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KIT-GROUPS OF TWISTED CROSSED PRODUCTS BY
GROUPS ACTING ON TREES

KEVIN MCCLANAHAN

An exact sequence of Pimsner for KK-groups of crossed
products of C*-algebras by locally compact groups acting on
trees is generalized to the case of crossed products twisted
by a circle-valued cocycle. The exact sequence is applied to
the case of free products of twisted group C*-algebras. In
particular, the î -groups of the free product of two matrix
algebras is computed.

1. Introduction.

The problem motivating this work was that of determining the Jf-theory of
the free product Mn *c Mk where Mn is the C*-algebra of n by n complex-
entried matrices. Specifically, the desire was to show that the if-groups of
this particular free product satisfy the following repeating exact sequence.

> Kj(Q > Kύ{Mn)®Kj{Mk) • Kj{Mn^cMk) > .

This exact sequence is a special case of an exact sequence for amalgamated
products conjectured by J. Cuntz in [Cu2]. It was proved by Cuntz that if
A *c B is an amalgamated product of C*-algebras subject to the condition
that there are retractions from A and B onto C (homomorphisms which
restrict to the identity on C) then the following repeating sequence is exact.

> Kj(C) > Kά{A)®Kά(B) > Kj(A*cB) > .

This conjecture that the above sequence holds for arbitrary amalgamated
products has been verified for a variety of other cases since. For example, it
follows from Pimsner's exact sequence for KK-groups of crossed products by
groups acting on trees [Pi] that the above sequence is exact if A = C*(Gi),
B = C*(G2), and C = C*(H) where H is a discrete subgroup of the discrete
groups G\ and G2 The conjecture has also been proved for the case where
A — Mn, C — C, and B is any unital C*-algebra which has a retraction onto
C in [McC2] (this result is primarily due to J. Cuntz). This conjecture is
also true in many cases for reduced free products in the sense of D. Avitzour
[Av] (see [McC2]). In [McC2] the author was able to exploit some of the
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similarities between Mn and C*(G) for a discrete group G in order to prove
the conjecture for some free products of the form Mn*cC*(G). The similarity
between C*(G) and Mn is that both C*-algebras are generated by unitaries
such that the product of any two generating unitaries is a scalar multiple of
another generating unitary. In the case of C*{G) the generating unitaries
are the elements of G. In the case of Mn, it follows from Takai duality
that Mn is isomorphic to a crossed product C*(Zn) * Z n and the generating
unitaries can be taken to be the products of elements of the two copies of
Z n . This observation led to the computation of the ίί-groups of Mn * c Mk

as follows. The Pimsner exact sequence gave a method of computing the
K-groups of C*{G1) * c C*(G2) = C*{G1 * G2) which does not use the fact
that there is a retraction from C*(Gi) onto C as in the case of Cuntz's result.
The similarity between Mn and C*(G) for a discrete group just mentioned
enables one to modify Pimsner's techniques in order to replace each C*(G)
by a matrix algebra.

It was pointed out to the author by several people including A. Paterson,
M. Dadarlat, and the referee of the first version of this paper that the similar-
ity between Mn and C*(G) can be best described in terms of twisted crossed
products That is, Mn is isomorphic to the twisted group C*-algebra C*(Zn)
for a suitable 2-cocycle u on Zn. It turns out then that the exact sequence
of Pimsner can be generalized directly to the case of twisted crossed prod-
ucts by a circle-valued 2-cocycle. The technique used in the generalization
was to write a twisted crossed product as a quotient of a nontwisted crossed
product using a well-known technique of G.W. Mackey [Ma3, Section 2].
The Pimsner sequence can then be applied to the nontwisted crossed prod-
uct and the KK-gτowps exact sequence for the twisted crossed product can
be deduced from that for the nontwisted crossed product. This method is
somewhat less tedious than generalizing Pimsner's proof step by step.

2. Twisted Crossed Products.

We will review the necessary concepts in the theory of crossed products
twisted by a 2-cocycle. The twisted crossed products discussed here are not
in the most general form available in the literature [BS],[PR], [G2]. In
particular the cocycles will be circle-valued instead of taking values in the
unitary group of the multiplier algebra of a C*-algebra and group actions
will be continuous instead of Borel measurable so that Pimsner's results can
be applied. For technical reasons, all C*-algebras will be separable and all
groups will be second countable and locally compact.

Recall that a circle-valued 2-cocycle on a group G is a map

u:GxG-+Ύ
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such that

n(s,t)u{r,st) = u{r,s)u(rs,t) for all r,s,t £ G.

Let A be a separable G*-algebra, G a second countable locally compact
group, a a strongly continuous action of G on A, and u a Borel measurable
circle-valued 2-cocycle on G. Then we say that (A, G, α, u) is a twisted
G*-dynamical system. Hereafter when we refer to a twisted G*-dynamical
system we shall mean a dynamical system with the restrictions just given.

Let (A, G, α, u) be a twisted G*-dynamical system. Define a convolution
multiplication and involution on Lι(G,A) as follows:

(f*h){x)= / f{y)ay[h(y'1x)]u(yJy"1x)dy
JG

where AG denotes the modular function on G. Then L1(G, A) is a Banach *-
algebra with respect to these operations [BS, Theorem 2.2]. The enveloping
G*-algebra of Lλ(G, A) will be called the twisted crossed product of A by G
and will be denoted Ay\ G.

A covariant representation of (A, G, α, u) is a triple (π, [/, H) where H
is a Hubert space, π : A —> B(H) is a nondegenerate representation, and
U : G —>• U(H) is a Borel measurable map such that

I7β!7t = tx(s,ί)l7βt for all s,t e G

π(as(a)) = Usπ(a)U* for all s E G,α E A.

It is well known that there is a one-to-one correspondence between covariant
representations of (A, G, α, u) and nondegenerate representations of A x G
[BS, Theorem 3.3]. The correspondence is given by (π, U, H) «-» π x U
where the π x U : A x G -> i5(i/) is given by

(π x U)(f) = f π(f(x))Uxdx
JG

f o r / E L H ^ A ) .
Given a representation π : A -» J9(ίf), let π : A -» B(L2(G,H)) be

defined by

(π (α)£)(s) = π ( α , - i (α))ξ( β ) f € L2(G, ff), « e i , S £ G.

Let λ : G -»• B{L2(G,H)) be defined by

(2.1) (λ s ξ)( ί) = / ( s - ^ J u ί θ , s - 4 ) ξ € L 2 ( G , H ) , s , t e G .
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It follows that (π, λ,H) is a covariant representation of (A,G,α,u). The
representation π x λ will be called the regular representation of Ax G asso-
ciated with π. The reduced twisted crossed product of A by G is defined to
be the completion of LX(G, A) with respect to the norm given by

| |£ | | r = sup{||(π x λ)(ξ)|| : π is a representation of A}

for ξ E L2(G,H). The reduced twisted crossed product just defined will be
denoted A xir G. It can be shown that if π is a faithful representation of A,
then | |(π x \){ξ)\\ - | |ξ | | r for all ξ E L2{G, H) and so A x r G can be identified
with (π x λ)(A xi G). See [Q] for more details on reduced twisted crossed
products.

We now describe a way in vhich G can be written as a quotient of a locally
compact group Gu in such a way that the twisted crossed products A x G
and A xir G are quotients of the nontwisted crossed products A xi Gu and
A xir Gu respectively. This technique is due to G. Mackey [Ma3, Section 2].
First of all we remark that it is possible to replace u by a normalized 2-
cocycle u' which satisfies u'(g,g~ι) = 1 for all g E G in such a way that
the twisted crossed products of A by G relative to u and relative to u' are
isomorphic. This can be done as follows. Let p : G -> T be defined by p(t) =
(ίx(e, e)u(t, t~1)) 2 where the square root taken is a Borel measurable function

and e denotes the identity element of G. Let uf(s,t) = ————u(s,t). It
ρ{s)p(t)

follows from [PR, Lemma 3.3] that the twisted crossed products of A by
G relative to u and v! are isomorphic. We will need the fact later that it
follows from the definition of a 2-cocycle that u'(g,e) — uf(e,g) — 1 for all
g E G. We will assume from now on that the cocycle u is normalized.

Let Gu — Ύ x G as a set. Endow Gu with the following multiplication:

It follows that Gu is a group with identity (l,e). It follows from the nor-
malization condition on u that ( z " 1 ^ " 1 ) is the inverse of (z,s). It may be
the case that the above multiplication is not continuous with respect to the
product topology on T x G. To get around this problem first give Gu the
product Borel structure and give Gu the product measure d\ x dg where dλ
is the normalized Haar measure on T and dg is a Haar measure on G. It
is easy to check that this gives a right-invariant measure on Gu. It follows
from [Mai, Theorem 7.1] that there is a unique locally compact topology
on Gu under which Gu is a topological group with the Borel structure men-
tioned above and with dλ x dg as a Haar measure. We remark that if G is
a discrete group then the product topology on Gu does make Gu a locally
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compact group and by the uniqueness part of [Mai, Theorem 7.1] it follows
that the product topology is the desired topology in this case.

The action a of G on A can be extended to an action au of Gu on A by
letting α^ s ) = ot8. This gives a O*-dynamical system (A, Gu,au) and gives
the (nontwisted) crossed products A x Gu and A x r G

u. Let

φ:Cc(Gu,A)^Cc(G,A)

be the *-homomorphism defined by

φ(k)(s) = / zk(z,s)dz
Jτ

for k G CC(GU, A), s G G. It follows that this map extends to a surjection:

φ : A x Gu -> A x G.

This map factors through to the reduced crossed products to give the corre-
sponding surjection:

φr J x r G M A \ G .

To see this let π : A -> B(H) be a faithful representation of A and let
λu : Gn -» B(L2(GU,H)) be the left regular representation. Let λ : G ->
B(L2(G,H)) be the left regular representation twisted by the cocycle u as
in (2.1). For a unit vector ξ e L2(G,H), let ξ G L2(GU,H) be the unit
vector defined by ξ(z, t) = zξ(t). An elementary computation shows that for
keCc(Gu,A),

z[(π x X)(φ(k))ξ](t) = [(π x λu)(k)ξ] (z,t).

Hence it follows that

and thus φ factors through A >\r G
u.

It will be important in what follows that these maps have right inverses.
Let

<ψ:Cc{G,A)-+Cc(Gu,A)

be defined by

for / G CC(G,A), (z,s) € Gu. This map extends to a map

ψ: AxG ^t AxGu.
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This map factors through to a map

φr : A x r G -> A xr Gu

of the reduced crossed products. To see this define for each vector ξ E

L2(GU,H) a vector £ E L2(G,H) with ||f | < \\ξ\\ by

ξ(t)= fzξ(z,t)dz.
Jτ

It follows from a routine computation that for / E CC(G, A) the following
relation holds:

[ ( π x ;

Hence it follows that

= ll(*

and so φ factors through to the reduced crossed products. It follows easily
that φ (respectively φr) is a right inverse for φ (respectively φr).

We also remark for future reference that if (π, J7, H) is a covariant rep-
resentation of (̂ 4, GU, α u ) , then π x U factors through A x G if and only if
U(z,s) = zU(i,s) for all z E T and s G G. Also, π x U factors through A x r G
if and only if π x U factors through A x r Gu and U(z,s) — zU(ιfS).

The following lemma can be found in [Pi, Lemma 4] for nontwisted
crossed products. The proof presented there works for the case of crossed
products twisted by a cocycle as well. The proof of the exactness of the
sequence corresponding to the full crossed product is due to A. Sheu [Sh,
Theorem 2.6].

Lemma 2.1. Let G be a locally compact group and let

be an exact sequence of C*-algebras. Suppose that G acts on I, A, and A/1
by partial automorphisms in such a way that {A,G,a,u) is a twisted C*-
dynamical system and that both i and q are G equiυariant. Suppose moreover
that q has a completely positive cross section p with the following properties:

There exists a G equivariant ^representation ω : A/1 —> Λi(A) and a G-
continuous projection p E Λ4(A) satisfying a(p — g(p)) E / for every a £ A,
g E G, such that

p(x) = pω(x)p.
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Then the following commutative diagram has exact rows and the quotient
maps admit completely positive cross sections po and po,r of norm one.

0 > IxG —i2-> A x G - ^ - > A/1 x G > 0

A J I A Λ I XΛ/I I
λGi λGi λ° i

0 > IxrG - ^ AxrG -^+ A/I*rG > 0

3. Actions of Locally Compact Groups on Trees.

In this section we fix some notation concerning the action of locally compact
groups on trees. The material in this section is taken from [Pi, Section 1].

Let X° (resp. X1) denote the set of vertices (resp. edges) of a tree X.
An orientation of X is a map

The vertices o(y) and t(y) are called the origin and terminus of y.
A locally compact group G is said to act on X if G acts continuously on

the discrete spaces X° and X1 and preserves the orientation. If we denote
the action o f j G G o n P G l 0 (resp. y G X1) by P \-> gP (resp. y ι-> gy)
then the orientation preserving property can be stated as o(gy) = go(y) and
t(gy) = gt(y) for all g G G and y G X1. We denote the orbit of the edge y
by Xy and the orbit of the vertex P by Xp. We let Xp denote the set of all
edges that "point" to P. That is Xp is the set of all edges y for which the
unique path from P to t(y) is shorter than the path from P to o(y). We let
Xy denote the set of all vertices which are pointed to by y. That is, Xy is
the set of all vertices P for which y G Xp.

Let X denote the following two point compactification of X1. X =
X1 U{—oo, +oo}. A neighborhood base of -f-oo is given by finite intersections
of sets of the form Xp U {+00} and a neighborhood base of — 00 is given by
complements of finite unions of sets of the form Xp U {+00}. For a Banach
space E we let C^(X1^E) denote the set of continuous functions from X1

into E which vanish at — 00. The action of G on X1 extends continuously
to X by letting g(±oo) = ±00 [Pi, Lemma 2].

Let Σ denote the oriented graph G\X with vertex and edge sets Σ* ==
G\Xι for i = 1,2 and origin and terminus maps ό and i given by:

o(ϋ) = o(y) and t(y) = t(y)

where y denotes the class of y G X1 in G\XX. We fix a lifting of Σ. By this
we mean the following:
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(1) We identify Σ° and Σ 1 with subsets of X° and respectively X1. This
gives maps X° 3 P H-» P G Σ° and X1 3 y *-> y e Σ 1 .

(2) We fix for each y G X1 an element gy £ G such that gyy — y.

(3) For each y G Σ 1 let y*,y° G X1 be the edges for which yι — y = y°
and ^ o ^ G Σ 0 .

Let GP (resp. Gy) denote the stabilizer of the vertex P (resp. the edge
y). For an edge y we define the group homomorphisms

as follows for g E Gy:

Let CέyiCίy G Aut(Λ) be the automorphisms given by

for α G A. The pairs (σy,ay) and (σ^,α^) are covariant and the maps σy

and σy are homeomorphisms onto their images. Consequently we have the
following maps of the crossed products:

σy x ay : A xi Gy -» A x G£(j/) σ̂  x r α^ : A >jr Gy -> A xr G^y)

σy x ay : A xi Gy -> A xi G^(2/) σ̂  x r α s : A xir G^ -> A x r Gό(y).

4. The Toeplitz Extension.

Let (A, G, Of, U) be a twisted G*-dynamical system and consider the following

exact sequence.

(4.1) 0 > C0(X\A) —^-> C+(X\A) —*-> A >• O

Here i denotes the natural inclusion map and q is evaluation at 4-00. For

α G A let ω(ά) denote the function on X constantly equal to a. For P G Σo

let XP denote the characteristic function of the set Xp U {+00}. The map

p:A->C+(X\A) defined by
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is a completely positive cross section of q which has norm one. By [Pi,
Lemma 2] it follows that f(χp — g{χp)) is in C0(Xι,A) for every / G
C+{Xλ^A). So by Lemma 2.1 we get the following commutative diagram
(4.2)

0 > C0{X\A)xG — ί 2 - > C+(X\A)xG - ^ - > AxG >0

0 > C0(X\A)xrG -^-> C+(X\A) xr

with exact rows and completely positive cross sections pc, PG,r of QG^QCΓ

having norm one. We also get the corresponding commutative diagram with
exact rows for the C*-dynamical system (A, Gu,au).

Suppose that (A, G, a, U) is a twisted C*-dynamical system. Suppose
also that G acts continuously on the discrete set Z, Denote the actions of
G on A and Z by (#,α) *-+ ga G A and {g,z) H-» gz G Z. Extend these
actions to actions of Gu on A and Z as follows: (w,g,a) ι-» ga G A and
(w,g,z) H> gz G Z for g G £?, w G T, z G Z, a G A. Let cfo denote the
normalized Haar measure on T and let λ denote the counting measure on
Z. The stabilizers Gz of each z G Z are open subgroups of G and so the
restriction of dz x d\ to Gz (still denoted dz x o?λ) is a left Haar measure on
Gz. Let S denote the orbit space G\Z and z M- z denote the quotient map.
We identify S with a fixed transversal SiZ. For each z G Z fix gz G G so
that gzz = z Let Z s denote the orbit of 5 G 5. We will need the following
result stated in [Pi, Proposition 5] for nontwisted crossed products. The
result for nontwisted crossed products is due to P. Green [Gl] and extends
to the case of crossed products twisted by a circle-valued 2-cocycle as in the
following proposition.

Proposition 4.1. Let (A,G,a:u) be a twisted C*-dynamical system.

(i) The following isomorphisms hold:

x G8)
ses

C0(Z,A) x r G £ 0 ( Λ xΓ G.)

where JC(H) denotes the algebra of compact operators on H and where
the action of G on Co(Z^A) is defined by g(f)(z) — g(f(g~ιz)) for
every f G C0{Z, A),g G G, and z G Z.

(ii) // we regard CC(G x Z, ̂ 1) as a subalgebra of CC(G, C0(Z, A)), then one

may describe the above isomorphisms by
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for k G CC(G x Z,A) and where eZliZ2 is the canonical matrix unit in
)C(12(ZS)), and where ks

Zi Z2 G CC(GS, A) is defined by

for every g G Gs.

Suppose that G acts on a tree X and (A, G, α?, u) is a twisted C*-dynamical
system. It follows from the preceding proposition that the if-theory of the
twisted crossed product C0(X1,A)xG is isomorphic to that of ®y€^i(AxGy)
and similarly for the reduced crossed products.

Now we will show that the UT-theory of the crossed product C+ (X1, A) x G
is isomorphic to that of C0(X°, A) x G and similarly for the reduced crossed
products. By Proposition 4.1, C0(X0, A) x G is KK-equivalent to ΘP G Σ° (A x
Gp). From these facts we will derive our main result of a an exact sequence
of KK-groups. For Q G X° let χQ G C+(XX) denote the characteristic
function of XQ U {-foo}. Let {epQ}piQ(Ξχo be a system of matrix units for
12(X°). We need the following result of Pimsner [Pi, Proposition 14].

Proposition 4.2. Let H be α second countable, locally compact group
acting on a countable oriented tree X and a separable C* -algebra A. Let

d : C0(X°,A) xi H -> K(12(X0)) ® {C+{X\A) x H)

dr :C0(X°,A) *rH ->K,{12{XO))®{C+{X\A) *τ H)

be induced by

(dF)(g)= ΣeQQ®F(9)(Q)XQ> F ^ CC(H,CO(X°\A)), g G H.
Qex°

Then the elements

aH G KK(Co(X°, A) xi H,C+(X\A) XJ H)

aH,r€KK{C0(X
0,A) xrH,C+{X\A) xirif)

determined by d and dτ are KK-equivalences.

Because of the existence of the cross sections ψ and φr of φ and φr in the
following exact sequences

0 > kerφ — — > A»GU — — > • AxG > 0

(4.3)
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we have Klf-equivalences

A xi Gu πκκ AxGθkeτφ

A xr G
u ^ κ κ A xr G θkeτφr.

Specifically,

φ Θ i E KK(A *G®keτφ,Ax Gu)

ψr ®ir e KK(A xrG

are invertible elements. Thus for any C*-algebra E we have the following
commutative diagrams.

KK(E, A x Gu) < ί ^ - KK(E, AxG)® KK(E, ker φ)

( 4 . 4 ) | Λ C ? U ' * | λ G , * θ λ k e r , .

KK{E,AxrG
u) Λ"θ i r" KK(E,AxrG)®KK{E,kerφr)

xGu,E) - ^ ^ KK(AxG,E)®KK(keτφ,E)

xrG
u,E) -^^> KK{AxrG,E)®KK(kerφr,E)

We now show that the KK-equivalences in Proposition 4.2 factor through
to give Kiί-equivalences in the setting of twisted crossed products. If A is
replaced by C0{X°,A) (resp. A is replaced by C+(X1, A)) we let the maps
i,φ,φ in (4.3) be denoted by io,0o5 Ψo (resp. i + , 0 + 5 ^ + ) . In the reduced
crossed product setting we let iriφr,φr be denoted by io,r,Φo,n Φo,r (resp.
i+ r,(/)+ ) r,'0+ r ) . By looking at compactly supported functions it can be shown
that the maps d and dr of Proposition 4.2 with H = Gu can be factored into
homomorphisms

dG : C0{X°,A) x G 4 /C(/2(X0)) ® ( C + ( X \ A) x G)

(4.5) dG,r : Co(X°? A) *rG^ /C(/2(X0)) ® (C + (X X , A) x r G)

4 e r : ker φ0 -> /C(/2(X0)) ® ker φ+

dker, r : ker 0o,r -> /C(Z2(X0)) 0 ker φ+,r.

Let

G i ί i ί (Co(X 0 , A) x G ^ + ί X 1 , A) >i G) α k e r

A)xrG) α k e r , r E iflf(ker0o, r,ker
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be the elements determined by dc^cr Aer ,dker,r ^ follows from Proposition
4.2 that for every C*-algebra E the following diagrams commute with all
maps being isomorphisms.
(4.6)

KK(E,C0(X°,A) xG) ί"° 'φl0 ' KK{E,Co{X°,A)y>G)®KK(E,kerφo)

l i- —
KK(E,C+(Xι,A)xG) ί

ψ+ 'Θt+ t KK(E,C+(X1,A)xG)ι

KK{C0{X°,A) x G,E) ^ ^ KK{C0(X°,A) x G , £ ) θ KK(keτφ0,.

^) xG,£)θ KK(ker φ+,E)
The analog of the above diagram for reduced crossed products exists with the
same properties as the above diagram. Since α*, α*,αr*,α* are isomorphisms
for every C*-algebra E it follows that &G,*i&G'>CίGir,*'>oι*G,r a r e isomorphisms
for every C*-algebra E.

Proposition 4.3. The elements

aGeKK{C0{X°,A) xG,C+{X\A) x G)

aG,r e KK{C0(X\A) x r G,C+{X\A) xr G)

are KK-equivalences.

Proof. Suppose A and B are C*-algebras and φ G KK(A, B) is such that
the maps

φ*: KK(E,A) -+KK(E,B)

φ*: KK(B,E) ->KK(A,E)

are isomorphisms for every C*-algebra E. Letting E = B in the first iso-
morphism gives an element φx e KK(B,A) so that φ*{ψi) — ψiφ = lβ £
KK(B,B). Letting E = A in the second isomorphism gives an element
V>2 ^ KK(B,A) so that ^(^2) = ΦΦ2 = 1.4^ KK(A,A). It follows that
ψi = "02 = 0"1 G KK(B,A) and thus 0 is a ifϋT-equivalence. Since the
maps αc,*,«G,«G,r,*7 α£?,r a r e isomorphisms for every C*-algebra E the con-
clusion follows. D

We will now define the connecting maps of the exact sequence in the main
result. For P £ X° let

Tp : A x GP -» A x G

T : A x G > A x G
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denote the maps induced by the inclusion maps GP <-> G. Let

τG : 0 A x GP -> JC(12(X0)) 0 {A x G)

be the homomorphisms defined as follows. Let {eyz}ViZeXi (resp.

{ePQ}pQex°) denote a system of matrix units for K{12(X1)) (resp.

σG I 0 χy I =

p)= Σ
\PGΣ° /

By making the obvious changes in the above definitions one can define the

reduced analogs of the above homomorphisms. The reduced versions of the

above homomorphisms will be denoted ^G^^G^-JG^- Let

be defined by

JG

Let the reduced version of JG which is defined by the same rule be denoted
JG,r- We now state the main results which are the twisted crossed product
versions of Theorems 16-18 of [Pi].

Theorem 4.4. Let (A^G^a^u) be a twisted separable C*-dynamical system
and suppose that G acts on a countable oriented tree X. Then:

(i) If B is a separable C*-algebra, then the diagram

KKn-ι{B,AxG) —^—• KKn I £, 0 AxGy I - ^ — ^ > KKn [B, 0 AxGPY

i 7 T
/ \ σt _σo /

V If ( D Λ ^> r^\ ^ v If If I D /T\ A \Λ Γ* \ G,r* G,r* I
J\J\n—l I ri. Λ >ir tj) r Λ Λ n I Xί, r-H Λ ?Qr t*y I r i\ i\n I &•>

\ ^̂ 1 / V
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-^-> KKn(B,AxG) —^->

i I/
> KKn{B,A x r U) > iv iv n +i \B, φ Λ Xlr G

is commutative and has exact rows for every n G Z 2 .
(ii) //"i? 25 an arbitrary C*-algebra, then the diagram

nl $ AxGy,B] {

σ°~σZ KKn ( φ A x GP,B\

ΐ 1
( \ σt* _σo* / \

AxrGy,B\ ^ — ^ - KKn ί φ Λ χjr G P ) β )

•^_ M n ( ixG,B) <-5— KXn+1ί ®A*Gy,B\

i "ί
^ i - A-ίΓnμ MΓ G, S) <-2— UΓiίn+1 ( φ A xir Gy, B

is commutative and has exact rows for every n £ Z2-
TΛe vertical arrows are given by the natural projection from the full crossed

product onto the reduced crossed product, while d denotes the boundary maps
associated with the Toeplitz extension modulo the isomorphisms induced by

TΛe isomorphisms ΘG and ΘQ^ ar^ the isomorphisms of Proposition 4.1 (ii)
with S = ΣX and Z = Xι.

Proof The isomorphisms ΘG and ΘG,Γ give Tflf-equivalences between Co{Xλ,
A) and θy^^A >̂  G y and between C0(X1,A) xir G and ΘyGΣi^4 xr Gy re-
spectively. Proposition 4.6 gives if ^-equivalences between C+(X1

:A) xi G
and Go(X°, A) xi G and between G + p f 1 , ; ! ) xιΓ G and C0(X°,A) x r G. Ap-
plying Proposition 4.1 with 5 = Σ° and Z = X° gives ifίΓ-equivalences
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between C0(X°, A)xG and ®P€ΈoA X GP and between C0(X°, A)xrG and
®PeχoA xir Gp. It then follows from the existence of the completely positive
cross sections pc and po,r of the full and reduced Toeplitz extensions and the
split exactness of KK-theoτy that there exist commutative diagrams with
exact rows as in (i) and (ii) of the theorem statement. It remains to show
that the connecting maps are as stated. To see this, extend the action of
G on A to an action of Gu on A by letting T x {1} act trivially. It follows
from [Pi, Theorem 16] that there are commutative diagrams as in (i) and
(ii) with G replaced by Gu and the connecting maps are exactly as described
above with the group Gu in place of G. Since the connecting maps with
respect to G are just the factorization of the connecting maps with respect
to Gu, the theorem follows. D

Theorem 4.5. In the conditions of the preceding theorem, we get the
following commutative diagrams with exact rows.

(i) If B is separable and the fundamental domain G\X is finite:

KKn(BΊAxGy) —?—> 0 KKn(B,AxGP)
2/GΣ1 PGΣ°

KKn(B,AxG)

1
^ KKn(B,AxrG) —£-> Q

2/6Σ1

whereσ= X) ((σy x α j * - (σv x α s ) t ) , σr = ^ ((σy x r α y ) *
2/GΣ1 Σ 1

r' = Σ r̂ ., r; = Σ τ&...
PGΣ° PGΣ°

(ii) // B and G\X are arbitrary:

y KKn{AxGP,B)
2/GΣ1

KKn(AxrGP,B)
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where

σ = V^ ((σ^ x ayY — (σy x G^)*),

PEΣ°

Proof. This follows from Theorem 4.4, the additivity of the iίϋΓ-functor in
the second variable, and the countable additivity of the KK functor in the
first variable [Bl, 17.7; 19.7]. D

Theorem 4.6. Suppose (A,G,a,u) is a separable twisted C*-dynamical
system and that G acts on the countable oriented tree X. Then the following
diagram is commutative and has exact rows.

J°eΣ°

Kn{AxτG)

Proof, lί A is separable apply Theorem 4.5 (i) with B — C. The general case
is obtained by taking direct limits. D
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5. Applications to Free Products.

In this section we will use Theorem 4.6 in order to compute the if-groups
of certain free products of G*-algebras. In our examples, the groups con-
sidered will be discrete and if-amenable in the sense of J. Cuntz [Cul].
Recall that a discrete group is if-amenable if the natural surjection λ :
C*(G) -> C*(G) induces a KK-equivalence. It was shown in [Cul] that
this is equivalent to the natural surjection \A :Ay\G-+A>*rG being a
if if-equivalence for every G*-dynamical system (A, G, α). The notion of
if-amenability has been extended to locally compact abelian groups by Julg
and Valette in [JV, Definition 1.2]. A locally compact group G is said
to be if-amenable if 1G = (C,0,0) in KKG(C,C) is homotopic to a Fred-
holm G-module (Ή0,Hi,F) where the representation of G on Ήo and T-Lλ

are weakly contained in the left regular representation of G. It was shown
in [JV, Proposition 3.4] that if a locally compact group G is if-amenable
then the natural surjection λ^ is a if if-equivalence for every G*-dynamical
system (A, G, α). In fact, λ^ is a if if-equivalence for every twisted G*-
dynamical system (A,G,α,u). The proof is essentially the same as the
proof for nontwisted G*-dynamical systems given in [JV]. We will state the
following lemma which generalizes [JV, Lemma 3.5] in addition to the if if-
equivalence result in order to point out how to modify the proof of Julg and
Valette.

Lemma 5.1.
(i) Let (A,G,α,τi) be α twisted C*-dynamical system. Then there exists a

*-homomorphism

Δi : A x r G -> M(C*r(G) ® (A x G))

such that the diagram

AKG —^-> M{C*{G) ®{Ax G))

1XA

Δ I

AxrG

commutes.
(ii) There exists a *-homomorphism

Δ 2 : A x r G -> M(C*(G) 0 (A xΓ G))
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such that the diagram

M{C*(G)®(AxG))

i
M{C*{G)®{AxτG))

Proof. The proof of this lemma proceeds exactly as in the proof of [JV,
Lemma 3.5] except that the crossed products are twisted by a 2-cocycle and
the left regular representation maps must be replaced by the twisted left
regular representations as in (2.1). D

P r o p o s i t i o n 5.2. // G is K-amenable, then the element of KK(A xi

G,A xi r G) induced by the natural surjection \A : A x G - ^ A x r G i s a

K K -equivalence.

Proof. The proposition follows from Lemma 5.1 exactly as Proposition 3.4

follows from Lemma 3.5 in [JV]. D

Recall that the unital free product of two unital C*-algebras A and B is
a unital C*-algebra E with unital injections JA ' A —» E, jβ '• B -> E such
that for every pair of unital *-homomorphisms φA\ A-Λ C,φB : B -+ C into
a C*-algebra C there is a unique unital *-homomorphism φ : E -» C such
that φo JA — ΦA and φo jβ — ΦB- It follows easily that E is unique up to
isomorphism. E is denoted by A *c B and φ is denoted by φA * ΦB

Given two groups Gχ,G2 with (normalized) 2-cocycles Ui,u2 there is a
way to define a (normalized) free product 2-cocycle u = uλ * u2 on the free
prod GΊ * G2. If ^ i and w2 are two reduced words in the free product,
then WιW2 can be replaced by a unique reduced word after a finite number
of cancellations. If Wι ends in gλ G G{ and w2 begins in g2 £ Gj where
i φ j , then no cancellation occurs and u(wι,w2) = 1. If i — j , then let w[
and wf

2 be the parts of Wγ and w2 which remain after cancellation. Let g[
denote the last letter of w[ and g'2 denote the first letter of w'2. In this case
u(w1,w2) =v>k{g[,g2) where g[,g'2 G Gk.

The twisted crossed products Cx G and Cxi r G arising from a twisted C*-
dynamical system of the form (C, G,α:, u) are denoted C*(G) and C* r (G)
respectively. The following proposition is well-known.

Proposition 5.3. Let [A,Gι,auUι) and (A,G2,a2,u2) be twisted C*-
dynamical systems with Gι and G2 discrete groups. Let u = uλ * u2 be the
free product cocycle on G\ * G2. Then
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Let (Aι,ωι) and (A2,ω2) be pairs of unital C*-algebras and states. We
will denote an arbitrary word with letters alternating between A\ and A2 by
(dι)bι an(bn) where α̂  G A1, b{ G A2, and the parentheses around the first
and last letters are used to indicate the possibility that these letters may
not be present in the word. This allows for words beginning and ending in
either A\ or A2. Then there is a unique state ωx * ω2 on A\ * c A2 such that

(ω1 *ω2)((αi)6i αn(6n)) = 0

whenever a% G ker(α;1), b{ G ker(ω2)[Av]. Let (πωi*ω2,Hωi*ω2,ξωi+ω2) be the
GNS representation associated with (Ax * c A2,ωχ * ω2). The reduced free
product of Ai and A2 relative to ωλ and ω2 was defined by D. Avitzour in
[Av] to be πωi*ω2(Aι *c A2). When the states ω{ are understood we write
A\ *cάA2 for the reduced free product. The following proposition was proved
in [Av] for nontwisted crossed products.

Proposition 5.4. Let (A,Gi,αi,ιti) and (A,G2,a2,u2) be twisted C*-
dynamical systems with Gι and G2 discrete groups. Let u = Uι * u2 be the
free product cocycle on G\* G2. Then

where the reduced free products are taken relative to the states x \-ϊ
(λi(x)δe,δe) with λi being the left regular representation twisted by the cocycle

Proof. Let λ be the left regular representation on G\ * G2 twisted by the
free product cocycle u as in (2.1). Let X{ be defined similarly with respect
to Gι and u{. It follows easily that the state on C*λ(Gι) *c C*2(G2) defined
by the composition of the state x H-> (λ(x)δe,δe) on C*(Gi * G2) and the
isomorphism in Proposition 5.3 is the free product state induced by the
states x •--> (Xi(x)δe^δe) on C*t ((?;). Since the two reduced C*-algebras
under consideration are the images of the GNS representations of C*t (Gi) *c
C*2(G2) relative to these two states the conclusion follows. D

We now discuss some examples related to the preceding propositions. The
C*-algebra Mn of complex-entried n by n matrices can be written as C*(Zn)
for a certain 2-cocycle u. To see this first notice that Mn = (C x α Zn) >i ά Z n

where a denotes the trivial action and a denotes the dual action of the trivial
action given by

ckk) =
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for χ G Z n = Z n . This result is a special case of Takai-Takesaki duality [T].
In general if G is a locally compact abelian group acting on a C*~algebra A
by a and G acts on A x α G by the dual action there is a natural cocycle u
which can be defined on G x G in such a way that

The cocycle u is defined as follows:

In light of these observations and Proposition 5.3, Mn *c C(Ύ) can be
realized as a twisted group C*-algebra since C(Ύ) = C*(Z). Similarly, M n * c

C2 can also be realized as a twisted group C*-algebra since C2 = C*(Z2).
The relative commutants of Mn in these two C*-algebras were introduced by
L. Brown in [Br]. Let U£c and G™ denote the relative commutants of Mn

in Mn * c C(Ύ) and Mn * c C2 respectively. U™c is called the noncommutative
unitary C*-algebra. The noncommutative unitary C*-algebra is the unital
C*-algebra generated by elements ui3, 1 < i,j < n, subject to the relations
which make the n x n matrix [ul3] a unitary matrix in Mn(U^c). G™ is
called the noncommutative Grassmanian C*-algebra. The noncommutative
Grassmanian C*-algebra is generated by a unit and elements pi3, 1 < i, j < n,
subject to the relations which make the n x n matrix \pl3\ a projection. It
follows that the map x®y »-> xy give the following isomorphisms (see [McCl]
for details).

Mn 0 U™ ** Mn * c C(Ί)

Thus U™ and Gn

n

c are ifif-equivalent to the free products Mn * c C(Ύ) and
Mn *c C2 respectively. The iί-theory of f7"c was computed by N.C. Phillips
in [Ph] and that of G™ was computed by J. Cuntz (see [McCl] for a
proof). Reduced versions U™r, G™r of L^C,G^C were defined in [McCl].
Namely, they are defined to be the relative commutants of Mn in the re-
duced free products Mn *^ed C(Ύ) and Mn *^ed C 2. The states used in the
definitions of these reduced free products are the unique trace on Mn and
the trace on C*(G) defined by x *-^< λ(x)δe,δe > where λ is the left regu-
lar representation of C*(G) on 12(G) with the identifications C(Ύ) = C*(Z)
and C2 = C*(Z2) being used. The if-groups of the reduced versions were
shown to be isomorphic to the Zf-groups of the corresponding full versions
in [McC2]. Using some of the results in this section we can now show that
the full and reduced versions of these C*-algebras are if if-equivalent. It
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was also shown there that C/"c is KK-equivalent to C(T) and G™ is KK-
equivalent to C 2. It follows from the above observations and Proposition 5.2
that U^c is KK- equivalent to U^c

r and G"c is KK- equivalent to G™r. To
see this, notice that the fact that Z n and Z are amenable (and hence K-
amenable) implies Z n * Z and Z n * Z 2 are If-amenable [Cul, Theorem 2.4].
Letting ~κκ denote if if-equivalence we have the following:

Un ~κκ Mn * c C(T) =* C*ui (Z n * Z)

Un,r ~κκ Mn 4 e d C{Ύ) 9έ C*ur{Zn * Z)

Γ* <^ Λ/f α-recl rΠ2 ^ Γ** (77 Λ. 7/ \

Combining this with the known if-groups of these Cf*-algebras gives the

following proposition.

Proposition 5.5. The quotient maps

λ x : u:c -+ u^ed

λ2 : G™ -> G^eά

which are the restrictions of the maps

λi : Mn * c C(Ύ) -> Mn 4 e d C(Ί)
λ2 : M n * c C 2 -> M n *^ed C 2

are KK-equivalences. Moreover U™c,U™τeά are KK-equivalent to C*(Z) =

C{Ύ) and G ^ c

; G ^ r e d are KK-equivalent to C*(Z2) ^ C 2 .

One of the most important applications of Pimsner's exact sequence in
the case of nontwisted crossed products is computing the if-groups of group
C*-algebras of amalgamated products of locally compact groups. Results
in this direction extend to the twisted group C*-algebra case as well. The
following proposition follows from Theorem 4.7 in exactly the same manner
as the corresponding result in the nontwisted case follows from Pimsner's
exact sequence. We will include a sketch of the proof for completeness.

Proposition 5.6. Let Gι,G2 be countable discrete groups and let uτ be a
2-cocycle on Gi Let u be the free product cocycle on Gι * G 2 .

(i) If B is any separable C*-algebra, then the following diagram commutes
and has exact rows.

> KKn(B,C) n * ~ * 2 % KKn(B,C* (GO) 0 KKn(B,C* (G2)) Ί'ι*+T2*) KKn(B, C*(Gι * G2))

•i- Φ * * ψ

> KKn{B,C) ~*~* 2*) KK n (B,C* ] i r (Gi)) Θ KKrι (β, C*2 τ (G2)) TΊ*+T2*> K Kn(B, C^r{G1 * G2))
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(ii) If B is any C*-algebra, then the following diagram commutes and has
exact rows.

KKn(C*(Gλ*G2),B)

* r ( G i * G 2 ) , B )

In the above diagrams, i3- and τ2 denote the appropriate inclusion maps and
λ 7,\ denote the appropriate left regular representations.

Proof. Let G — G\ * G2. Let X be the tree with edge set X1 = G and vertex
set X° = G/Gι IIG/G2 where II denotes the disjoint union. The edge g has
the coset gGγ as its origin and the coset gG2 as its terminus. The group G
acts on X by left translation. It is easy to see that the orbit spaces Σ° and
Σ 1 consist of two elements and a single element respectively. If we choose
the transversals Σ° and Σ 1 to consist of the identity element of G and the
pair of cosets {eGΊ, eG2} respectively the proposition follows from Theorem
4.5. D

We now conclude the computation of the if-groups of the free product of
two matrix algebras.

Example 5.7. Let Mn * c Mk denote the unital free product of Mn and Mk.
Let Mn *^ed Mk denote the reduced free product of Mn and Mk relative to the
normalized traces on Mn and Mk. This reduced free product is isomorphic
to C* r (Z n * Zfc) for an appropriate cocycle by Proposition 5.3. It follows
from the fact that Z n is amenable (hence if-amenable) that Z n * Zk is K-
amenable and thus by Proposition 5.2 the full free product Mn *c Mk and
the reduced free product Mn *^ed Mk are if if- equivalent. Thus it suffices to
compute the if-theory for the full free product. The cyclic exact sequence
in the top row of Proposition 5.6(i) in the if-group setting (B = C) reduces
to the following sequence:

Z —*—+ Z θ Z > i f o (M n * c M f c )

Kx{Mn*cMk) i 0 i 0

where i(j) = (nj, —kj). It then follows that

K0(Mn * c Mk) <* K0(Mn *-d Mk) * Z2/Z(n, - f c ) S Z φ Z(n, fc)

K1(Mn *cMk)^ Kx{Mn 4 e d Mk) = 0
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where (n, k) denotes the greatest common divisor of n and k. If {e^ } and
{fki} are the canonical matrix units for Mn and Mk then the generators for
Z and Z(n>fc) can be taken to be x and y where α,6 are integers such that
ak + bn = (n, k) and

+ &[/n]o

The above example can be generalized to the free product of two finite
powers of matrix algebras. This follows from the tensor product version of
Proposition 5.3. Namely,

C:(G1 x G2) s C^ίGx) ®m a x C*U2(G2)

where ®m a x denotes the maximal tensor product and u — u^ x u2 is the
product cocycle on Gλ x G2 given by the formula

u((gu92), {g'i,92)) =u1(gug'1)u2(g2,g'2).

Thus since
®\Mn & Mn ® C ^ C:(Zn x Z r),

Proposition 5.6 applies and it follows that

K0(®[Mn * c ΦίMfc) ^ Z^8-1 Θ Z(nfjb)

^ i ( θ ϊ M n * c θ ί M , ) ^ 0 .
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