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ENDPOINT INEQUALITIES FOR BOCHNER-RIESZ
MULTIPLIERS IN THE PLANE

ANDREAS SEEGER

A weak-type inequality is proved for Bochner-Riesz means
at the critical index, for functions in LP(M2), 1 < p < 4/3.

1. Introduction.

For a Schwartz-function / E S(R2) let f(ξ) = / f(y)e~ι{y^dy denote the
Fourier transform and define the Bochner-Riesz means by

SRf(x) = T A(2π)2

we set Sx ~ Sx. It is a classical theorem of Bochner that Sx extends to
a bounded operator on L P (E 2 ), l < p < o c i f λ > 1/2. The theorem of
Carleson and Sjδlin [2] states that Sx is bounded in LP(R2) if 0 < λ < \ and

P ^ T^2\- ̂  ^s w e n known that the Lp boundedness fails if p <
and C. Feίferman [11] showed that S° is not bounded in LP(R2) \ίpφ2.

In this paper we are concerned with endpoint estimates for the critical
exponent po(X) — jr^x- In [4, 5] M. Christ proved that Sλ is of weak
type (po(λ),Po(λ)) if 1/6 < λ < 1/2 (for related results see also [6, 15]).
A combination of ZΛvariants of Calderόn-Zygmund theory (as used first
by Fefferman [10]) and the Lp —> L2 restriction theorem for the Fourier
transform (valid for p < 6/5 = po(l/Q)) is essential in Christ's analysis; this
accounts for the restriction λ > 1/6. It had been an open problem whether
the weak type inequality for the critical index X(p) ~ 2(l/p — 1/2) — 1/2
is true for 6/5 < p < 4/3 (although for radial functions this was proved by
Chanillo and Muckenhoupt [3]).

Theorem 1.1. Suppose that 0 < λ < 1/2. Then for all a > 0 there is the
weak-type inequality

PΌ\\f\\
\{x e R2 : \Sxf(x)\ > a}\ < C^-, p0 =
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where C does not depend on f or a.

By scaling the same estimate holds for S^, uniformly in i?, and a standard
argument gives that liniR^oo S^f = f in the topology of the weak type space

LPOOO provided that / G LP 0(R 2).
We shall also prove an Lp endpoint version of the Carleson-Sjόlin theorem.

Define

- 10,(1-ItW

Theorem 1.2. Suppose that 1 < p < 4/3 and λ(p) = 2 (^ - | ) - \. Then
mλ(p),7

 2 5 a Fourier multiplier of LP(R2) if and only if 7 > -.

The necessity of the condition 7 > 1/p was proved in [14], the sufficiency
for p< 6/5 in [15].

In what follows c and C will always be positive numbers which may assume
different values in different formulas.

2. Strong type estimates.

For an interval / on the real line denote by /* the interval with same midpoint

and double length. Suppose 3 — {Ij}j>o is a collection of intervals such that

Ij C (1/4,4) and 2~j~3 < \Ij\ < 2~j and such that

ηnη. = 0 xjφj'.

For each j > 0 let ψj be a C2-function supported in Ij with bounds

< 2je ί — 0 1 2

Let 77 G C0°°(E2) such suppί??) C { ( e R 2 : | 6 / 6 I < 10"1, 6 > 0}.
Define the operator Tj by

(2-1) Ί)f(ξ) =

Tj is a bounded operator on L1 with operator norm O(2 J/2), and Cordoba
[8] showed that the L4/3 operator norm of Tj is O(j 1 / 4 ) We note that in
order to prove results such as Theorem 1.2 for p > 1 it is not sufficient to
derive sharp Lp bounds for the individual operators Tj. Our main result is

Theorem 2.1. Suppose that 1 < p < 4/3 and λ(p) = 2 (± - | ) - \ and 3,

Tj are as above. Then there is the inequality

(2.2) <c
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In particular if

(2.3)

then m is a Fourier multiplier of Lp if {α,} G ίv (simply apply Theorem
2.1 with fj = aj2~jX^f). It is easy to see that the multiplier m λ / γ in (1.1)
is a finite sum of a smooth compactly supported function and rotates of
multipliers of the form (2.3), with CLJ — cj~Ί'. Therefore Theorem 2.1 implies
Theorem 1.2.

Proof of Theorem 2.1 By duality the inequality (2.2) is equivalent to

(2.4)

As in [8] one decomposes each ψj(\ • |) into pieces which are essentially
supported in rectangles of dimensions (c2~J/2,c2~ '). To this end let β €
C£°(K) be supported in (-1,1) such that ΣίL-oo β(s ~v) = l for all s e R
Then define TJ by

Ίff(ξ) =β(2"%-v)Ί)~f(ξ).

For n < j/2 let

3" = {(u, z/) € Z2 : 2^2-"-1 < \u - u'\ < 2j/2~n}.

Notice that T// T/'/ = 0 if {v, u1) G 3" and n < 0. Therefore

(2.5)

- Σ

<Σ
n = 0

Σ

We shall show that for q > 4 the n t h term in (2.5) is bounded by
C2-nW2-2'ti\\f\\q from which (2.4) immediately follows. This is contained

in
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Proposition 2.2. For f,g e S(R2) let

B?U,9) = Σ

Then for q > 4 there is the inequality

(2.6)

Proof The inequality follows by complex interpolation for bilinear mappings
from the cases q = 4 and q — oo. The correct interpretation of (2.6) for
g = oo is of course

sup 2~3

3
Σ ϊr/^ < C2-"| |/ | | 0 O | | 9 | | 0 O.

But this is immediate since each operator T? is bounded on L°° with norm
independent of j and v and since the cardinality of 3^ is bounded by G2^2 x

We shall now prove the required estimate for q — 4 which is

(2-7)

uniformly in n.
We first use PlanchereΓs theorem and C. Feίferman^basic observation

([12, 8]) that for fixed j the sets supp(T^/) + supp(T^g) are essentially
disjoint; that is each ξ E IR2 is contained in at most M of these sets where
M is independent of j . This yields the inequality

(2.8) Σ 1127/^
j>2n

It is crucial for this proof that a finer decomposition can be made depending
on how far apart the supports of Tff and T f'g are, that is, depending on n.
We define operators T^μ by

so that Tjμf is supported in a rectangle of dimensions (C2~ 7 + n , C2~~j). Again

one can check that for fixed j and fixed {y, v') G 3^ each ξ G R2 is con-

tained in at most M of the sets E$vv, = supp(ίf7) + supp(T/'μp) where



BOCHNER-RIESZ MULTIPLIERS 547

M is independent of j , v, is'. Each E^vv, is contained in a rectangle of
dimensions (C2~J'+n,C2~J"). For fixed j , i/, 1/ there are no more than
(j"2^-2n) of these rectangles and they form an essentially disjoint cover of
suppCΓff) + supp(Tj"5), the latter set being contained in a rectangle of di-
mensions (C2~J/2,Cf2~~J/2~~n). The disjointness property and PlanchereΓs
theorem imply that

(2.9) Σ P W ί θ i β < σ Σ Σ Σ \\τίl

j>2n j>2n μ,μ'

For any integer n with |/c| < 2n let

W;n = {μeZ: \2n~jμ - 2~nκ\ < 2~n}.

Then observe that
(2.10)

= 0 if (v, 1/') € ' € 2ϋ^, \κ - «'| > 8.

Indeed, if μ e ^ , μ' £ 2Π^, Tjμfτfμ'g φ 0 then |2n-'μ - 2^'/2ί/| <
and |2n"ίμ' - 2~^V| < 2- */2+1. If (ι/,i/) G 3" this implies that

|2"-J'(μ - μ')| < 2-J/2+2 + 2~n < 5 2"n and therefore \κ - κ'| < 7, hence
(2.10). Moreover we note that for μ G W*n the support oiTjμf is essentially
a rectangle with eccentricity 2~n such that the directions of its sides depend
on K but not on μ.

By (2.9) and (2.10) we obtain that

\\B?(f,9)\\l
j>2n

Σ
i>2n

Σ
4\ 2
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Therefore the desired estimate (2.7) follows from the case q = 4 of the
following lemma.

L e m m a 2.3. For q > 2 there is the inequality

(2.11) Σ
ij>2n K

Σ <

where C does not depend on n.

Proof. It suffices to prove (2.11) for q — 2 and q — oo. Let h^μ be the Fourier
multiplier defining Tjμ.

For fixed μ and j there are at most three v such that T?μ Φ 0 and since
the supports of the functions φj are disjoint it follows that each ξ E M2 is
contained in at most 6 of the sets supp hμv. Moreover for fixed μ and j there
are at most two K such that μ E 2Π*n. Now (2.11) for q = 2 is an immediate
consequence of PlanchereΓs theorem.

In order to check the required estimate for q — oo we consider for a fixed
& — {a>vμ} £ ^ 2(Z 2) the multiplier

mf(ξ)= Σ

and denote by

Let el = (2~ and let
its inverse Fourier transform.

. /Λ O — 2 r i i < r 2 \ «Λ-nrϊ #3^ — ( -K/Λ 0 — 271*^2 O '
y ± ώ rυ J ClIlvJ. Co — \ V -*- •" ( i j *

be the symmetric linear transformation in IR2 with Ljne^ =

2 7~ne 2

ί. Then /ιJμ(L^n ) is supported in a cube QJμ of sidelength 10 and for

fixed j the cubes ζ)Jμ have finite overlap, uniformly in j . Moreover it is easy

to see that for μ E 2U n̂

< C, < 2.

Since the Sobolev-space L\ is a subspace of Lι we obtain that

|α|<2
Σ
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where C does not depend on j , K and α. This implies

I

sup sup
j>2n K

= sup sup sup sup \K{K * f{x)\
j>2n K χeR2 | | o | | € 2 ( z 2 ) < l

< sup sup sup IlKΓIIill/IU < C||/||c
j>2n K | | α | | / 2 ( Z 2 ) < l

which is the desired estimate for q = oo. D

Remarks.
(a) For q = oo the inequality (2.11) is closely related to an estimate on

square-functions with respect to an equally spaced decomposition, see e.g.
[9, 13]; in fact it can be obtained from these estimates.

(b) A variant of the above proof can be used to obtain the known sharp
L4 bound ||ϊj||£,4_>L4 = O(j1/ί4) without making use of the sharp L2 bounds
for Kakeya-maximal functions.

(c) The observation concerning the overlapping properties of suppΓj μ / +

suppTf μ g can be used to improve on some bounds for sectorial square-
functions in Cordoba [9]. This has been observed by A. Carbery and the
author.

(d) The decomposition in terms of the bilinear operators B™ is related to
a decomposition used by Carbery [1] in his work on weighted inequalities for
the maximal Bochner-Riesz operator S*. The techniques above can be used
to prove new weighted inequalities for S*.

3. Weak type estimates.

Let 3 be a family of disjoint intervals as introduced in §2 and let Tj be as in

(2.1). Define

We shall prove the estimate

(3.1) \{x£R2 : \Tx{p)f(x)\ >a < C

where λ(p) = 2(l/p — 1/2) — 1/2 and C does not depend on / or a. Of
course Theorem 1.1 is a consequence of (3.1).
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As in [5] the proof is based on an interpolation. The argument uses
Theorem 2.1 and known estimates previously obtained in the proof of weak-
type (1,1) inequalities (see [4, 7, 15]).

Let / E Lp(Έί2) where 1 < p < | and let a > 0. In order to estimate
the quantity on the left hand side of (3.1) we apply the C alder on-Zygmund
decomposition to \f\p at height ap. We obtain a decomposition / = g + b
where \\g\\n < Ca, \\g\\p < C | | / | | p , b = ΣQbQ, supp&Q C Q, the squares
Q are pairwise disjoint, \\bQ\\l < Cap\Q\, ΣQ \Q\ < Ca-p\\f\\p; and as a
consequence α^ 2 | | ^ | | 2

2 + ||6||^ < C| |/ | |^.

Let l(Q) be the sidelength of Q and Bj — ΣQΊ(Q)=2J ^Q ^ J ^ 0 a n ( l

Q T h e n

{ Ϊ G R 2 : \Tx{p)f(x)\ > a} C Ωx U Ω2 U Ω3 U Ω4 U Ω5

where Ωx is the union of the double squares Q* and

Ω5 = { x E W \ Ωx :
σ>0j>0

By the disjointness of the squares Q we have

,11/11?
Q

and Chebyshev's inequality and the L2-boundedness of Γ λ imply

\\p

|Ω 2 | <
V 2 —

s-il

Next we choose r such that p < r < 4/3. We shall show that the following

estimates hold with e — | ( £ — 1).

(3-2) <
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(3-3)

(3.4)

< C2~€jar-p\\b\\p
p,

σ>0.

From (3.2-3.4) it follows by applications of Minkowski's and Chebyshev's

inequalities that

Mi ||/||S
\\63 ~τ~ ""4 1 «"5 _ ^ _ ^

In order to prove (3.2-4) we use analytic interpolation (i.e. the Phragmen-

Lindelόf principle) similarly as in [5]. For Re(z) G [0,1] define

and

Since 2~ 7 7 ( 1 + ί r ) T j is a bounded operator on L1 with norm independent of

j we obtain

(3.5)

i^fl+ir||1 < σ\

(3.6) | | 2-^ 1 + < r )T i B 0 , i + . r | | i < C\\B0\\> < C \\b\\p

p.

From estimates in [7] (or [15]) it follows that

(3.7)

(3.8)

and also that

(3.9)

Σ
j>s

<

Using the inequality | | F | | r < C| |F| | f ι\\F\$~* we get from (3.5), (3.7) and

from (3.6), (3.8) that

(3.10) Σ 3-D3-s,l+ιτ
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(3.11)

Now

(3.12)

(3.13)

(3.14)

by Theorem 2.1

Σ 2 " j 7 ( i τ ) ^
p-Mi

A N D R E A S S E E G E R

it follows that

r

<cΣi|β, _.,ir||; < c u e

ljJDQiiτ\\r \ O Il-Oo,ir l lr _Ξ ^ l l ° l lp

r

< Γ ' V > I I R llr < Γ"llhllp

-^ U Z ^ 'ID3+σ,ιr\\r -^ ° ll°llp

Now let /ι be arbitrary function in Lp\ p' = p/(p — 1), with \\h\\p> < 1 and
define

hz(x) = ^(^l^'^'signί/i^)).

Moreover let g be an arbitrary function in L with ||<7||Γ' < 1. We then apply
the Phragmen-Lindelof principle to the functions

= fJ
z ^ W2J(z) = 12-'^TjBQ,z(x)g(x)dx

j>0

and estimate these functions at z = θ chosen such that 1/p = (1 — θ) + θ/r.
Prom (3.10), (3.12), from (3.11), (3.13) and from (3.9), (3.14) it follows that

and an application of the converse of Holder's inequality yields (3.2), (3.3)
and (3.4).

Remark. Endpoint versions for more general classes of multiplier transfor-
mations have been formulated in [15]. By combining arguments in this and
the present paper one can prove similar results for radial Fourier multipliers
of Lp(R2), for the full range 1 < p < 4/3.
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