RIGIDITY OF ISOTROPIC MAPS

Fernando Cukierman

Abstract

We consider a rigidity question for isotropic harmonic maps from a compact Riemann surface to a complex projective space. In the case of the projective plane, we prove that ridigity holds if the degree is small in relation to the genus. For a projective space of any dimension we obtain coarser results about rigidity and rigidity up to finitely many choices.

Introduction.

Let $f, g: X \rightarrow \mathbb{P}^{r}$ denote two isotropic harmonic maps from a compact Riemann surface to complex projective space. In this article we study whether from the isometry of f and g one may conclude their unitary equivalence.

Using Calabi's rigidity theorem, this question may be reduced to one in the algebraic category, involving certain curves of osculating spaces to a holomorphic curve. We obtain some rigidity results mostly by analyzing the quadrics containing those curves.

After recalling some definitions and basic facts, we show in $\S 1$ that our unitary question may be reduced to a projective one. Then in $\S 2$ we record some rigidity statements that follow easily from the use of projective invariants. In $\S 3$ and $\S 4$ we consider plane curves; we prove in (3.8) and (4.13) that ridigidy holds, roughly speaking, if the degree is small compared to the genus, providing a partial answer to a question posed by Quo-Shin Chi [C].

Motivated by the method of proof of Theorem (3.8), in $\S 4$ we begin a study of the ideal of associated curves and of the curves $f^{\langle k\rangle}(X)$ introduced in $\S 1$. This is related to some aspects of Brill-Noether theory that we plan to pursue in another article.
$\S 1$.
(1.1) We consider harmonic maps $X \rightarrow \mathbb{P}^{r}$ from a compact Riemann surface to complex projective space. One way of constructing such harmonic maps is the following: start with a holomorphic non-degenerate $f: X \rightarrow \mathbb{P}^{r}$ and, using the Fubini-Study metric of \mathbb{P}^{r}, construct a Frenet frame $f=$ $f_{0}, f_{1}, \ldots, f_{r}$. The maps $f_{i}: X \rightarrow \mathbb{P}^{r}$ are harmonic, and, for the purpose of this paper, harmonic maps obtained by this process will be called isotropic maps. We refer to [EW] for definitions and details on this construction.

One of the main problems treated in [EW] is to classify isotropic maps among all harmonic maps and, in particular, to give conditions that guarantee that a given harmonic map is isotropic. Here we take a different route and, following Chi [C], we consider the rigidity question
(1.2) If two isotropic maps $F: X \rightarrow \mathbb{P}^{r}$ and $F^{\prime}: X \rightarrow \mathbb{P}^{r}$ are isometric, does it follow that F and F^{\prime} are unitarily equivalent?
(1.3) In order to phrase (1.2) in more convenient terms, we introduce some more notation and discuss a global way of defining the Frenet curves f_{k} (see [$\mathbf{E W}]$).

Let $\mathcal{F}_{k}(k=1,2, \ldots, r)$ denote the flag variety

$$
\mathcal{F}_{k}=\{(A, B) / A \subset B\} \subset \operatorname{Grass}\left(k-1, \mathbb{P}^{r}\right) \times \operatorname{Grass}\left(k, \mathbb{P}^{r}\right)
$$

For $(A, B) \in \mathcal{F}_{k}$ let A^{\prime} and B^{\prime} denote the corresponding k and $k+1$ dimensional vector subspaces of \mathbb{C}^{r+1} and $L=B^{\prime} \cap A^{\prime \perp}$ the (one dimensional) orthogonal complement of A^{\prime} in B^{\prime}, with respect to the standard hermitian inner product on \mathbb{C}^{r+1}. Then we have a well defined differentiable map

$$
\pi_{k}: \mathcal{F}_{k} \rightarrow \mathbb{P}^{r}
$$

sending (A, B) to L.
(1.4) On the other hand, if $f: X \rightarrow \mathbb{P}^{r}$ is holomorphic, let $f^{(k)}: X \rightarrow$ $\operatorname{Grass}\left(k, \mathbb{P}^{r}\right)(k=0,1, \ldots, r-1)$ denote the k-th associated map [ACGH], sending a point $x \in X$ to the osculating k-plane to f at x. Our f induces a holomorphic map $\left(f^{(k-1)}, f^{(k)}\right): X \rightarrow \mathcal{F}_{k}$ and the k-th member f_{k} of the Frenet frame is obtained as the composition

The harmonicity of f_{k} follows from the fact that π_{k} is a Riemannian submersion and ($f^{(k-1)}, f^{(k)}$) is horizontal (see [EW]). It also follows that
(1.5) f_{k} and $\left(f^{(k-1)}, f^{(k)}\right)$ induce the same metric on X.
(Here \mathcal{F}_{k} is given the metric induced by the product metrics of the Grassmanians, which in turn inherit a metric from their Plucker embeddings.)
(1.6) Denote ϕ_{k} the projective embedding of \mathcal{F}_{k} obtained by composing the Segre with the Plucker embeddings

$$
\begin{aligned}
& \mathcal{F}_{k} \subset \operatorname{Grass}\left(k-1, \mathbb{P}^{r}\right) \times \operatorname{Grass}\left(k, \mathbb{P}^{r}\right) \\
& \subset \mathbb{P}\left(\wedge^{k} \mathbb{C}^{r+1}\right) \times \mathbb{P}\left(\wedge^{k+1} \mathbb{C}^{r+1}\right) \subset \mathbb{P}\left(\wedge^{k} \mathbb{C}^{r+1} \otimes \wedge^{k+1} \mathbb{C}^{r+1}\right)=\mathbb{P}_{k}
\end{aligned}
$$

and for $f: X \rightarrow \mathbb{P}^{r}$ holomorphic let us define

$$
f^{(k\rangle}=\phi_{k} \circ\left(f^{(k-1)}, f^{(k)}\right): X \rightarrow \mathbb{P}_{k}
$$

so we may rephrase (1.5) as
(1.7) f_{k} and $f^{\langle k\rangle}$ induce the same metric on X.
(1.8) Now suppose that F and F^{\prime} are as in (1.2), so that there are holomorphic f and f^{\prime} such that $F=f_{h}, F^{\prime}=f_{k}^{\prime}$ and such that f_{h} and f_{k}^{\prime} are isometric. By (1.7), $f^{\langle h\rangle}$ and $f^{\prime\langle k\rangle}$ are isometric, and by Calabi's rigidity theorem, they are unitarily equivalent. Hence, the basic question (1.2) is equivalent to
(1.9) Suppose that $f: X \rightarrow \mathbb{P}^{r}$ and $f^{\prime}: X \rightarrow \mathbb{P}^{r}$ are holomorphic and such that $f^{\langle h\rangle}$ is unitarily equivalent to $f^{\prime\langle k\rangle}$ for some h and k. Does it follow that f is unitarily equivalent to f^{\prime} ? This method of reduction, using the lifting map $f^{\langle k\rangle}$ plus Calabi rigidity, is borrowed from [C]. Now we have a question in the holomorphic, or algebraic, category and we will approach it by translating into the language of linear series.
(1.10) Remark. If $f: X \rightarrow \mathbb{P}^{r}$ is holomorphic non-degenerate and $0 \leq$ $h \leq r$ then f_{h} is isometric to $f_{r-h}^{(r-1)}$. This follows from (1.5) and the relation $f^{(r-1)(h)}=f^{(r-1-h)}$ (see [ACGH]).
The next Proposition will allow us to relate projective and unitary equivalence.
(1.11) Proposition. Let V denote a finite dimensional complex vector space with hermitian inner product \langle,$\rangle . Fix 0 \leq k<\operatorname{dim} V$ and consider $V^{\prime}=\wedge^{k} V \otimes \wedge^{k+1} V \subset V^{\prime \prime}=V^{\otimes 2 k+1}$ with their naturally induced hermitian inner products \langle,\rangle^{\prime} and $\langle,\rangle^{\prime \prime}$. Denote the groups of projective (i.e. modulo scalars) linear automorphisms $G=\operatorname{Aut}(V), H=\operatorname{Aut}(V,\langle\rangle$,$) , with similar$ meaning for G^{\prime} and H^{\prime}. We consider G as a subgroup of G^{\prime} in the natural way. Then $G \cap H^{\prime}=H$.
Proof. For $g: V \rightarrow V$ linear, denote g^{*} the adjoint of g with respect to \langle,$\rangle .$ Also, denote g^{\prime} and $g^{\prime \prime}$ the induced endomorphisms of V^{\prime} and $V^{\prime \prime}$ respectively. It is easy to check that $\left(g^{*}\right)^{\prime \prime}=\left(g^{\prime \prime}\right)^{*}$. Since $g^{\prime}=\left.g^{\prime \prime}\right|_{V^{\prime}}$ and $\langle,\rangle^{\prime}=\left.\langle,\rangle^{\prime \prime}\right|_{V^{\prime}}$, it follows that $\left(g^{*}\right)^{\prime}=\left(g^{\prime}\right)^{*}$ also. Now suppose that $f \in G \cap H^{\prime}$, that is, $f=g^{\prime}$ with $g \in G$ and $f^{*}=f^{-1}$. Then, $\left(g^{*}\right)^{\prime}=\left(g^{\prime}\right)^{*}=\left(g^{\prime}\right)^{-1}=\left(g^{-1}\right)^{\prime}$, which easily implies $g^{*}=g^{-1}$, as wanted.
(1.12) Corollary. In the situation of (1.9), if the isometry between $f^{\langle h\rangle}$ and ${f^{\prime}}^{\langle k\rangle}$ is induced by a projective automorphism σ of \mathbb{P}^{r} then σ is unitary.
(1.13) Corollary. Also in the situation of (1.9), and assuming that $f^{\langle h\rangle}(X)$ does not have projective automorphisms (this happens in particular if X does
not have automorphisms) then f and f^{\prime} are unitarily equivalent if and only if they are projectively equivalent.
§2.
(2.1) In order to fix notation we recall some definitions from [H] or [GH]. If X is a compact Riemann surface, a linear series on X is a pair (L, V) where L is a line bundle on X and $V \subset H^{0}(X, L)$ is a linear subspace of the space of global sections of L. We denote $e: V_{X} \rightarrow L$ the induced bundle map from the trivial vector bundle on X with fiber V, obtained by composing with the natural bundle map $H^{0}(X, L)_{X} \rightarrow L$. We assume that e is surjective (the linear series does not have base points).
If $f: X \rightarrow \mathbb{P}^{r}$ is holomorphic then f induces a linear series on X by taking $L=f^{*} \mathcal{O}(1)\left(\mathcal{O}(1)\right.$ is the line bundle on \mathbb{P}^{r} defined by a hyperplane) and as V the image of the pull-back map $H^{0}\left(\mathbb{P}^{r}, \mathcal{O}(1)\right) \rightarrow H^{0}(X, L)$.

Conversely, from the linear series $V \subset H^{0}(X, L)$ we may reconstruct f up to a projective equivalence since we may construct a holomorphic map $f: X \rightarrow \mathbb{P}\left(V^{*}\right)$ by sending $x \in X$ to the hyperplane in V consisting of sections vanishing at x.

Two linear series (L, V) and (L^{\prime}, V^{\prime}) are said to be isomorphic (written $\left.(L, V) \cong\left(L^{\prime}, V^{\prime}\right)\right)$ if there exists an isomorphism $\phi: L \rightarrow L^{\prime}$ such that $H^{0}(\phi)(V)=V^{\prime}$. Equivalently, the induced maps to projective space are projectively equivalent.

A similar construction applies for maps into Grassmanians: if V is a finite dimensional vector space, morphisms $f: X \rightarrow \operatorname{Grass}\left(k, V^{*}\right)$ correspond to surjective bundle maps $e: V_{X} \rightarrow E$ where E is a vector bundle on X of rank k. Notice that e determines and is determined by the vector space map $H^{0}(e): V \rightarrow H^{0}(X, E)$.
(2.2) Consider a linear series $V \subset H^{0}(X, L)$ on X corresponding to $f: X \rightarrow$ $\mathbb{P}\left(V^{*}\right)$, with $r+1=\operatorname{dim}(V)$. Let $P^{k}(L)$ denote the bundle of jets of order k of sections of L ([G1, G2, P]) and

$$
t_{k}: V_{X} \rightarrow P^{k}(L)
$$

the composition $V_{X} \rightarrow H^{0}(X, L)_{X} \rightarrow P^{k}(L)$ of the inclusion with the natural (truncated Taylor expansion) maps. For $0 \leq k \leq r-1$, denote by P^{k} the image of $t_{k} ; P^{k}$ is a locally free subsheaf of $P^{k}(L)$ of the same rank $k+1$, and the cokernel of t_{k} is supported on the hyperosculation points of f (see (2.6), $[\mathbf{P}],[\mathbf{A C G H}])$. The k-th associated map $f^{(k)}: X \rightarrow \operatorname{Grass}(k+$ $1, V^{*}$) corresponds to $t_{k}: V_{X} \rightarrow P^{k}$ and the composition with the Plucker embedding of the Grassmanian corresponds to

$$
\wedge^{k+1}\left(t_{k}\right): \wedge^{k+1} V_{X} \rightarrow \wedge^{k+1} P^{k}
$$

and hence the map $f^{(k)}: X \rightarrow \mathbb{P}_{k}$ of $\S 1$ is given by the linear series ($L_{V, k}, V^{(k\rangle}$) where $V^{\langle k\rangle}$ is the image of the composition

$$
\begin{equation*}
\wedge^{k} V \otimes \wedge^{k+1} V \rightarrow H^{0}\left(\wedge^{k} P^{k-1}\right) \otimes H^{0}\left(\wedge^{k+1} P^{k}\right) \rightarrow H^{0}\left(\wedge^{k} P^{k-1} \otimes \wedge^{k+1} P^{k}\right) \tag{2.3}
\end{equation*}
$$

and $L_{V, k}=\wedge^{k} P^{k-1} \otimes \wedge^{k+1} P^{k}$.
Now suppose that $f: X \rightarrow \mathbb{P}^{r}$ and $f^{\prime}: X \rightarrow \mathbb{P}^{r}$ are as in (1.9). Let $V \subset H^{0}(X, L)$ and $V^{\prime} \subset H^{0}\left(X, L^{\prime}\right)$ be the corresponding linear series. It follows from (2.3) that if $f^{\langle h\rangle}$ is projectively equivalent to $f^{\prime k\rangle}$ then we have an isomorphism (2.1) of the corresponding linear series

$$
\begin{equation*}
\left(L_{V, h}, V^{\langle h\rangle}\right) \cong\left(L_{V^{\prime}, k}^{\prime}, V^{\prime(k)}\right) . \tag{2.4}
\end{equation*}
$$

From the projective -rather than unitary- viewpoint, question (1.9) may be formulated as
(2.5) If (2.4) is satisfied, to what extend does it follow that

$$
(L, V) \cong\left(L^{\prime}, V^{\prime}\right) ?
$$

(2.6) The line bundle $L_{V, k}$ of (2.3) may be expressed in terms of ramification indices: one has an exact sequence

$$
0 \rightarrow P^{k} \rightarrow P^{k}(L) \rightarrow \operatorname{Coker}\left(t_{k}\right) \rightarrow 0
$$

and by $[\mathbf{A C G H}]$, page 39, $\operatorname{Coker}\left(t_{k}\right)$ is the structure sheaf of the divisor

$$
R_{k}=\sum_{x \in X} \sum_{0 \leq j \leq k} \alpha_{j}(x) \cdot x
$$

where $\alpha_{j}(x)$ is the j-th ramification index of (L, V) at x. We obtain

$$
\wedge^{k+1} P^{k}(L)=\wedge^{k+1} P^{k} \otimes \mathcal{O}_{X}\left(R_{k}\right)
$$

(2.7) From the standard exact sequences

$$
0 \rightarrow \Omega^{\otimes k} \otimes L \rightarrow P^{k}(L) \rightarrow P^{k-1}(L) \rightarrow 0
$$

where Ω denotes the sheaf of 1 -forms on X, we obtain

$$
\wedge^{k+1} P^{k}(L)=\wedge^{k} P^{k-1}(L) \otimes \Omega^{\otimes k} \otimes L
$$

$$
L_{V, k}=\Lambda^{k} P^{k-1} \otimes \Lambda^{k+1} P^{k}=\Omega^{\otimes k^{2}} \otimes L^{\otimes 2 k+1} \otimes \mathcal{O}_{X}\left(-R_{k-1}-R_{k}\right)
$$

(2.8) If, for instance, f does not have hyperosculation points of order k (i.e. $R_{k}=0$) then $L_{V, k}=L_{k}$ does not depend on V and $f^{\langle k\rangle}: X \rightarrow \mathbb{P}_{k}$ corresponds to the linear series $\left(L_{k}, V^{\langle k\rangle}\right)$ where $V^{\langle k\rangle}$ is the image of

$$
\begin{aligned}
\wedge^{k} V \otimes \wedge^{k+1} V & \rightarrow H^{0}\left(\Omega^{\otimes\binom{k}{2}} \otimes L^{\otimes k}\right) \otimes H^{0}\left(\Omega^{\otimes\binom{k+1}{2}} \otimes L^{\otimes k+1}\right) \\
& \rightarrow H^{0}\left(\Omega^{\otimes k^{2}} \otimes L^{\otimes 2 k+1}\right) .
\end{aligned}
$$

(2.9) Proposition. Let X be a Riemann surface of genus $g \geq 0$. Consider holomorphic maps $f: X \rightarrow \mathbb{P}^{r}$ and $f^{\prime}: X \rightarrow \mathbb{P}^{r}$. Let d denote the degree of f and $r_{k}=\operatorname{deg}\left(R_{k}\right)$, with similar primed notation for f^{\prime}. Suppose that $f^{(h)}$ is projectively equivalent to $f^{\prime(k)}$. Then

$$
2(g-1) h^{2}+d(2 h+1)-r_{h-1}-r_{h}=2(g-1) k^{2}+d^{\prime}(2 k+1)-r_{k-1}^{\prime}-r_{k}^{\prime} .
$$

Proof. If f (resp. f^{\prime}) corresponds to (L, V) (resp. $\left.\left(L^{\prime}, V^{\prime}\right)\right)$ then $f^{(h)}$ projectively equivalent to $f^{\prime(k)}$ implies, by (2.4) and (2.7), that

$$
\Omega^{\otimes h^{2}} \otimes L^{\otimes 2 h+1} \otimes \mathcal{O}_{X}\left(-R_{h-1}-R_{h}\right) \cong \Omega^{\otimes k^{2}} \otimes L^{\prime \otimes 2 k+1} \otimes \mathcal{O}_{X}\left(-R_{k-1}^{\prime}-R_{k}^{\prime}\right) .
$$

Taking degree we obtain the Proposition.
(2.10) For the rest of this \S, we restrict our attention to holomorphic maps $f: X \rightarrow \mathbb{P}^{r}$ without special hyperosculation points, that is, we assume $R_{r-1}=0$.
(2.11) Corollary. Using the notation in (2.9), suppose that $d=d^{\prime}$ and $h \neq k$. Then f_{h} is not isometric to f_{k}^{\prime}, except that f_{h} may be isometric to f_{d-h} when $g=0$.
Proof. when $d=d^{\prime}$ the equality in (2.9) may be written as $(g-1)(h-k)(h+$ $k)=-d(h-k)$.
(2.12) Remark. Regarding the case $g=0$, fix an hermitian inner product on $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)$ and consider the d-tuple Veronese embedding $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}$ defined by an orthonormal basis of $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(d)\right)=\operatorname{Symm}^{d}\left(H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(1)\right)\right)$. Then f_{h} and f_{d-h} are isometric but not unitarily equivalent, since they have different Kahler angle (see [BJRW], Theorem (5.2)).
(2.13) Proposition. If $f: X \rightarrow \mathbb{P}^{r}$ and $f^{\prime}: X \rightarrow \mathbb{P}^{r}$ are such that $f^{\langle h\rangle}$ is projectively equivalent to $f^{\prime(h)}$ then $L^{\otimes 2 h+1} \cong L^{\otimes 2 h+1}$.
Proof. Follows from (2.4) and (2.7).
(2.14) For a linear series (L, V) on a curve X of genus $g \geq 0$, let us denote $\operatorname{deg}(L)=d, \operatorname{dim}(V)=r+1$. The series (L, V) is said to be complete if $V=H^{0}(X, L)$. We remark that if $d \geq 2 g-1$ and $r \geq d-g$ then it follows
from Riemann-Roch that (L, V) is complete and $r=d-g$. Hence, a nondegenerate map $f: X \rightarrow \mathbb{P}^{d-g}$ with $d \geq 2 g-1$ determines and is determined (up to projective equivalence) by a line bundle L on X of degree d.
(2.15) Proposition. Suppose $f: X \rightarrow \mathbb{P}^{r}$ is a non-degenerate holomorphic map of degree $d \geq 2 g-1$, with $r=d-g$, and fix $0 \leq h \leq r$. Then, up to unitary equivalence, there exist at most $(2 h+1)^{2 g}$ non-degenerate holomorphic maps $f^{\prime}: X \rightarrow \mathbb{P}^{r}$ such that f_{h}^{\prime} is isometric to f_{h}.

Proof. By (2.14), f (resp. f^{\prime}) corresponds to a complete linear series with line bundle L (resp. L^{\prime}). Suppose that f_{h}^{\prime} is isometric to f_{h} and that f^{\prime} is not isometric to f. We claim that L is not isomorphic to L^{\prime} : otherwise f and f^{\prime} would be projectively equivalent and hence, by (1.12), unitarily equivalent, contrary to our assumption. On the other hand, according to (2.13), we have $L^{\otimes 2 h+1}=L^{\prime \otimes 2 h+1}$ and hence the possible choices for L^{\prime} correspond to the $(2 h+1)^{2 g}$ points of $(2 h+1)$-torsion in the group $\operatorname{Pic}^{0}(X)$ of isomorphism classes of line bundles of degree zero on X.
(2.16) Remark. using the notation of (2.15), there are at most $D^{2 g}$ maps f^{\prime} such that f_{h} is isometric to f_{h}^{\prime} and f_{k} is isometric to f_{k}^{\prime}, where D is the greatest common divisor of $2 h+1$ and $2 k+1$. The argument is the same as in (2.15).
(2.17) Proposition. Suppose $f: X \rightarrow \mathbb{P}^{2}$ maps X birationally onto a curve $Y=f(X)$ of degree d with $\delta \leq d-3$ nodes as only singularities. Then f_{1} is rigid (among maps as in (2.10)).

More precisely, if $f^{\prime}: X \rightarrow \mathbb{P}^{2}$ is such that f_{1}^{\prime} is isometric to f_{1} and f^{\prime} does not have cusps (i.e. $R_{1}^{\prime}=0$) then f^{\prime} is unitarily equivalent to f.

Proof. Let f (resp. f^{\prime}) be given by the linear series (L, V) (resp. (L^{\prime}, V^{\prime})). It follows from (2.7) that $L^{\otimes 3} \cong L^{\prime \otimes 3}$ and hence $d=d^{\prime}$. It is known (see [ACGH], page 56) that (L, V) is the unique linear series on X with $\operatorname{deg}(L)=$ d and $\operatorname{dim}(V) \geq 3$. It follows that f and f^{\prime} are projectively equivalent and hence, by (1.12), they are unitarily equivalent.
(2.18) Remark. A similar proposition holds for maps $f: X \rightarrow \mathbb{P}^{r}$ such that the corresponding linear series is unique with the given degree and dimension. See [CL] for examples of this situation.
(2.19) Remark. A stronger result than (2.17) will be proved in (3.8) using a different method.
§3.
(3.1) In this section we specialize to the case of plane curves. We consider a holomorphic map $f: X \rightarrow \mathbb{P}^{2}$ from a compact Riemann surface X of genus $g \geq 0$. We assume that f maps X birationally onto a curve $Y=f(X)$ of degree d.
(3.2) As in $\S 2, f_{1}$ is isometric to $f^{(1)}: X \rightarrow \mathcal{F}_{1} \subset \mathbb{P}^{8}$. Identifying \mathbb{P}^{2} with its dual, we may think of $\mathcal{F}=\mathcal{F}_{1}$ as

$$
\mathcal{F}=\left\{(x, y) / x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}=0\right\} \subset \mathbb{P}^{2} \times \mathbb{P}^{2} \subset \mathbb{P}^{8} .
$$

(3.3) As in (1.10), let us notice that if $f^{(1)}$ denotes the first associated (or dual) curve of f then f_{1} is isometric to $f_{1}^{(1)}$. In fact, if τ is the unitary automorphism of \mathbb{P}^{8} defined by $\tau(x \otimes y)=(y \otimes x)$ then the known biduality $f^{(1)(1)}=f$ means that $\tau f^{(1)}=f^{(1)(1)}$.
(3.4) We will say that f_{1} is rigid if it is true that given a map $f^{\prime}: X \rightarrow \mathbb{P}^{2}$ as in (3.1), with degree d^{\prime}, such that f_{1} and f_{1}^{\prime} are isometric, it follows that f^{\prime} is unitarily equivalent to f or to $f^{(1)}$.
(3.5) Since $\mathbb{P}^{2} \times \mathbb{P}^{2} \subset \mathbb{P}^{8}$ is cut out by quadrics and \mathcal{F} is a hyperplane section of $\mathbb{P}^{2} \times \mathbb{P}^{2}, \mathcal{F}$ is equal to the intersection of the quadrics containing it. For a variety Z in projective space, let us denote $I_{2}(Z)$ the space of quadrics containing Z.

Clearly we have $I_{2}(\mathcal{F}) \subset I_{2}\left(f^{\{1\rangle}(X)\right)$.
(3.6) Proposition. If $I_{2}(\mathcal{F})=I_{2}\left(f^{(1)}(X)\right)$ then f_{1} is rigid.

Proof. If f_{1} is isometric to f_{1}^{\prime} then, as in $\S 2$, there exists a unitary linear isomorphism $\sigma: \mathbb{P}^{8} \rightarrow \mathbb{P}^{8}$ such that $\sigma\left(f^{(1)}(X)\right)=f^{\prime(1)}(X)$. Then σ transforms the quadrics containing $f^{\langle 1\rangle}(X)$ into the quadrics containing $f^{\prime(1)}(X)$. Using our hypothesis it follows that $\sigma\left(I_{2}(\mathcal{F})\right)=I_{2}(\mathcal{F})$. Since \mathcal{F} is an intersection of quadrics, we obtain that $\sigma(\mathcal{F})=\mathcal{F}$. $\operatorname{But} \operatorname{Aut}(\mathcal{F})$ is the direct product of Aut $\left(\mathbb{P}^{2}\right)$ (acting by $g(x, y)=(g(x), g(y))$) and the subgroup generated by τ (as in (3.3)), and hence it follows that either σ or $\tau \sigma$ is induced from \mathbb{P}^{2}. It follows from (1.11) that the automorphism of \mathbb{P}^{2} is in fact unitary. This proves the Proposition.
(3.7) Remark. A proposition similar to (3.6) holds for maps $f: X \rightarrow \mathbb{P}^{r}$ due to the fact that \mathcal{F}_{k} (as in §2) is also an intersection of quadrics. In fact, $\operatorname{Grass}\left(k-1, \mathbb{P}^{r}\right) \times \operatorname{Grass}\left(k, \mathbb{P}^{r}\right) \subset \mathbb{P}_{k}($ as in (1.6)) is the intersection of the Grassmann and the Segre quadrics, and \mathcal{F}_{k} is a linear section of the product of the Grassmannians (see [D], page 184).
(3.8) Theorem. Let $f: X \rightarrow \mathbb{P}^{2}$ be a holomorphic map as in (3.1). Denote $r_{1}=\operatorname{deg}\left(R_{1}\right)$ the total number of cusps of f, as in (2.6). If $3 d<2 g-2-r_{1}$ then f_{1} is rigid.

Proof. We will prove that $I_{2}(\mathcal{F})=I_{2}\left(f^{\langle 1\rangle}(X)\right)$. The result then follows from (3.6). Suppose that there exists a quadric $Q \subset \mathbb{P}^{8}$ containing $f^{(1)}(X)$ and not containing \mathcal{F}. Denote $Z=\left(f(X) \times \mathbb{P}^{2}\right) \cap Q \cap \mathcal{F} \subset \mathbb{P}^{2} \times \mathbb{P}^{2} \subset \mathbb{P}^{8}$. We claim that all components of Z have dimension one. Let h and k denote the pull-backs to \mathcal{F} of the hyperplane classes in \mathbb{P}^{2}, so that h and k form a basis of $\operatorname{Pic}(\mathcal{F})$. The claim follows by observing that no component of the divisor $Q \cap \mathcal{F}$, with class $2 h+2 k$, could contain the irreducible divisor $\left(f(X) \times \mathbb{P}^{2}\right) \cap \mathcal{F}$ with class $d h$, because $d>2$.

Since $f^{(1)}(X) \subset Z$, we must have $\operatorname{deg}\left(f^{(1)}(X)\right) \leq \operatorname{deg}(Z)$. Computing in $\operatorname{Pic}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right), \operatorname{deg}(Z)=d h .(2 h+2 k) .(h+k) .(h+k)=6 d$. On the other hand, we obtain from (2.7) $\operatorname{deg}\left(f^{(1\rangle}(X)\right)=\operatorname{deg}\left(\Omega \otimes L^{\otimes 3} \otimes \mathcal{O}_{X}\left(-R_{1}\right)\right)=$ $2 g-2+3 d-r_{1}$, so that the existence of Q implies $2 g-2-r_{1} \leq 3 d$. This contradiction proves the Theorem.
(3.9) Corollary. Suppose for instance that the only singularities of $f(X)$ are δ nodes and $\kappa=r_{1}$ ordinary cusps. If $2 \delta+3 \kappa<d(d-6)$ then f_{1} is rigid.

Proof. Follows from (3.8) and the formula $g=\binom{d-1}{2}-\delta-\kappa$.
§4.
(4.1) In view of (3.7) and (3.8), it seems interesting to determine the equations of the projective curves $f^{(k)}(X)$ and $f^{\langle k\rangle}(X)$ for a given $f: X \rightarrow \mathbb{P}^{r}$.

We remark that the space of hyperplanes containing $f^{(k)}(X)$ is the kernel of the higher Gauss map $\wedge^{k+1} V \rightarrow H^{0}\left(\wedge^{k+1} P^{k}\right)$, with notation as in (2.2). When this map is onto, the ideal of $f^{(k)}(X)$ is generated by quadrics since the degree of $\wedge^{k+1} P^{k}$ is large (see [G]); also, these quadrics may be represented as two by two minors of a certain matrix of linear forms [EKS]. We leave a more detailed study of this situation for a future paper.

Now we start by looking at the hyperplanes containing $f^{\langle 1\rangle}(X)$ for a given $f: X \rightarrow \mathbb{P}^{2}$.
(4.2) Proposition. Let $f: X \rightarrow \mathbb{P}^{2}$ be a holomorphic immersion given by the linear series (L, V) of dimension 3 and degree d, and consider $f^{\langle 1\rangle}: X \rightarrow$ \mathbb{P}^{8} as in (3.2). Denote by E the hyperplane $E=\left\{(x, y) / x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}=\right.$ $0\} \subset \mathbb{P}^{8}$. Then the following holds
(a) if $g=g(X)>0$ then $Y=f^{\langle 1\rangle}(X) \subset E$ is non-degenerate,
(b) if $X=\mathbb{P}^{1}$ then $Y \subset E$ is degenerate if and only if f is given (up to projective transformations) by $f(t)=\left(1, t^{n}, t^{m}\right)$ for some $m, n \in \mathbb{N}$.

Proof. Let the plane curve $f(X) \subset P^{2}$ be given by the equation $F=0$, so that

$$
Y=\{(x, y) / F(x)=0, y=\Delta F\} \subset \mathbb{P}^{2} \times \mathbb{P}^{2} \subset \mathbb{P}^{8}
$$

where we set $\Delta F=\left(F_{0}, F_{1}, F_{2}\right)$ and the subindices indicate partial derivatives. In these terms, a hyperplane $H \subset \mathbb{P}^{8}$ with equation $\sum a_{i j} x_{i} \otimes y_{j}$ containing Y is the same as a relation

$$
\begin{equation*}
\sum L_{i}(x) F_{i}(x)=0 \quad \bmod F \tag{4.3}
\end{equation*}
$$

where the L_{i} are linear in x. When $\left(L_{0}, L_{1}, L_{2}\right)=\left(x_{0}, x_{1}, x_{2}\right), H$ is E, and the idea is that when $H \neq E$ then (4.3) implies the existence of a non-zero regular vector field on X. In fact, an (L_{0}, L_{1}, L_{2}) as in (4.3) is the same as an element in the kernel of $\Delta F \circ \beta$ in the diagram

where the vertical maps are pull-back of sections. Consider the diagram

where $\varphi=\left(F_{0}, F_{1}, F_{2}\right)$, the column is the pull-back to X of the Euler sequence on $P=\mathbb{P}^{2}$ and the row is the normal bundle sequence of $f(D$ is the divisor of zeroes of the differential $d f$ and the normal bundle N_{f} is realized as a subbundle of $f^{*} \mathcal{O}_{P}(d)$ via φ). Taking global sections in (4.5) we see that if $H^{0}(X, T X(D))=0$ then $\operatorname{ker}(\Delta F)$ is one-dimensional, and hence $\operatorname{dim}(\operatorname{ker}(\Delta F \circ \beta))=1$, as wanted. The condition $H^{0}(X, T X(D))=\overline{0}$ is satisfied if $\operatorname{deg}(D)<2 g-2$; in particular, it is satisfied if f is an immersion ($D=0$) and $g \geq 2$.

It remains to analyze the case $g=1$. Suppose that X is an elliptic curve, represented as the complex plane modulo a lattice. We may assume that $f: X \rightarrow \mathbb{P}^{2}$ is given by $f(z)=\left(1, f_{1}(z), f_{2}(z)\right)$ where f_{1} and f_{2} are elliptic
functions with $0<\operatorname{ord}\left(f_{1}\right)<\operatorname{ord}\left(f_{2}\right)$; here ord denotes order of pole at the origin. As before, denote by $F=0$ the equation of $f(X)$, so that we have $F\left(1, f_{1}(z), f_{2}(z)\right)=0$ for all z. Differentiating this, we obtain the second of the equalities below. The other two are the Euler relation and (4.3).

$$
\begin{aligned}
& F_{0}\left(1, f_{1}, f_{2}\right)+ F_{1}\left(1, f_{1}, f_{2}\right) f_{1}+F_{2}\left(1, f_{1}, f_{2}\right) f_{2}=0 \\
& F_{1}\left(1, f_{1}, f_{2}\right) f_{1}^{\prime}+F_{2}\left(1, f_{1}, f_{2}\right) f_{2}^{\prime}=0 \\
& F_{0}\left(1, f_{1}, f_{2}\right) L_{0}\left(1, f_{1}, f_{2}\right) \\
&+F_{1}\left(1, f_{1}, f_{2}\right) L_{1}\left(1, f_{1}, f_{2}\right)+F_{2}\left(1, f_{1}, f_{2}\right) L_{2}\left(1, f_{1}, f_{2}\right)=0
\end{aligned}
$$

It follows that $\left(L_{0}, L_{1}, L_{2}\right)=a\left(1, f_{1}, f_{2}\right)+b\left(0, f_{1}^{\prime}, f_{2}^{\prime}\right)$ for some constants a and b. We get a contradiction by looking at orders of pole at the origin.

For (b) consider the exact diagram of sheaves on X

Using coordinates x_{0} and x_{1} on $X=\mathbb{P}^{1}$, a syzygy as in (4.3) may be represented by an element $\left(L_{0}, L_{1}\right) \in H^{0}\left(\mathcal{O}_{X}(1)^{2}\right)$ such that

$$
\begin{equation*}
\operatorname{Jac}(f) \cdot\left(L_{0}, L_{1}\right) \in V^{3} \subset H^{0}(X, L)^{3} \tag{4.6}
\end{equation*}
$$

Considering the differential operator $\delta: H^{0}\left(X, \mathcal{O}_{X}(d)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(d)\right)$ defined by $\delta=L_{0} \frac{\partial}{\partial x_{0}}+L_{1} \frac{\partial}{\partial x_{1}}$, we see that (4.6) is equivalent to the condition $\delta(V) \subset V$. Now, Aut $\left(\mathbb{P}^{1}\right)$ acts on the space of vector fields on \mathbb{P}^{1} with two orbits, so we may assume after a change of variables that $\delta=x_{1} \frac{\partial}{\partial x_{0}}$ (a vector field with a double zero) or that $\delta=x_{0} \frac{\partial}{\partial x_{0}}$ (a vector field with two simple zeroes). Denote $e_{i}=x_{0}^{i} x_{1}^{d-i}$ the standard basis of $H^{0}\left(X, \mathcal{O}_{X}(d)\right)$. In the first case, we have $\delta\left(e_{i}\right)=i . e_{i-1}$ and we see that δ is nilpotent and its only three-dimensional invariant subspace is the one generated by e_{0}, e_{1}, e_{2}. In the second case we have $\delta\left(e_{i}\right)=i . e_{i}$, so that the e_{i} are eigenvectors with different eigenvalues, and the three-dimensional δ-invariant subspaces are the ones generated by three of the e_{i} 's. From this, (b) easily follows in both cases.

Now we consider the quadrics containing $Y=f^{\langle 1\rangle}(X)$ for a given $f: X \rightarrow$ \mathbb{P}^{2} with linear system (V, L). We maintain the notation introduced above. It is easy to see that such a quadric is the same as a relation

$$
\sum Q_{i j}(x) F_{i}(x) F_{j}(x)=0 \quad \bmod F
$$

where the $Q_{i j}$ are homogeneous polynomials of degree two. In other words, such a quadric corresponds to an element

$$
\begin{equation*}
q \in S^{2}\left(H^{0}\left(P, \mathcal{O}_{P}(1)\right)^{3}\right) \text { such that } S^{2}(\Delta F)(q)=0 \tag{4.7}
\end{equation*}
$$

using notation as in (4.4); S^{2} denotes second symmetric power.
Let us recall (see [H], Exercise (5.16)) that for each exact sequence $0 \rightarrow$ $A \rightarrow B \rightarrow C \rightarrow 0$ of locally free sheaves, with A of rank one, one has a natural exact sequence

$$
\begin{equation*}
0 \rightarrow A \otimes B \rightarrow S^{2}(B) \rightarrow S^{2}(C) \rightarrow 0 \tag{4.8}
\end{equation*}
$$

Applying (4.8) twice to (4.5) (assuming $D=0$) we obtain the exact diagram (4.9)

Taking cohomology in (4.9) we find that

$$
\begin{equation*}
H^{0}\left(\operatorname{ker} S^{2}(\varphi)\right) / H^{0}\left(L^{3}\right) \cong \operatorname{ker}\left(H^{0}\left(f^{*} T P \otimes T X\right) \rightarrow H^{1}\left(L^{3}\right)\right) . \tag{4.10}
\end{equation*}
$$

On the other hand, considering the natural maps

$$
S^{2}\left(V^{3}\right) \rightarrow S^{2}\left(H^{0}(L)^{3}\right) \rightarrow H^{0}\left(S^{2}\left(L^{3}\right)\right)
$$

it follows that the space of quadrics containing Y modulo those containing $\mathbb{P}^{2} \times \mathbb{P}^{2}$ is a subspace of $H^{0}\left(\operatorname{ker} S^{2}(\varphi)\right)$. The quadrics that are multiples of the Euler relation are represented by elements in $H^{0}\left(L^{3}\right)$ and, therefore, the space of quadrics containing Y modulo those containing \mathcal{F} may be identified with a subspace of $\operatorname{ker}\left(H^{0}\left(f^{*} T P \otimes T X\right) \rightarrow H^{1}\left(L^{3}\right)\right)$.

Combining this with Proposition (3.6) we obtain
(4.11) Proposition. If the space in (4.10) is zero (for instance, if $H^{0}\left(f^{*} T P \otimes\right.$ $T X)=0$) then f_{1} is rigid.

Now we assume $g \geq 2$ and turn our attention to $H^{0}(B)$, where we set $B=f^{*} T P \otimes T X$. Let us remark first that the Euler characteristic of B is $3(d-(2 g-2))$, so $H^{0}(B)=0$ is possible only if $d \leq 2 g-2$. Tensoring the Euler sequence $0 \rightarrow \mathcal{O}_{X} \rightarrow V^{*} \otimes L \rightarrow f^{*} T P \rightarrow 0$ by $T X$ and taking cohomology, we obtain an exact sequence

$$
0 \rightarrow V^{*} \otimes H^{0}(L \otimes T X) \rightarrow H^{0}(B) \rightarrow H^{1}(T X) \rightarrow V^{*} \otimes H^{1}(L \otimes T X)
$$

where the last map is Serre-dual to the multiplication map

$$
\mu: V \otimes H^{0}(2 K-L) \rightarrow H^{0}(2 K)
$$

(here K denotes a canonical divisor and, as it is customary, we use additive notation).

Hence,
(4.12) For $d<2 g-2, H^{0}(B)=0$ if and only if μ is onto.

By the H^{0} Lemma $([\mathbf{G}],(4 . e .1)), \mu$ is onto if $h^{1}(2 K-2 L) \leq 1$. Since this condition is satisfied if $d \leq g-1$, we obtain
(4.13) Proposition. If $g(X) \geq 2$ and $f: X \rightarrow \mathbb{P}^{2}$ is an immersion of degree $d \leq g-1$ then f_{1} is rigid.

References

[ACGH] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of Algebraic Curves, Springer-Verlag, 1985.
[BJRW] J. Bolton, G. Jensen, M. Rigoli, and L. Woodward, On Conformal Minimal Immersions of S^{2} into \mathbb{P}^{n}, Mathematische Annalen, 279 (1988), 599-620.
[C] Q.S. Chi, Rigidity of superminimal immersions of compact Riemann surfaces into \mathbb{P}^{2}, Tohoku Mathematical Journal, 42(3) (1990), 439-455.
[CL] C. Ciliberto and R. Lazarsfeld, On the uniqueness of certain linear series on some classes of curves, Springer Lecture Notes in Mathematics, 997.
[D] J. Dieudonne, Cours de Geometrie Algebrique, Presses Universitaires de France, 1974.
[EW] J. Eells and J. C. Wood, Harmonic Maps from Surfaces to Complex Projective Spaces, Advances in Mathematics, 49 (1983), 217-263.
[EKS] D. Eisenbud, J. Koh, and M. Stillman, Determinantal Equations for Curves of High Degree, American Journal of Mathematics, 110 (1988), 541-575.
[G] M. Green, Koszul Cohomology and the Geometry of Projective Varieties, J. Diff. Geom., 19 (1984), 125-171.
[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, 1978.
[G1] A. Grothendieck, Eléments de calcul infinitesimal, Sem. Cartan, Exp., 14 (196061).
[G2] , EGA IV (4), Publ. Math. IHES, 32 (1967).
[H] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
[P] R. Piene, Numerical characters of a curve in projective n-space in Real and complex singularities, Sijthoff and Noordhoff, 1977, 475-495.

Received January 14, 1994. Work partially supported by the General Research Fund at the University of Kansas, the University of Buenos Aires, the Max-Planck Institute for Mathematics and the CDE.
fCEyn, Univ. de Buenos Aires
Departamento de Matematica
Ciudad Universitaria
(1428) Buenos Aires, Argentina

E-mail address: fcukier@mate.dm.uba.ar

