of A/B. Conversely,
n=l

oo

if T is a cover of A/B, then Π Jn{A/B) = 0, by Proposition 2.4. So

Π (J n A + B) = B, and hence B is closed. D
n=l

Proposition 2.8. Let R be a Noetherian ring, A a finitely generated R-

module, B a submodule of A, and I an ideal of R. Then it is possible to

choose a finite subset T of Max(i?) such that Π (J n A + IsB) = IsB, for all

s > 0, where J = ΠT.
Proof. By [5, Theorem 5.5(1)], the sequence Ass(A/IsB) is constant for large

oo
5, thus the set U Ass(A/IsB) is finite. Hence it is possible to choose a finite

subset T of Max(iϊ) in such a way that T covers all A/ΓB. By Proposition
2.4, the Proposition follows. D

3. The maximal component of a Noetherian module.

Throughout this section and the next section the ring R will be Noetherian

and the modules will be finitely generated.
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Let A be an iϊ-module and define X(A) = {x G A\ every prime ideal
containing 0 :# x is maximal }. Then X{A) is a submodule of A. Matlis [3]
called X{A) the maximal component of A. By [3, Corollary (3)], X(A) is
the sum of all Artinian submodules of A, and hence is the largest Artinian
submodule of A, since A is Noetherian. Further, X(A/X(A)) = 0.

Chatters [4] gave a similar discussion for Noetherian rings (not necessary
to be commutative).

From [3, Corollary (1)] and the fact that X(A) has finite length we have
the following result.

Theorem 3.1. Let T be a finite cover of A. Set J = ΠT. Then X(A) =

U (0 :A Jn).
n=l

The following result is standard.

Lemma 3.2. Let I be an ideal of R and A φ 0 an R-module. Then
depj(A) > 0 if and only ifQ\AI — Q.

Theorem 3.3. Let A be an R-module, not Artinian. Let T be a finite cover
of A and set J = ΠT. Then X(A) is the least element of the set

S = {B\B is a proper submodule of A and depj(A/B) > 0}.

Proof. Since A is not Artinian, X(A) is a proper submodule of A. By Theo-
rem 3.1, we may assume that X(A) = 0 :A JN. Now

0 :A/x(A) J = (X(A) :A J) /X(A) = 0 :A JN^/0 :A JN = 0.

From Lemma 3.2, depj(A/X(A)) > 0. Hence we have X(A) G S. If B is
a proper submodule of A satisfying that depj(A/B) > 0, again by Lemma
3.2, 0 :A/B J = (B :A J)/B — 0, i.e., B :A J = B. Hence for any integer
n > 0, B :A Jn = B. Thus we get that B = B :A JN D 0 :A JN = X(A),
i.e., X(A) is the least element of S. D

Corollary 3.4. Let A be a non-zero R-module and T a finite cover of A.
Set J = ΠT. Then depj(A) > 0 if and only if X(A) = 0.

Let T = {Mi,... ,Mn} be a finite cover of the i?-module A. We want
to find the relations between X(A) and X(AMi), 1 < i < n. For any P G
Spec(iϊ), if K is an i?p-submodule of AP, denote by Kc the contradiction
of K to A. We have (KC)P = K. If B is a submodule of A, then (BP)

C =
U (B :A r). It is also easily checked that if B is a submodule of A and
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K is an iϊp-submodule of BP, then (Kc Π B)P = K. It follows that if B is
an Artinian submodule of A, then BP is an Artinian submodule of AP. In
particular, we have X(A)P C X(AP).

Theorem 3.5. Let A be an R-module and T = {M1:... , Mn} be a finite
cover of A. Set J = Γ\T. Then

X{A)=niX(AMt)
c.

Proof. Since X(A) C (X(A)MiY Q X (ΛMι)
c for all i, we have X(A) C

Π l ( A M ) c . On the other hand, from Theorem 3.1 we can take a fixed

integer 5 > 0 such that X (AMι) — 0 :AMi M*RMI for all i. Hence

X {AMX = (O :AMt MIRM)C = ((0 :A M / ) M J = ^U^ ((0 :A M?) :A r).

n c

If x E Π X (AMi) , then for each i there is r{ E R-M{ such that r{Mfx = 0.
Since r2i? + Mi = R, we have M"+1x - M/x. Thus

Similarly we have Mx

s+1 M^+1x = Mf M^x. So Js+ιx = Jsx, and hence
Jsx = 0 by Proposition 2.2. Thus a; E 0 :Λ J s C X(A), and the proof is
complete. D

In the remainder of this section we consider modules over local rings.

Lemma 3.6. Let (R,M) be a local ring (M is the unique maximal ideal of
R) and A an R-module. If A is not Artinian, then dim(̂ L) = d'ιm(A/X(A)).

Proof. By the definitions of dim(A) and dim(A/X(A)) we need to show that
rad(0 :R A) — rad(0 :R (A/X(A))). Clearly, we need only to show that
0 :R (A/X(A)) C rad(0 :R A). This follows from the fact that if r E R such
that rA C X(A), then rMsA C MSX(A) = 0 for some integer s > 0, hence
r s + 1 E0:RA. D

Lemma 3.7. [6, p. 105]. Let R be a local ring and A an R-module. If
r i , . . . , rn is an A-sequence, then

dim(A/(ri,... , rn)A) — dim(A) — n.

Theorem 3.8. Let (R,M) be a local ring and A φ 0 an R-module. Then
there is a strictly ascending chain Aγ C • C As of submodules of A such
that

s

Σdep(A/At) =dim(j4).
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Proof. We use induction on d — dim(τ4). If d = 0, then R/(0 :R A) is
Artinian. It follows that 0 :R A is M-primary, and hence Mr C 0 : ^ i for
some integer r > 0. It is clear that dep(A) = 0, and we can take s = 1 and
Ax — 0 in this case. If d > 0, then 0 :R A is not M-primary, and thus Mn <£.
0 :R A for any integer n > 0. It then follows that A φ X(A), by Theorem
3.1. Since X(A/X(A)) = 0, dep{A/X(A)) > 0, by Corollary 3.4. Take a
maximal A/X(A)-sequence x l 5 . . . , # n and set i? = (x 1 ? . . . ,xn)A + X{A).
Further, set A1 = A/X(A). From Lemma 3.7 and Lemma 3.6, dim(A/B) —
dim(^4//(χi5 iχn)A') — dim(A')—n = dim(A)—n < dim(.A). By induction
there is a strictly ascending chain A2/B C C As/B of submodules of
A/B such that Σ<=2 d e P ( ^ M < ) = dim(Λ/J5). Set Ai = X(A), then the
submodules A l 5 . . . , Λs satisfy the required conditions. D

4. The completions and embeddings.

Proposition 4.1. Let T be a finite cover of the Noetherian ring i?, / an
ideal of R. If we consider R with the I-adic topology, the following conditions
are equivalent:

(1) / C ΠT;
(2) the zero ideal and every prime ideal contained in UT is closed;

MR) — M for all MET, where R is the I-adic completion of

R and f : R —)> R is the natural map.

Proof. (1) => (2). Since Π Im = 0 the zero ideal is closed. If P C UT is a

prime ideal, then P C M for some M ζT. Since ASSR(R/P) = {P}, we see
oo

that T is a cover of JR/P. By Proposition 2.4, Π (/m + P) = P, i.e., P is
m=l

closed.
(2) =4> (3). Since {0} is closed, we can assume that R C R. Let M E T.

By [2, Theorem 21; p. 421], MR is the closure of M in Λ, hence MΛ Π Λ
consists of elements of R which are limits of elements contained in M. Since
M is closed we get that MR Γ\R = M.

(3) => (1). Since MR is closed in R and since the map / : R —>• R is
continuous, M is closed in i? for all M G T. If / <£. ΠT, then / (£ M for some
MET. But then we have / m + M = i? for all integer m > 0, contradicting
the fact that M is closed. D

Let Γ be a finite cover of R and set J = ΠT and 5 = R - UT. It is
immediate from Lemma 2.1 that the map A -> As is injective. Also, the
J-adic completion of R is the same as the Ji?s-adic completion of Rs So
we have the following result.
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Theorem 4.2. Any Noetherian ring R can be embedded in a complete semi-
local Noetherian ring; moreover, if R is irreducible, then R can be embedded
in a complete local Noetherian ring.

If / is an ideal of R, we write dep(/) to stand for dep7(i?).

Theorem 4.3. Let T = {Mi,... , Mn} be a finite cover of the Noetherian
ring R and set J — ΠT and S — R — UT. Then the J-adic completion R of
R is a C-M ring if and only if dep(M ) = h t ( M j , i — 1, 2,. . . , n.

Proof. To prove the theorem, it suffices to show that ht(M^) = ht

and dep(Mt) = dep (MtRj , i = 1, 2,... , n.

(1). The proof of ht(M2) - ht (MτRj . Let B = Rs, Qτ = M%RS,

and Rτ — BQX. We now regard R as the Jβ-adic completion of B. From
[1, Theorem 8.15], R = R\ x x ί?n, where Rτ is the completion of the
local ring R{. By [2, Theorem 30; p. 433] we have

ht ( ( Q Λ ) Rτ) - dim (£,) = ht (QO = ht (Mi).

Thus

ht (MτR) = ht [{QιRι) Ri) = ht (Mi).

(2). The proof of dep(M ) = dep (MtR\ . We may view R as a sub-

ring of R. If A is an /ϋ-module, let A be the J-adic completion of A,z(A)

and z (A) the sets of annihilators of A and A respectively. First we have

that if x 0 z(A), then x 0 z(A). This is because tensoring R over R pre-

serves the monomorphism A —̂-> A, for R is i?-flat. Let dep(M?) = s and

# 1 , . . . ,x s be a maximal regular sequence (on R) contained in Mim Since
χj+\ 0 z(R/(xi, ixj)) implies x J + i 0 2 iR/(xλ,... ,x7)i?J , we have that

#1 . . . , xs is a regular sequence on R contained in MiR, so dep ί M%RΛ > s.

On the other hand, since Mτ C z(R/(x1,... , x5)) and since M^ is maximal,

there is x G R such that Mj = ( x l 5 . . . ,a;s) i^ x. Thus we have MiR —

(xu... , x s ) β :gx, by [2, Lemma 7; p. 424]. So M{R C 2: (R/(XU. .. ,X S)JR)

and hence dep (MiRj = s = dep(M f). The proof is complete. D

Corollary 4.4. Lei R be a semi-local Noetherian ring and J the Jacobson
radical of R. Then the J-adic completion R of R is a C-M ring if and only
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if R is a C-M ring.

Corollary 4.5. Any C-M ring can be embedded in a complete semi-local
C-M ring.
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