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DERIVATIONS OF C*-ALGEBRAS AND ALMOST
HERMITIAN REPRESENTATIONS ON Π^-SPACES

EDWARD KISSIN, ALEKSEI I. LOGINOV* AND VIKTOR S. SHULMAN*

This paper studies almost Hermitian, J-symmetric repre-
sentations of *-algebras on Π^-spaces. It applies the results
obtained to the theory of *-derivations δ of C*-algebras im-
plemented by symmetric operators 5.

1. Introduction and preliminaries.

The work on representations of groups and algebras on spaces with invariant
indefinite metric was strongly motivated by various applications to relativis-
tic quantum mechanics and differential equations. Gelfand and Yaglom [9],
Gelfand and Vilenkin [8], Naimark [27], Zhelobenko [44] and Ismagilov [12]
investigated representations of the Lorentz group on Π^-spaces. Representa-
tions of Lie groups were considered in a number of papers (see, for example,
[4, 7, 10, 26]) in relation to the study of massless particles. The Gupta-
Bleuer triplets for indecomposable representations of groups were introduced
and studied by Araki [1]. Rawnslew, Schmid and Wolf [39] investigated the
indefinite harmonic theory of groups. Ismagilov [13] considered representa-
tion theory on Π^-spaces for central extension groups.

Phillips [34-36] initiated the work on operator algebras on indefinite met-
ric spaces. He applied the obtained results to the problem of extension of
dissipative operators commuting with an operator algebra and to hyperbolic
systems of differential equations.

Simultaneously with the growth of the area of applications of the theory,
the process of its internal development has been taking place. Much work
has been done on the investigation of the structure of operator algebras and
of representations of Lie groups on Πfc-spaces (for extensive bibliography on
this subject see Naimark and Ismagilov [29], Naimark, Loginov and Shulman
[31] and Loginov and Shulman [25]).

The interrelation between representations on indefinite metric spaces and
unbounded *-derivations δ of C*-algebras il was initially observed by Ota
[33] and by Jorgensen and Muhly [15]. Using Phillips' results, Jorgensen
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and Muhly proved that if il is commutative, δ is implemented by a symmetric
operator S and at least one of the deficiency indices n_(Sf) or n+(S) of S is
finite, then S extends to a maximal dissipative operator which implements
ί. They applied this to study the Weyl canonical operator commutation
relations.

In [17] it was shown that, for every pair (δ, S), the deficiency space N(S)
of the operator S is a Krein space and that there is a J-symmetric representa-
tion πδ

s of the domain D(δ) of δ on N(S). lΐk = min(n±(5)) < oo, then N(S)
is a Πfc-space. Many questions about the pairs (δ,S), such as the values of
n±(S) and the existence of maximal dissipative operators which implement
ί, can be better understood and answered in terms of these representations.

Arveson [2], Powers [37] and Powers and Robinson [38] studied the case
when δ is the generator of a semigroup at of endomorphisms of B($)) and
—iS is the generator of a semigroup of isometries which intertwine at. In
this case S is a maximal symmetric operator, N(S) is a Hilbert space and
7r| is a ^representation. They introduced and investigated various notions
of the index of at in terms of the representation πδ

s.
The general case when N(S) is not necessarily a Hilbert space was stud-

ied in [15-21, 31]. Jorgensen and Price [16] defined the F-index as the
dimension of the Krein space of operators V : f) -» N(S), satisfying VA —
πδ

s(A)V, A G D(δ). In [19] a sextuple of integers ind(^S') was associated
with every pair (<5, S) and its stability under some perturbations of δ was
shown. The representational indices of derivations were introduced in [20]
and their uniqueness was studied in [21].

This paper considers non-degenerate, almost Hermitian, J-symmetric rep-
resentations of *-algebras on Π*.-spaces. Theorem 4 establishes the similarity
of these representations to ^representations. (Almost Hermitian representa-
tions constitute probably the largest class of representations for which such
similarity exists.) The most decisive step for proving Theorem 4 is the result
obtained in Theorem 3: irreducible, uniformly closed J-symmetric operator
algebras on Πfc-spaces contain the algebra of all compact operators.This last
result was announced in [24] and its proof is based on Cuntz's theorem [6]
and on some techniques developed in [41].

It is well-known that not every bounded representation of a group on a
Hilbert space is similar to a unitary one. It was established in [40] that the
similarity problem for bounded representations of groups on Hilbert spaces is
equivalent to the similarity problem for bounded J-unitary representations of
groups on Krein spaces. From this it follows that there are bounded J-unitary
representations of groups which are not similar to unitary representations.
However, for Π^-spaces the similarity problem is still open.In other words,
it is unknown whether for every bounded representation of a group which
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preserves a quadratic form with a finite number k of negative squares, there
always exists an invariant positive quadratic form. For k = 1 the positive
answer was obtained in [42] with the use of methods of hyperbolic geometry.
Making use of Theorem 4, we show in Theorem 7 that the problem has
a positive solution for groups with almost Hermitian group algebras; the
authors do not know examples of groups which do not possess this property.

Since all the domains D(δ) of derivations δ of il are Hermitian algebras,
it follows from Theorem 4 that their non-degenerate representations on ΐlk-
spaces are similar to ^representations and, therefore, extend to bounded
representations of il. This allows us in section 5 to improve substantially on
the results known previously (see [16-19, 31]) about symmetric implemen-
tations of δ. If, in particular, il has no finite-dimensional representations,
then, for every symmetric implementation S of ί, either n±(S) = oo or
k = min (n±(S)) = 0, so that S is maximal symmetric. If il has finite-
dimensional representations, then δ may have symmetric implementations S
such that 0 < k < oo. In this case there are finite-dimensional representa-
tions {πjg^ of il such that k = Σ™x dimπi and all the results obtained in
[15, 18] about the existence of maximal dissipative operators which extend
S and implement 5, and about the Weyl commutation relations, are valid.

2. Irreducible uniformly closed J-symmetric algebras on
Πfc-spaces.

We shall start this section by providing some information about J-symmetric
representations on Πfc-spaces.

Let H = i/_ © ίf+ be an orthogonal decomposition of a Hubert space H

form [x,y] — {Jx,y) on H and, with this form, H is called a Krein space.
Let k± = dimH±. If k = min(A:_, fe+) < oo, H is called a Πk-space.

A subspace L in H is non-negative if [x, x] > 0; positive if [x, x] > 0, x φ 0;
uniformly positive if there is r > 0 such that [x,x] > r(x,x) and neutral
if [re, x] — 0, for all x G L. Non-positive, negative and uniformly negative
subspaces are introduced analogously. We shall call uniformly negative and
uniformly positive subspaces uniformly definite.

If L is a subspace in if, the subspace

L[±] = {yeH: [x,y] = 0 for all x G L}

is the J-orthogonal complement of L. If H is a Π^-space and L Π L^ — {0},
then (see [23]) H can be decomposed in the direct and J-orthogonal sum

(1)

with a scalar product (x, y). The involution J = defines an indefinite
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For bounded operators B on H define an involution # :

B* = JB*J, i .e., [Bx, y] = [x, B*y] , x,y E H.

Then | | S # | | = ||J3||. A subalgebra B of B(H) is J-symmetric if B e B implies
I?# G £?. Uniformly closed, J-symmetric subalgebras of B(H) are Banach *-
algebras.

A representation π of a *-algebra A on a Krein space H is called

J — symmetric if τr(α*) = π(α)#, α G *4, and

non-degenerate if π has no neutral invariant subspaces.

If a subspace L is invariant for π, L ^ is also invariant for π. By πL we denote
the restriction of π to L. If L is uniformly definite, it is a Hubert space with
respect to the scalar product

f — \x,y]* if L is uniformly negative,
(X,V)L= / i ., r . ., / \ . x,yeL.

^p,yj, it L is uniformly positive,

The norm ||X||L — {x, X)L
 ι$ equivalent to the original norm on L and π^ is

a ^representation of A on L with respect to (, ) L . If H — N[+]P where N
and P are respectively uniformly negative and uniformly positive invariant
subspaces, then H is a Hubert space and π is a ^representation of A with
respect to the scalar product

(2) (χi[+]yuχ2[+]y2) = {?I,X2)N + {yuV2)p, Xi e N, y{ e P, i = 1,2,

and the norm || 1̂  = (, )1//2 is equivalent to the original norm on H. Let Q
be the projection on N along P and 3 = 1# — 2Q. Then 3 is an involution
on H with respect to (,), i.e., 3* = 3 and 32 = 1//, 3\N — —lw, 3|p — lp
and

(3) [jr,y] = pa;,?/), x,y E H.

Let L be a neutral subspace in a Π^-space iί, ΛΓ be the orthogonal com-
plement of Z,W in jy and M = L^ θ L. Then dimL = dim if < /c, M is a
Πn-space, n — k — dimL, and

(4) L[J-] = L θ M and H = L®MφK.

(o o

With respect to decomposition (4), J has the form J = \ 0 J2 0 , where

Λ* — Λ, ΛΛ — 1L? ̂ Λ — l χ stnd 2̂ is a n involution on M. Let β be
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the orthoprojection on M. If L is a maximal neutral invariant subspace of a
J-symmetric algebra of operators B, then the algebra Bβ = {βBβ : B G B}
of operators on M is J2-symmetric and has no neutral invariant subspaces.

The following lemma considers some simple conditions on normed spaces
to be complete.

L e m m a 1. Let (J£, || ||) be a normed space and L be a subspace of X of
finite codimension, i.e., there is a finite subspace K in X such that X is the
direct sum of L and K.

(i) If (L, || ||) is complete, then (£, || ||) is complete.
(ii) Let I I be another norm on X. If (3E, | |) and (L1 \ \) are complete and

the norms || || and \ \ are equivalent on L, then they are equivalent on X.
(iii) If T is a linear mapping from X into a finite-dimensional Banach

space y and X is complete with respect to the norm \x\ = \\x\\ + UTrrHy,
then the norms \\ \\ and | | are equivalent, (£, || ||) is complete and T is
continuous on (3C, || | | ) .

Proof. Let (L, || ||) be complete. Since K is finite-dimensional, (K, || ||) is
also complete. For x = y + z, y £ L and z G K, set

IMIi = IMI + Ml-

If there is a sequence xn = yn + zn, yn G L, zn G K, such that xn -> 0
and \\zn\\ = 1 as n -> oo, then, since K is finite-dimensional, there is a
subsequence {znk} which converges to z G K and ||j?|| = 1. Hence ||ynfc + z\\ <
\\χnk || + Ik ~ znk || ^ 0 so that ynk -¥ —z G K. Since L is complete, we have
a contradiction. Prom this it follows that there is C > 0 such that

Ml < C\\x\l for x = y + z, y G L and z G K.

Therefore \\y\\ = ||x - z\\ < (1 + C)||ar|| and

\\x\\ = h + z\\ < \\y\\ + \\z\\ = \\x\U and \\x\\, = ||y|| + \\z\\ < (1 + 2C)||s||.

Thus the norms || || and || ||i are equivalent. Since (3£, || ||i) is complete,
(3£, || ||) is also complete. Part (i) is proved.

Since (L, | |) is complete and the norms || || and | | are equivalent on
L, (L, || ||) is complete and there is CΊ > 0 such that |y| < Ci||y||, y G L.
By (i), (X, || ||) and (X, || ||i) are complete and the norms || || and || ||i
are equivalent. Since all norms on K are equivalent, there is C2 > 0 such
that \z\ < C2\\z\\, z G K. Let C = max(d, C2). Then, for x = y + z, y G L,
zeK,
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Hence the identity operator from (X, || \\x) onto (X, | |) is bounded. There-

fore the inverse operator is also bounded, i.e., there is D > 0 such that

IMIi < D\x\, x G X. Thus the norms || ||χ and | | on X are equivalent.

Hence the norms || || and | | are also equivalent on X. Part (ii) is proved.

The mapping T is bounded with respect to | |. Hence Ker T is closed
and, therefore, complete with respect to | |. Since ||x|| = |x|, for x G KerΓ,
and since Ker T has finite codimension in X, it follows from (ii) that the
norms || || and | | are equivalent on X. Thus (JC, || ||) is complete and T is
continuous on (X, || | | ) . D

A Banach *-algebra (>A, || ||,*) is called C*-equivalent if there is another

norm | | on A equivalent to || || such that (A, | |,* ) is a C*-algebra.

Theorem 2. Let (#, || ||, # ) be a uniformly closed J-symmetric commutative
algebra of operators on a Hk-space H.

(i) If B has no neutral invariant subspaces7 then it is C*-equivalent.
(ii) If B has no non-trivial finite rank operators, it is C*-equivalent.

Proof. Assume that k — k_ and let B have no neutral invariant subspaces.
By Naimark's theorem [28], B has a k -dimensional non-positive invariant
subspace L. The subspace L Π L^ is neutral and invariant for B. Since B
has no such subspaces, L Π LW = {0}, so that, by (1), H = L[+]L[±]. From
the discussion before Lemma 1 it follows that B is a *-algebra with respect
to the scalar product (,) defined in (2) as well as a J-symmetric algebra and
B* — B*. Since the norm || ||χ = (,) 1 / 2 on H is equivalent to the original

norm, the new norm \B\ — s u p ^ ^ ——-— on B is equivalent to the original

IWIIWIi
norm on B. Hence (#, | |, # ) is a (7*-algebra, so that the algebra (B, || ||, # )

is C*-equivalent. Part (i) is proved.

Let B have no non-trivial finite rank operators and let it have neutral

invariant subspaces. Let L be a maximal such subspace. Then decomposition

(4) holds. Since Bβ — βBβ is a non-degenerate commutative J-symmetric

operator algebra on M, we obtain as in (i) that M — N[+]P where N and P

are uniformly definite subspaces invariant for Bβ. Therefore (see (2) and (3))

there are a scalar product (,) and an involution 3 2 on M such that N and

M are orthogonal, 32\N = — IΛΓ, %\P = l p and [x,y] — p2#?2/)? x,y G M.
Define a new scalar product on H :

= (xux2) + (yi,J/2> + ( 2 1 , 2 2 ) , Xi £ L , y t e M , Zi G K.
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Then

z2] = z2)

ZuX2

{JiZUx2}

2/2

0 0 .
where 3 = | 0 32 0 | . Therefore, for B e B(H),

J3 0 0

[Bx,y] = {Wx,y} = , so that B* = 3B*3

where B* is the adjoint of B with respect to {, }. Since the norm (, )1//2 on M
is equivalent to the original norm, the new norm {, }1^2 on H is equivalent
to the original norm and

H = L{+}N{+}P{+}M.

Since L and L ^ are invariant for /?, since N and P are invariant for Bp
and 32|iv = —ljv a n d 32 |p = lp, we have that with respect to the above
decomposition of H

(B\ι B12 -B13 #14 1
0 #22 0 #24
0 0 #33 #34
0 0 0 #44/

for every # E 23, and 3 =

0 0 0 Ji
0 -ljv 0 0
0 0 lp 0
J3 0 0 0/

If #33 = 0, # is a finite rank operator. Since B has no such operators, the
mapping B —> # 3 3 is a ^-isomorphism of B onto BΊ = {7#7 = #33 : B £ B}
where 7 is the orthogonal projection onto P. Set

= {1HΘΊ)B{1HΘΊ).

Then T is a linear mapping from B into a subspace of operators on a finite-
dimensional space L{+}N{+}M.

Together with the usual operator norm || || on B we consider the following
norms on B :

\\B\U = \\B33\\ + \\B13\\ + \\B34\\, \\B\\2 = HS33II
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and

\B\ = \\B33\\ + \\Bl3\\ + ||2?34|| + \\T(B)\\ = \\B\U + \\T(B)\\.

Then B is a normed space with respect to all of them and a Banach space
with respect to || ||. Since | | 5 | | < \B\ < 4||J3||, (#, | |) is a Banach space.
Hence, by Lemma l(iii), the norms | | and || ||i are equivalent, B is complete
with respect to the norm || ||i and T is continuous on (#, || Id). Therefore
(KerT, || Id) is complete and there is C > 0 such that

Let B e KerΓ and let A = B*B = {3B*3)B. Then

Ba = Bi2 = Ail=Ai2 = 0, 1 < * < 4,

£?14 = £?23 — ^ 2 4 — ^ 4 3 — ^ 4 4 ~ ^ 2 3 = ^ 2 4 = ^ 4 3 = ^-44 = 0,

and

4̂-13 — Λ-^34^335 ^-14 = Λ ^ 3 4 ^ 3 4 5 ^.33 = ^33^33? ^.34 =

Therefore

= C{\\B;3B33\\ + \\JIB*MB33\\ + \\B;3B34\

For B T^O, B33 φ 0. Hence t = 1153411/11533 11 satisfies the inequality

t2 - 2Ct - C < 0.

Therefore t < D, where D = C + (C2 + C)1/2, so that | |B 3 4 | | < £)| |B3 3 | | . In
a similar way, considering BB#, we obtain that ||-S13|| < Z?J|^331|. Thus, for
BGKerT,

\\B\\2 = \\B33\\ < \\B\\, - l l^ l l + | | 5 1 3 | | + | | 5
34|

so that the norms || ||χ and || ||2 are equivalent on Ker T. Since Ker T has a
finite codimension in B and since (#, || |d) and (KerT, || |d) are complete,
it follows from Lemma l(ii) that the norms || |d and || ||2 are equivalent
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on #, so that the norms || || and || ||2 are equivalent on B and (B, || ||2) is
complete. For B e B,

and

Therefore (#, || ||2, #) is a C*-algebra, so that (#, || ||, #) is C*-equivalent.
D

Making use of Theorem 2 we shall now prove the following main theorem
of this section.

Theorem 3. An irreducible, uniformly closed, J-symmetric operator alge-
bra on a Hk-space H contains the algebra C(H) of all compact operators.

Proof. Let B be a uniformly closed J-symmetric algebra on a Uk-space
77, k φ 0, and let it be irreducible, i.e., it has no closed invariant subspaces.
Suppose that B has no non-trivial finite rank operators. Then any uniformly
closed J-symmetric commutative subalgebra of B also has no non-trivial fi-
nite rank operators. By Theorem 2, all these subalgebras are C*-equivalent.
Cuntz [6] proved that a Banach *-algebra is C*-equivalent if the closed com-
mutative *-subalgebra generated by any selfadjoint element of the algebra is
C*-equivalent. Applying this result to the algebra £?, we obtain that it is C*-
equivalent. Then it follows from [40] (cf. [18]) that H = N[+]P, where N
and P are respectively uniformly negative and uniformly positive subspaces
invariant for B and dim TV = k. This contradiction shows that B must have
non-trivial finite rank operators. Therefore it follows from Barnes' theorem
[3] that B contains all finite rank operators. Since B is closed, C(H) C B
and Theorem 3 is proved. D

3. Almost Hermitian J-symmetric representations on Π^-spaces.

A representation π of a *-algebra i o n a Banach space is Hermitian if, for
a = a* G v4, Spπ(α) C K. It is almost Hermitian if, for a = a* G Λ and
ε > 0, there is b = b* G Λ such that

(5) ||π(α) - π(6)|| < ε and Spπ(ί>) C E.

A *-algebra is Hermitian if all selfadjoint elements have real spectrum. We
say that a Banach *-algebra is almost Hermitian if selfadjoint elements
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with real spectrum are dense in the real part of the algebra. Clearly, all
^representations of Hermitian algebras are Hermitian and all continuous
^representations of almost Hermitian algebras are almost Hermitian.

A dense *-subalgebra A of a unitial Banach *-algebra it is a Q-subalgebra if
1 E A and Sp^ a = Spu α, for all α E Λ The following theorem describes the
structure of almost Hermitian non-degenerate representations on Π^-spaces.

Theorem 4. Let A be a *-algebra with identity.
(i) A has no almost Hermitian, J-symmetric irreducible representations

on Hk-spaces, k φ 0.
(ii) Any almost Hermitian, J-symmetric and non-degenerate representa-

tion π of A on a Uk-space H has decomposition H = JV[+]P, where N and
P are respectively uniformly negative and uniformly positive invariant sub-
spaces, and, therefore, π is Hermitian and similar to a ^-representation . If,
in addition, A is Q-subalgebra of a Banach *-algebra, then π is automatically
bounded.

Proof. Let π be an almost Hermitian, J-symmetric and irreducible repre-
sentation of a *-algebra A on a, Πfc-space H — iϊ_ θ ϋ+, k φ 0. Choose
eeH-J eH+ and ||e|| = | |/| | - 1. Let T e B(H) be such that

Tz = (z,e)f-(z,f)e, z e H.

If L is the subspace of H generated by e and /, then T\L —

= 0, L is invariant for the involution J and J\L — -10
0 1

and

Therefore

T is a finite rank operator, T* = Γ and SpT = {0, ±i}.
The uniform closure B of the algebra π(A) satisfies the conditions of The-

orem 3. Hence T G B and there are cn £ A such that τr(cn) —> T. Then
τr(c ) = τr(cn)

# -+ T# = T. Set αn = (cn + <)/2. Then < = αn and
τr(«n) ~> T. Since π is almost Hermitian, it follows from (5) that there are
bn = b*n e A such that π(6n) -> Γ and Spπ(6n) C K.

Let β be a Banach algebra, x £ B and α^ —> x. Newburgh [22] showed that
if W is a non-empty open and closed subset of Sp(x) and V is a neighbour-
hood of 0 in C, then there is a positive N such that Sp(xn) Π (W + V) Φ 0
for all n > TV, where W + V — {y + z : y e W,z e V}. From this result it
follows that there is m such that, for n > m,Spπ(bn) contain λn for which
\i — λn | < 1. Hence λn ^ R This contradiction proves part (i).

Let now π be a J-symmetric, non-degenerate representation on H. Ismag-
ilov [11] obtained the following decomposition of H :

H =
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where all the summands are invariant for π. The subspaces N and P are
respectively uniformly negative and uniformly positive. All the subspaces
H3,1 < j < ra, are Π^.-spaces, kj φ 0, and the representations 7r#; are J-
symmetric and irreducible. If π is almost Hermitian, all π/p are also almost
Hermitian. Prom part (i) it follows that πHj = 0. Thus H = N[+]P.

Since TΓ^ and πp are ̂ representations of A with respect to (, ) N and (, )p,
for any a = a* £ Λ., τrjv(α) a n d πp(a) are selfadjoint. Hence Spn^(a) C R
and Spπp(α) C R Thus Sp π(α) = Spπ v(α) U SpπP(α) C R and π is
Hermitian.

Prom the discussion at the beginning of Section 2 it follows that π is a
^representation of Λ with respect to the scalar product (,) on H defined in
(2). Since the norm || ||i = i,)1^2 is equivalent to the original norm || ||
on if, the identity operator from (H, || ||) onto (if, || ||i) is bounded and,
therefore the representation π on (if, || ||) is similar to the ̂ representation
π on (H, || | | i ) . We also have that

||π(α)||? = |k(a*a)| | ! = r(π(a*a)) < rΛ{a*a),

where r and r^ are the spectral radii on B(H) and Λ respectively. Let
Λ be a Q-subalgebra of a Banach *-algebra ίi. Then rΛ(a*a) = r^(a*a) <
\\a\\2. Therefore π is bounded on (H, \\ | | i ) , so that π is also bounded on

(tf.ll ID •
The following example shows that the condition in Theorem 4 that the

representation π is almost Hermitian is absolutely essential.

Example. Let A be the algebra of all complex 2 x 2 matrices, H be the

2-dimensional Hubert space and J = I be an involution on H. Set

[x, y] = (Jx, y), x,yeH, and A* = JA*J, AeA,

where A* is the adjoint of A. Then if is a Πχ-space, # is an involution on
A and the identity representation π of the *-algebra (>A, # ) is J-symmetric

and irreducible. For A = I J , A# = A, so that A is selfadjoint with

respect to # and Sp (A) = {—ΐ,i}. Thus π is not Hermitian and, since A is
finite-dimensional, it is not almost Hermitian.

4. J-unitary representations of groups with almost Hermitian
group algebras.

In this section we make use of Theorem 4 to show that all bounded contin-
uous J-unitary representations on Πfc-spaces of locally compact groups with
almost Hermitian group algebras are similar to unitary representations .
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A representation T : g G G —>- T(g) G B(X) of a group G on Banach space
X is bounded if there exists C > 0 such that ||T(#)|| <C for g eC.

The following lemma is a simple corollary of Johnson's theorem ([14],
Theorem 3.4).

Lemma 5. Let T(g) be a bounded representation of a group G on a reflexive
Banach space X and let L be a closed subspace in X invariant for T. If
dimL < oo or codimL < oo, then L has an invariant complement.

Proof. Let M be any subspace of X which complements L, so that X — L+M.
Since X is reflexive and dimL < oo or codimL < oo, the Banach algebra
B{M,L) of all bounded operators from M to L is reflexive. Let Q be the
projection onto M along L. With respect to the decomposition X = L + M
we write

( \
0 μ{9)) ' 9 ^ G '

where λ is the restriction of T to L, μ(g) = QT(g)Q is a representation of
G on M and ξ(g) G #(M, £). Define a representation p of G on β(M, L) by
the formula:

p(g)Z - λίίtfZ/iGΓ1), Z €

Since T is a representation of G,

Set η(g) = ξί^)/^^"1)- Then 77(3) is a bounded mapping from G into £?(M,
and

η(gh)=ξ(9h)μ((9h)-1) = [λ(g)ξ(h) 4- ξ(9)μ(h)]μ(h-1)μ(g-1)

Thus r (̂ ) is a bounded p-cocycle. It follows from Johnson's theorem [14]
that η(g) is inner, i.e., there is Zo G B(M,L) such that η(g) = p(g)Z0 — Zo.
Hence

so that the subspace F — {—Zox + x : x G M} is an invariant complement
ofL. D

A bounded operator U on a Krein space H is J-unitary if U has a bounded
inverse and [Ux^Uy] = [#,y], x,y G H.

Lemma 6. Let T(g) be a bounded J-unitary representation of a group G
on a Πjfc-space H and let L be a maximal invariant neutral subspace in H.
There are invariant subspaces R and M. in H such that
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(i) H = (L + R)[+]M. is the direct sum of L,R and Λ4, and dirαL =
dim.fi < A;;

(ii) the restriction of T(g) to the subspace C = L + R is similar to a
unitary representation of G;

(iii) the restriction of T(g) to Λ4 is non-degenerate.

Proof As in (4), H = L^ θ if, where dimL = dim if < k. Since T is J-
unitary, L^ is invariant for T and codim L^ = dimίί < oo. By Lemma 5,
LW has an invariant complement R in H. Hence dim.fi = dim if = dimL.
The subspace C = L + R is invariant for T and £ [ ± 1 = L [ x ] Π βW.

Let z G £ Π JCW. Then z = α: + y where x e L and y E R. Since z G i [ ± I

and L C LW, we have that y = * - x G L[±1 Π R = {0}. Thus y = z - a: - 0,
so that z — x G LΠ .fiW. Since R is a complement of

{0} = ffW = (LW + i?)1""1 = ( L W ) W n ΛW = L n

Thus ^ = 0. Hence £ n £ l x l - {0} and it follows from (1) that H =
Since T is J-unitary, C^ is invariant for T. Suppose that C^ has a neutral
subspace N invariant for T. Then L+N is a neutral invariant subspace larger
than L. This contradiction shows that Λί = £W has no neutral invariant
subspaces, so that the restriction of T to Λί is non-degenerate.

Let V(g) = T(g)\c be the restriction of T to C. Then V is a bounded
finite-dimensional representation of G. It is well-known that V is similar to
a unitary representation. D

Theorem 7. Lei G be a locally compact group with almost Hermitian group
algebra Lι(G). Then every bounded continuous J-unitary representation of
G on a Uk-space is similar to a unitary representation of G.

Proof. By Lemma 6, H = £[+]Λ4 where £ and M are invariant for Γ, the
representation V(g) = T(g)\c is similar to a unitary representation and the
representation U(g) — T(g)\M is non-degenerate. Then (see [23], [34-36])
Λ4 is a Πn-space, n < k, and U is a J-unitary non-degenerate represen-
tation of G on M. The representation U of G extends to a J-symmetric
non-degenerate representation π of the group algebra Lι(G) on Λ4. Since
Lι(G) is almost Hermitian, TΓ is almost Hermitian and, by Theorem 4(ii), it
is similar to a ^representation . Therefore U is similar to a unitary repre-
sentation , so that T is also similar to a unitary representation. D
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5. Closed derivations on C*-algebras implemented by symmetric
operators.

At the beginning of this section we consider briefly the link between *-
derivations of C*-algebras implemented by symmetric operators and J-sym-
metric representations of *-algebras on Krein spaces.

Let il be a C*-algebra of operators on a Hubert space ¥) and let δ be a
closed *-derivation from il into B(f)), i.e., δ is a closed mapping from a dense
*-subalgebra D(δ) of il into B(fi) such that

δ(AB) = δ(A)B + Aδ{B) and δ(A*) = δ{A)% A,B £ D{δ).

Then D(δ) is a Banach *-algebra with respect to the norm ||A||,j = \\A\\ +

IIΦ*)II
An operator S on S) implements δ if D(S) is dense in io and

AD{S) C D(S) and δ(A)\D{s) = ι(SA - AS)\D(Sy

If T extends S and implements 5, then T is a δ- extension of S. If S is
symmetric and has no symmetric 5-extensions, it is a maximal symmetric
implementation of δ.

Let S be a symmetric operator, S* be its adjoint, N±(S) be the deficiency
spaces and n±(S) — dimN±(S) be the deficiency indices of S. Then D(S*)
is a Hubert space with respect to the scalar product

(x,y) = (x, y) + (S'x, S*y), x, y e D(SΓ),

and it is the orthogonal sum of the subspaces D(S),N_(S) and N+(S) :

D(S*) - D(S) < + > N(S), where N(S) = M(S) < + > N+(S).

Let Q and Q+ be respectively the projections on N(S) and N+(S) in
i)(5f*). Then J = 2Q+ - Q is an involution on N(S) and iV(5) is a Krein
space with respect to the indefinite form

[x,y] = (Jx,y)> x,yeN{S).

It decomposes into a J-orthogonal and orthogonal sum of uniformly positive
and uniformly negative subspaces N+(S) and N-(S). If k = min (n±(S)) <
oo, then N(S) is a Πfc-space.

If a symmetric operator 5 implements a *-derivation ί, then D(5') is invari-
ant for all operators A E D(δ) and D(S*) is also invariant for all A G
We define a representation πδ

s of Z?(<5) on N(S) by the formula:

πδ

s(A) =
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Theorem 8 ([17]). The representation πδ

s of the Banach *-algebra D(δ) on
N(S) is J-symmetric and bounded:\\πδ

s(A)\\ < \\A\\δ. There is a one-to-one
correspondence between closed symmetric δ-extensions of S and neutral sub-
spaces in N(S) invariant for πδ

s. There is a maximal symmetric δ-extension
T of S and the representation π^ is non-degenerate.

An operator R is dissipative if (Rx,x) + (x,Rx) < 0, x G D(R), and
maximal dissipative if, in addition, it is not a proper restriction of any other
dissipative operator. A closed operator generates a strongly continuous semi-
group of contractions if and only if it is a maximal dissipative [34].

Making use of Theorem 4, we shall now prove the following theorem.

Theorem 9. Let ίi be a unital C*-algebra of operators on a Hilbert space
ί} and δ be a closed ̂ -derivation from it into B($)). Let S be a symmetric
implementation of δ and n = min (n±(S)) < oo.

(i) If n φ 0, it has irreducible ̂ -representations {τrί}^1 such that n =
Σ™=ι dimπj. Ifil has no finite-dimensional representations, then n = 0, i.e.,
S is a maximal symmetric operator.

(ii) For all maximal symmetric δ-extensions T of S, the representations
πji of D(δ) on N(T) are J-equivalent, similar to ^-representations of D(δ)
and extend to bounded ̂ -representations of it on N(T). For every T, there
are maximal dissipative operators R and W, R* = W, such that the operators
iR and —iW extend T and implement δ.

Proof. By Theorem 8, πδ

s is a J-symmetric representation of D(δ) on the
Πn-space N(S). Let L be a maximal neutral subspace in N(S) invariant
for πδ

s and L^ be the J-orthogonal complement of L in N(S). By Law
of inertia [23], dim I, < n. By Lemma 2.5 [21], L = L^/L is a Π*-
space, k = n — dimL, and the quotient representation τf| of D(δ) on L
is J-symmetric and non-degenerate. It was proven in [22] that D(δ) is
a Q-subalgebra of it. Therefore D(δ) is a Hermitian algebra and it fol-
lows from Theorem 4 that π£ is bounded with respect to the norm on it
and that L = N[+]P, where N and P are respectively uniformly nega-
tive and uniformly positive subspaces invariant for T? .̂ The representations
(πδ

s)N and (πδ

s)p of D(δ) on N and P are Representations and extend to
^representations of it. By Law of inertia, k = min(dimJV, dimP). Hence
there are irreducible ^representations {̂ }f=1 of il such that

p

k = y^dimπ^.
2 = 1

Let ( π | ) L be the restriction of πδ

s to L. In [5] (cf. [22]) it was shown
that 1 G D(δ). Hence there is a nest {0} = Lo C Lx C C Lq = L
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of subspaces invariant for (πδ

s)L such that the quotient representations of
D(δ) on Lj/Lj_χ, 1 < j < g, are irreducible and non-trivial. It follows from
Theorem 6 [22] that these representations extend to bounded representations
of il similar to ^representations Tj of il. Hence

dimly = ^dim(L J /L J _ 1 ) = ^ d i m r ^ .
j=l j=\

Setting Tj — πp+j and m = p + g, we obtain that

rra

n = k + dim!/ = ^ π ^ .

Part (i) is proved.
Any derivation implemented by a symmetric operator S has infinitely

many maximal symmetric implementations T which extend S. In general,
the corresponding representations πf. are not J-equivalent. However, it was
shown in [21] that if min(n±(S)) < oo, then all the representations π^ are
J-equivalent.

We have that k — min (n±(T)) < min (n±(S)) < oo. By Theorem 8, πf are
J-symmetric, non-degenerate representations of D(δ) on the Π^-spaces N(T).
Since D(δ) is a Q-subalgebra of il, it is a Hermitian algebra. From Theorem
4 it follows that -κδ

Ύ are similar to ^representations and bounded with respect
to the norm on il. Therefore they extend to bounded ^representations of il
on N(T); this is exactly the sufficient condition of Theorem 3.2 [18] for the
maximal dissipative operators R and W to exist. D

The Weyl canonical commutation relation [43] for unitary one-parameter
groups {U(t) : ίGR} and {V(s) : 5 G K} on j) is the operator identity:

U{t)V(s) = eistV(s)U(t), t, s G R

Jorgensen and Muhly [15] considered the infinitesimal Weyl relation in the
strong sense for U(t) and for a densely defined symmetric operator S :

U(t)D(S) C D(S) and (SU(t) - U(t)S)\D(s) = tU{t)\D{s), t e R

If S is selfadjoint, this is equivalent to the Weyl relation for U(t) and for
the unitary one-parameter group V(s) — e~ιsS. However, if S is not self-
joint, it can easily fail to have any selfadjoint extensions satisfying the
Weyl relation with respect to U(t) even when S has equal deficiency indices
([15, Th. 2]). Using Phillips' rtesult [36], Jorgensen and Muhly showed
that if min(n-t(S')) < oo, then S has a maximal dissipative extension R
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which generates a strongly continuous semigroup of contractions {R(t)}t>0

on f) such that

U{t)R{s) = eistR{s)U{t), for all - oo < t < oo and 0 < 5 < oo.

Let Λu be the commutative C*-algebra generated by the group U(t). The
expression σ(U(t)) — itU(t) defines an unbounded *-derivation σ on Λu and
the operator S implements σ.

Suppose now that δ is a *-derivation of an arbitrary C*-algebra of opera-
tors il on f). Set

G = {U E D{δ) : U is invertible in il and δ(U) = \(U)U, λ(U) E C}.

If U e G, it follows from Theorem 5 [22] that U~ι G D(δ). Then

δ^'1) = -U-ιδ{U)U~ι = -λ{U)U~\

so that ί/-1 G G. For ί/^GG,

= Uδ(V) + δ(U)V - (λ(U) + \{V))UV,

so that G is a group. One can easily show that G is a normed group with
respect to || ||«s and that λ is a continuous character on G.

If a symmetric operator S implements δ and min (n±(S)) < oo, it follows
from Theorem 9(ii) that there is a maximal dissipative operator R such that
iR extends S and implements δ. Let {R{t)}t>o be the strongly continuous
semigroup on S) generated by R. Then Theorem 4.2 [18] holds and we obtain
the following generalization of the result of Jorgensen and Muhly.

Corollary 10. Let an element U E D(δ) be invertible in il. The operator
R + δ(U)U~ι generates a one-parameter semigroup T(t) of operators and
UR(t) = T(t)U, t > 0. Ifδ{U)TJ-1 commutes with R, then

U, ί > 0 .

In particular, UR(t) = etλ^R(t)U, for U EG and t > 0.

References

[1] H. Araki, Indecomposable Reprentations with Invariant Inner Product, Commun.

Math. Phys., 97 (1985), 149-159.

[2] W. Arveson, Continuous analogues of Fock space, Mem. of AMS, 80(409) (1989).
[3] B.A. Barnes, Density theorem for algebras of operators and annihilator Banach

algebras, Michigan Math. J., 19 (1972), 149-155.



428 E. KISSIN, A.I. LOGINOV AND V.S. SHULMAN

[4] K. Bleuler, Eine neue Methode zur Behandlung der longitudinalen und skalaren
Photonen, Helv. Phys. Acta, 23 (1950), 567-586.

[5] O. Bratteli and D.W. Robinson, Unbounded derivations of C* - algebras, I, Comm.
Math. Phys., 42 (1975), 253-268.

[6] J. Cuntz, Locally C*-equivalent algebras, J. Funct. Anal., 23 (1976), 95-106.

[7] M Flato and C. Fronsdal, Quantum field theory of singletons, J. Math. Phys., 22
(1981), 1100-1105.

[8] I.M. Gelfand, M.L Graev and N.Ya. Vilenkin, Integral geometry and related prob-
lems of representation theory, FizMatgiz, Moskow, 1962.

[9] I.M. Gelfand and A.M. Yaglom, General relativistic invariant equations and infinite
dimensional representations of the Lorentz group, J. Exp. Th. Ph., 18 (1948), 703-
733.

[10] S.N. Gupta, Theory of longitudinal photons in quantum electrodynamics, Proc.
Phys. Soc, 63 (1950), 681-691.

[11] R.S. Ismagilov, Rings of operators in a space with an indefinite metric, Dokl. Acad.
Nauk SSSR, 2 (1966)= Soviet Math. Dokl., 7(6) (1966), 1460-1462.

[12] , Unitary representations of the Lorentz group in spaces with indefinite met-
ric, Izv. Akad. Nauk SSSR, 3 (1966), 497-522.

[13] , On the problem of extension of representations, Matem. Zametki, 35(1)
(1984), 99-105.

[14] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc, 127
(1972).

[15] P.E.T. Jorgensen and P.S. Muhly, Self adjoint extensions satisfying the Weyl oper-
ator commutation relations, J. Analyse Math., 37 (1980), 46-99.

[16] P.E.T. Jorgensen and G.L. Price, Index theory and second quantization of boundary
value problems, J. Funct. Anal., 104 (1992), 243-290.

[17] E.V. Kissin, Symmetric operator extensions of unbounded derivations of C*-algebras,
J. Funct. Anal., 81 (1988), 38-53.

[18] , Dissipative implementations of *-derivations of C*-algebras and represen-
tations in indefinite metric spaces, J. London Math. Soc, 43 (1991), 451-464.

[19] , Indices of unbounded derivations of C*-algebras, Pac J. Math., 152 (1992),
125-150.

[20] , Representational indices of derivations of C* -algebras and representations
of ^-algebras on Krein spaces, J. reine angew. Math., 439 (1993), 71-92.

[21] , On the uniqueness of representational indices of derivations of C* -algebras,
Pac J. Math., 162 (1994), 97-120.

[22] E.V. Kissin and V.S. Shulman, Dense Q-subalgebras of Banach and C* -algebras and
unbounded derivations of Banach and C* -algebras, Proceedings of the Edinburgh
Math. Soc, 36 (1993), 261-276.

[23] M.G. Krein, Introduction to the geometry of indefinite J-spaces and to the theory of
operators in those spaces, Amer. Math. Soc Transl., 93 (1970), 103-176.

[24] A.I. Loginov and V.S. Shulman, Irreducible J-symmetric algebras of operators in
spaces with an indefinite metric, Dokl. Akad. Nauk SSSR, 240 (1) (1978)= Soviet
Math. Dokl., 19(3) (1978), 541-544.

[25] , Invariant subspaces of operator algebras, Mat. Anal. (Itogi Nauki. VINITI



DERIVATIONS OF C*-ALGEBRAS 429

Akad. Nauk SSSR), 26, Moscow, 1988.

[26] G. Morchio, D. Pierotti and F. Strocchi, Infrared and vacuum structure in two-
dimensional quantum field theory models. The massless scalar field, J. Math. Phys.,
31 (1990), 1467-1477.

[27] M.A. Naimark, Linear representations of the Lorentz group, Fizmatgiz, 1958.

[28] , On commuting unitary operators in spaces with indefinite metric, Acta Sci.
Math., 24 (1963), 177-189.

[29] M.A. Naimark and R.S. Ismagilov, Representations of groups and algebras in spaces
with indefinite metric, Mat. Anal. 1968. (Itogi Nauki. VINITI Akad. Nauk SSSR),
Moscow, (1969), 73-105.

[30] M.A. Naimark, A.I. Loginov and V.S. Shulman, Non-self adjoint operator algebras in
Hubert spaces, Mat. Anal. (Itogi Nauki. VINITI Akad. Nauk SSSR), 12, 413-465,
Moscow, 1974 = J. Soviet Math., 5(2) (1976), 250-278.

[31] H. Nakazato, Indefinite inner product spaces and derivations, Math. Japonica, 35
(1990), 1119-1124.

[32] J.D. Newburgh, The variation of spectra, Duke Math. J., 18 (1951), 165-176.

[33] S. Ota, Certain operator algebras induced by *-derivations in C*-algebras on an
indefinite inner product space, J. Funct. Anal., 30 (1978), 238-244.

[34] R.S. Phillips, Dissipative operators and hyperbolic systems of partial differential
equations, Trans. Amer. Math. Soc, 90 (1959), 193-254.

[35] , The extension of dual subspaces invariant under an algebra, Proc. of
the International symposium on Linear Spaces (Jerusalem 1960) (Academic Press,
Jerusalem, 1961), 366-398.

[36] , On dissipative operators, Lecture series in differential equations, Vol II,

Mathematics Studies 19 (ed. A.K. Aziz; von Nostrand, New York, 1969).

[37] R.T. Powers, An index theory for semigroups of *-endomorphisms of B(H) and type

Hi factors, Canad. J. Math., XL (1988), 86-114.

[38] R.T. Powers and D.W. Robinson, An index for continuous semigroups of B(H), J.
Funct. Anal., 84 (1989), 85-96.

[39] J. Rawnsley, W. Schmid and J.A. Wolf, Singular unitary representations and indef-
inite harmonic theory, J. Funct. Anal., 51 (1983), 1-114.

[40] V.S. Shulman, On representations of C* -algebras on indefinite metric spaces, Mat.
Zametki, 22 (1977), 583-592 = Math. Notes, 22 (1977).

[41] , Symmetric Banach algebras of operators in a space of type Πi, Mat. Sbornik,
89(131) (1972), No 2 = Math. USSR Sbornik, 18(2) (1972), 267-283.

[42] , On fixed points of linear-fractional transformations, Funct. Analis i ego
prilogenia, 14 (1980), 93-94.

[43] H. Weyl, The theory of groups and quantum mechanics, Dover, New York, 1950.

[44] D.P. Zhelobenko, Description of a certain class of representations of the Lorentz

group, Dokl. Akad. Nauk SSSR, 4 (1958), 586-590.

Received November 9, 1993 and revised March 22, 1994.

UNIVERSITY OF NORTH LONDON

HOLLOWAY, LONDON N7 8DB



430 E. KISSIN, A.I. LOGINOV AND V.S. SHULMAN

GREAT BRITAIN

AND

Moscow INSTITUTE OF RADIOTECHNOLOGY

ELECTRONICS AND AUTOMATION

Moscow, RUSSIA

AND

POLYTECHNIC INSTITUTE OF VOLOGDA

VOLOGDA, RUSSIA




