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QUANTUM AFFINE ALGEBRAS AND AFFINE HECKE

ALGEBRAS

VYJAYANTHI CHARI AND ANDREW PRESSLEY

We describe a functor from the category Cm of finite-dimen-
sional representations of the affine Hecke algebra of GL(m)
to the category Vn of finite-dimensional representations of
affine sl(n). If m < n, this functor is an equivalence between
Cm and the subcategory of Vn consisting of those representa-
tions whose irreducible components under quantum sl(n) all
occur in the m-fold tensor product of the natural represen-
tation of quantum sl(n). These results are analogous to the
classical Frobenius-Schur duality between the representations
of general linear and symmetric groups.

1. Introduction.

One of the most beautiful results from the classical period of the repre-

sentation theory of Lie groups is the correspondence, due to Frobenius and

Schur, between the representations of symmetric groups and those of general

or special linear groups. If Vo is the natural irreducible (n + 1) -dimensional

representation of SLn+ι(Φ), the symmetric group Si acts on V®1 by permut-

ing the factors. This action obviously commutes with the action of SXn+i (<£)•

It follows that one may associate to any right ^-module M a representation

of SLn+ι((V), namely

TS{M) = M®SV®\

the action of SLn+1(Φ) on TS(M) being induced by its natural action on

V®£. The main result of the Frobenius-Schur theory is that, if i < n,

the assignment M —> TS{M) defines an equivalence from the category of

finite-dimensional representations of Si to the category of finite-dimensional

representations of 5Xn+1((Γ), all of whose irreducible components occur in

Around 1985, Drinfeld and Jimbo independently introduced a family of

Hopf algebras Z79(fl), depending on a parameter g E ffx, associated to any

symmetrizable Kac-Moody algebra g. Assuming that q is not a root of

unity, Jimbo [7] proved an analogue of the Frobenius-Schur correspondence

in which SLn+ι((P) is replaced by Uq(sln+ι), Vo by the natural (n -f 1)-

dimensional irreducible representation V of Uq(sln+ι), and 5^ by its Hecke

algebra Hι(q2).
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In [5], Drinfeld announced an analogue of the Frobenius-Schur theory for
the Yangian Y(s/n + 1), which is a "deformation" of the universal enveloping
algebra of the Lie algebra of polynomial maps (C -* s/n+i The role of S£ in
this theory is played by the degenerate affine Hecke algebra Λ*, an algebra
whose defining relations are obtained from those of the affine Hecke algebra
Hι(q2) by letting q —> 1 in a certain non-trivial fashion.

In the same paper, Drinfeld conjectured that there should be an analogue
of the Probenius-Schur theory relating the quantum affine algebra Uq(sln+ι)
and H£(q2). In this paper, we construct a functor from the category of finite-
dimensional iϊ^(g2)-modules to the category of finite-dimensional Uq(sln+ι)-
modules W of 'type Γ (a mild spectral condition) with the property that
every irreducible ί79(sZn+1)-type which occurs in W also occurs in V®£ (we
assume that q is not a root of unity). We prove that this functor is an
equivalence if ί < n. Drinfeld's theory can be obtained from ours by taking
a suitable limit q —> 1. Related results were obtained by Cherednik in [4].

We give a precise description of our functor at the level of irreducible
representations, using the known parametrizations of such representations
of Uq(sln+1) and of H£(q2). Namely, in [2], [3] we showed that the finite-
dimensional irreducible [/g(sZn+1)-modules of type 1 are in one to one cor-
respondence with n-tuples of monic polynomials in one variable. On the
other hand, Zelevinsky [13] and Rogawski [12] have given a one to one
correspondence between the finite-dimensional irreducible H£(q2)-modules
and the set of (unordered) collections of 'segments' of complex numbers, the
sum of whose lengths is ί. (A segment of length k is a A -tuple of the form
(α, q2a,... , q2k~2a), for some a E (Fx.) We compute explicitly the n-tuple of
polynomials associated under our functor to any such collection of segments.

The affine Lie algebra sZn+1 is a central extension, with one-dimensional
centre, of the Lie algebra of Laurent polynomial maps / : Φx —> sZn + 1.
An obvious way to construct representations of sln+ι is to pull back a rep-
resentation of s/n+i by the one-parameter family of homomorphisms ev°a :
sln+ι -» sln+ι which annihilate the centre and evaluate the maps / at a G Φx.
In [7], Jimbo defined a one-parameter family of algebra homomorphisms
eva •" Uq(sln+ι) —> Uq(sln+ι) which are quantum analogues of the ev® (ac-
tually, eva takes values in an 'enlargement' of Uq(sln+ι)). On the other
hand, in [4] Cherednik defined a one-parameter family of homomorphisms
eva : Hι{q2) -* H^q2) which are the identity on H£(q2) C H^q2). Pulling
back representations of Uq(sln^.1) (resp. H£(q2)) under eva (resp. eυa) gives
a one-parameter family of representations of Uq(sln^1) (resp. H^q2)). We
show that these 'evaluation' representations correspond to each other under
our functor.

Acknowledgement. We would like to thank I.V. Cherednik for several
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discussions related to this work.

2. Quantum Kac-Moody algebras.

Let A — (dij) be a symmetric generalized Cartan matrix, where the indices
i, j lie in some finite set /. Thus, α^ E Z, an = 2, and α^ < 0 if i Φ j . To
A one can associate a Kac-Moody Lie algebra Q(A) (see [8]).

Let q be a non-zero complex number, assumed throughout this paper not
to be a root of unity. For n,r E N, n>r, define

n

2.1.

Definition. The quantum Kac-Moody algebra ί/9(fl(τ4)) associated to a
symmetric generalized Cartan matrix A = (a^ijeί is the unital associative
algebra over (Γwith generators xf, A f1 (i G /) and the following defining
relations:

rvΐ thj ^— fhj n>i ,

ϊ1 = q±a<ixf,

xi >xj I-

2—j \ ' r \ \ i ) j \ i ) '
r = 0

It is well-known that Uq(Q(A)) is a Hopf algebra with comultiplication Δ
given on generators by

Δ(χt) =χf®ki

Δ(x~) = χτ®l +

(we shall not need the formulas for the counit and antipode of Uq(Q(A))).
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2.2.
By a representation of a quantum Kac-Moody algebra Uq(g(A)) we shall
mean a left Uq(g(A))-module. A representation W is said to be of type 1 if

W = φ Wμ,

where Wμ = {w G W\ki.w = qμ^w}. If Wμ is non-zero, then Wμ is called
the weight space of W with weight μ. Restricting consideration to type
1 representations results in no essential loss of generality, for any finite-
dimensional irreducible representation can be obtained by twisting a type 1
representation with a suitable automorphism of Uq(g(A)) (cf. [10]).

2.3.
Assume that dim(g(A)) < oo. A representation W of Uq(g(A)) is said to be
highest weight with highest weight λ G Z7 if W is generated as a Uq(g(A))-
module by an element wx satisfying

xf.wx = 0, ki.wχ = qx{i)wx,

for all i G /.
A weight λ G Z J is said to be dominant if λ(i) is non-negative for all

iei.

Proposition ([10]). Assume that dim (Q(A)) < oo.
(i) Every finite-dimensional Uq(g(A))-module is completely reducible.
(ii) Every irreducible finite-dimensional Uq(g(A))-module of type 1 is high-
est weight. Assigning to such a representation its highest weight defines a
one to one correspondence between the set of isomorphism classes of finite-
dimensional irreducible representations of type 1 and the set of dominant
weights.
(iii) The finite-dimensional irreducible Uq(g(A))-module V(λ) of type 1 and
highest weight λ has the same character (in particular, the same dimension)
as the irreducible g(A)-module of the same highest weight.
(iv) The multiplicities of the irreducible components in a tensor product
V(X)®V(μ) of irreducible finite-dimensional Uq(g(A))-modules is the same
as in the tensor product of the irreducible g(A)-modules of the same highest
weights.
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2.4

The case of most interest to us is when A is the matrix

/ 2 - 1 0 0 ••• 0 - 1 \

- 1 2 - 1 0 ••• 0 0

0 - 1 2 - ! • • • 0 0

0 0 0 ••• - 1 2 - 1

- 1 0 0 ••• 0 - 1 2 )

where i,j G {0,1,... , n}. Then g(A) is the affine Lie algebra sln+1. Fix a

square root q1^2 of q. For any elements α, b of an associative algebra over (F,

set

[a,b]qi/2=qι/2ab-q-1/2ba.

Since α^ = 0 or — 1 if i φ j , the quantized Serre relations in Uq(sln+1) can

be written

[xf, xf] = 0 if i - j φ 0, ± 1 (mod n),

[αf, [xf.xf ]qi/2]qi/2 =0 if i - j = ±1 (mod n).

Deleting the 0th row and column of A gives the Cartan matrix of sln+1.

Thus, there is a natural Hopf algebra homomorphism from Uq(sln+ι) to

Uq(sln+ι); this homomorphism is injective (this follows from Proposition 5.4

below).

If fl(^4) = θ/n +i, then J = {1,... ,n} and so weights are identified with

n-tuples of integers. It is useful to introduce the weights e ί? for 1 < i < n,

defined by

( - 1 if j = * - 1,

1 Ίΐj = h

0 otherwise.

Note that Σ"=ϊ €< = 0.
Set α f = €i — €i+i. If λ, μ G Z J , we write λ > μ i f λ — μ = ΣΓ=i r « ^ f° r

some non-negative integers r .̂

The elements λ̂  = Σ}=i 6i? 1 ^ * ^ n? a r e called fundamental weights
and the corresponding irreducible representations V(X{) the fundamental
representations of Uq(sln+ι).

The representation V^λx) is called the natural representation of Uq(sln+ι);
it will be denoted by V from now on. It has a basis {i?i,... , vn+ι} on which
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the action is given by:

x+.vr =

X~.Vr = ίr,iVr+

ki.vr — q€r{i)vr

(we set v-i = vn+2 — 0).
Let xf be the operators on V defined by

and let kθ = kχk2 ... kn. It is easy to see that V can be made into a Uq(sln+\)-
module V(α), for all α G (Px, by letting k0 act as k^1 and x^ as α^rz;^.

2.5.

Definition. If £ < n, a finite-dimensional ί79(5Zn+i)-module W is said
to be of level ί if every irreducible component of W is isomorphic to an
irreducible component of V®£.

Note that every level ί representation of Uq(sln+ι) is of type 1.
The next result follows immediately from Proposition 2.3 and the corre-

sponding classical result (which is well-known and easy to prove).

Proposition. Assume that ί < n. Then, the finite-dimensional Uq(sln+ι)~
module V{\) is of level ί < n iff £ ? = 1 iλ(i) = L

Remark . This proposition shows that the concept of level is well-defined,
mption that ί < n is necessary, for if ίγ or ί2 is greater than n, it

f V®£l d V®ί2 t h i d i b l t i

pp
The assumption that ί <
i ibl f V®£ d

The assumption that ί < n is necessary, for if ίγ or ί2 is greater than n, it
is possible for V®£l and V®ί2 to have an irreducible component in common
even if ίx φ ί2.

2.6.
It is easy to check that c — kokι... kn is central in Uq(sln+ι).

Proposition. The central element c ofUq(sln+ι) acts as 1 on every finite-
dimensional Uq(sln+ι)-module W of type 1.

Proof. This was proved in [2] when n — 1 and W is irreducible. Es-
sentially the same proof works for all n and the extension to arbitrary
finite-dimensional W follows by an easy argument using Jordan-Holder se-
ries. D
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3. Hecke algebras and affine Hecke algebras.

In this section, we collect some well-known definitions and results concerning

(affine) Hecke algebras (cf. [9], [12]). We continue to assume that q G Wx is

not a root of unity.

3.1.

Definition. Fix ί > 1. The affine Hecke algebra He(q2) is the unital

associative algebra over Φ with generators σf1, i G { 1 , . . . , ^ — 1}, yf1,

j £ {1,.. . , £}, and the following defining relations:

yjιyj =

if j 7̂  i or i + 1,

The unital associative algebra with generators σf1, i 6 { 1 , . . . , < - 1 } ,

defined by the first four sets of relations above is called the Hecke algebra

There is an obvious homomorphism of Hι(q2) onto the subalgebra of

Ht{q2) generated by the σ{.

Lemma. The multiplication map C[yf1,... ^yf1}®!!^2) -» H^q2) is an

isomorphism of vector spaces.

3.2.

The following well-known result provides an analogue for affine Hecke and

Hecke algebras of the canonical homomorphism S^ x Sι2 —»

Proposition. There exists a unique homomorphism of algebras

such that
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Ϊ£1,£2(σι<S>l) = σ{, ΐιuι2{yj®l) =Vj, i = 1, ,t\ - 1, j = 1, ,^i,

Γ ^ 2 ( l ® σ ; ) = CΓH-̂ 17 ^ ^ ( 1 0 2 / J ) = y j +^ 1 ? i = 1 , . . . , 4 - 1 , j = 1,. . - , 4 -

Clearly the restriction oϊΐ£u£2 to H£l(q2) ® H£2(q2) induces a homomor-
phism ^ l Λ : H£l(q2) ® Hi2{q2) -> H£l+£2(q2).

Let Mi be a right iί^ t(g2)-module for i = 1,2, and let M1®M2 be their
outer tensor product (an Htl{q2) ® iί^2(g2)-module). Then, the £Γ^l4.^2(g2)-
module Mx ©M 2 , sometimes called the Zelevinsky tensor product of Mi and
M 2, is defined by

= (M1®M2) 0 H£ι+ί2(q2).

The Zelevinsky tensor product 0 for affine Hecke algebra modules is defined

similarly. Standard properties of induced modules show that the Zelevinsky

tensor products are associative up to isomorphism.

3.3.

Proposi t ion. Let Mi be a finite-dimensional H£i(q2)-module, i = 1,2.

Then, there is a canonical isomorphism of H£l+£2(q2)-modules

where Mi\jjt ^ means M{ regarded as an H£τ(q2)-module by restriction, etc.

Proof. It is easy to see that the canonical map

given by

(m, G M ί ? h E H£ι+ί2(q2))

is a well-defined surjective homomorphism of iί^1+^2(^2)-modules. But, by
Lemma 3.1, the rank of H£l+ί2(q2) as an H£l(q2)®H£2(q2)-modn\e is the
same as that of H£ι+£2{q2) as an H£l(q2)®H£2(q2)-modu\e. It follows that

d'im([j{M1ΘM2) = dim^(Mi Θ M 2 ).

D
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3.4.

Affine Hecke algebras have a family of universal modules, defined as fol-

lows. Let a = (oi, α 2 , . . . ,a e) G (Φx)£ and set

M a - H£(

t h e q u o t i e n t of H£{q2) b y t h e r i g h t i d e a l H& g e n e r a t e d b y y3-,— a,j, j = 1 , . . . , ί.

Proposition ([12]).

(a) Every finite-dimensional irreducible H£(q2)-module is isomorphic to a

quotient of some M a .

(b) For all a G (Φx)£, M a is isomorphic as an H£(q2)-module to the right

regular representation.

(c) M a is reducible as an H£(q2)-module iff aj = q2ak for some j , k.

4. Duality between Uq(sln+1) and H£(q2).

We begin by recalling the duality, established by Jimbo [7], between repre-

sentations of Uq(sln+ι) and H£(q2).

4.1.

Let V be the natural (n + 1)-dimensional representation of Uq(sln+ι)

defined in 2.4, and let R : V®V -> V®V be the linear map given by

ί
q2vr<S>vs if r — 5,

qvs®vr if 5 > r,

qvs®υr + (q2 - l)υr®υs Ίϊr > s.

Fix £ > 1 and let J^ G E n d ^ V ® ' ) be the map which acts as R on the ith

and (i + l)ih factors of the tensor product, and as the identity on the other

factors.

P r o p o s i t i o n ([7]). Fix l,n > 1. There is a unique left H£(q2)-module

structure on V®1 such that σι acts as Ri for i = 1, . . . , £ — 1. Moreover, the

action of H£(q2) commutes with the natural action of Uq(sln+ι) on

If M is a right H£(q2)-module, define

equipped with the natural left Uq(sln+ι)-module structure induced by that

on V®1. Then, if ί < n, the functor M -> J[M) is an equivalence from
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the category of finite-dimensional H^q2)-modules to the category of finite-
dimensional Uq(sln+ι)-modules of level ί.

4.2.

We now state the main result of this section, which is an analogue of
Proposition 4.1 for quantum affine algebras. Recall the operators k&, xf G

defined in Section 2.4.

Theorem. Fix I, n > 1. There is a functor T from the category of finite-
dimensional right H^q2)-modules to the category of finite-dimensional left
Uq(sln+ι)-modules of type 1 which are of level I as Uq(sln+ι)-modules, de-
fined as follows. If M is an H^q2)-module, then T(M) = J(M) as a
Uq(sln+ι)-module and the action of the remaining generators ofUq{sln+ι) is
given by

(2) a£.(ro®v) = £ > . y f ®lf .v,

(3) &0.(m®v) = m ® ^ 1 ) ® * ^ ,

where me M,v e V®£ and the operators Y± G End^ (V®£), j = 1,... ,1,
are defined by

Yr =kfj-1®xj®l®ί-j.

The functor T is an equivalence of categories if i < n.

Proof. We first show that the formulas (2) and (3) are well-defined. We do
this for the action of XQ", leaving the verification for XQ and k0 to the reader.
Thus, we must prove that

x£.(m.σi®v) = x~^ .(m®σi.v)

for i = l , . . . , < , v G y®^ This is equivalent to proving that, as operators

o n J ( M ) = M ® W ) ^ ,

(4) t

If j'φ i, i 4-1, the jth terms on the left and right-hand sides of (4) are equal,

since σ^yj = y$Ci and <J%Y^ = ^ + σ ΐ Hence we must show that



QUANTUM AFFINE ALGEBRAS AND AFFINE HECKE ALGEBRAS 305

Using the relation σ{ — (q2 — 1) = q2σ^1, this reduces to

q2yι+1® ( σ : 1 ^ - Y&σr1) + Vi® (σ.Y^ - Y+σJ = 0.

Thus, it suffices to prove that

i.e. that

(5) R{l®xJ) = {xo^K^R

as operators on V®V. But this is easily checked by using the formula for R

in (1) and that for xj in 2.4.

In proving that the formulas (2) and (3) define a representation of

£7g(sZn+i), we shall assume that n > 1. The proof for the sl2 case is similar

(the difference arises because the Dynkin diagram of sl2 has a double bond).

The only relations to be checked are those involving £Q~, X$ and k0. This

is straightforward except for the quantized Serre relations:

(6) [xf,[x$,xf]qi/2]qi/2 = 0 ,

(7) [x±,[xf,x$]qi/2]qi/2 =0,

for i — l,n. We verify (7) for xf, leaving the other cases to the reader.

Applying the left-hand side of (7) to J(M) and considering the terms

involving yjUk, one sees that it suffices to prove that

(8) \Y+, \AW(xΐ),Yk

+\ 1/2 +(j^k) = 0,
L 9 J qi/2

where (j <-> fc) means the result of interchanging j and A: in the first term

and Δ ^ is the ίth iterated comultiplication (so that Δ^2) = Δ). Equation

(8) will be proved by induction on I, and we accordingly denote Y^ by Y^ •

If ί — 1, then (8) becomes

[Xβ,[χ~,Xj]qi/2}qi/2 = 0,

which holds by the remarks at the end of 2.4.

For the inductive step we distinguish three cases:

(ii) j < I, k = ί or j - I, k < I,
(in) j = k = ί.
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For the first case, notice that the left-hand side of (8) is

+ lβ^y^- 1 '®*,- 1 ]^] i/2 + ϋ **

= \γ;{ί-ι),

L

The sum of the first two terms on the right-hand side vanishes by the induc-
tion hypothesis, and the sum of the last two terms is a multiple of

+ (j <+ k)

* ' " ] kfxt + (j o k).

But the expression on the right-hand side is zero since \Yj ~ \Yk ~ ® >

so the induction step is established in this case. The other two cases are
similar; we omit the details.

We have thus proved that formulas (2) and (3) define a representation of
Uq(sln+ι). If / : M -> M' is a homomorphism of ^(g2)-modules, we define

by

=/(m)®v.

The proof that T{f) is a well-defined homomorphism of ί77(5/n4.i)-modules
is completely straightforward. It is now obvious that J 7 is a functor between
the appropriate categories of representations. D

4.3.
Assume for the remainder of the proof that I < n. To prove that T is an

equivalence, we must prove that
(a) every finite-dimensional £/g(.s/n+1)-module W of type 1 which is of level
i as a ί79(5Zn+1)-module is isomorphic to T(M) for some ΐ/^(g2)-module M;
(b) T is bijective on sets of morphisms.
(See [11], p. 91.)

To prove (a), note that by Proposition 4.1, we may assume that W =
J(M) for some i2^(g2)-module M. We shall reconstruct the action of the
yfι on M from the known action of x^ and k0 on W.

We need the following lemma.

Lemma (a). Let M be a finite-dimensional Hι(q2)-module, and let v €
V®£. The linear map M -» J(M) given by m -» m®v is injective ifv has
non-zero component in each isotypical component of J(M).
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(b) // {vι,... ,fn +i} is the standard basis ofV', i 1 ? . . . ,i^ E {1,.. . , n + 1}

are distinct, and Ύ — viχ® -- - ®viε, then V®1 — Uq(sln+ι).v. In particular,

v satisfies the condition in part (a).

Proof. Part (a) follows easily from Proposition 4.1, and part (b) is elemen-

tary. D

4.4.

For 1 < j < n, let

Let w ^ be the result of permuting the factors of w ^ by τ G S£. Since

{ w ^ } r G ^ clearly spans the subspace of V®£ of weight λ ,̂ we get, for any

m e M,

for some mτ E M. By (1), w ^ is a (non-zero) scalar multiple of σ.w^ for

some σ E Hι(q2) (depending on r). It follows that

— ί (iλ\ I (i)

Xn . m®vU) I = m ® w u ;

for some ra' E M. By Lemma 4.3, there exists α7 E End^{M) such that

TΠ' = aj(m) for all m E M. By a similar argument, there exists a^ E

Έnd(p(M) such that

for all m E M.

4.5.

We need to prove the following lemma. The proof of the theorem itself

continues in Section 4.6.

Lemma. For all m E M, v E V®1, we have

t

3 = 1
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Proof. Let v = υh ® ®vit. If {i\,... ,iι} C {1,... , n}, it is clear that
xό'.(m®v) = 0, since e^ + . . . + e<£ + ei + . . . + en cannot be a weight of F®^.

Let r > 0, 5 > 1, 1 < j x < j 2 < . . . < j r < i, 1 < j[ < j'2 < . . . < j ' s < I,
and assume that {ju... J£} Π {j[,...,#} - 0. Write j = ( j Ί , . . . , j r ) , j ' =
0'ί > 5 is)5 a n d l e t V^ '̂̂  be the subspace of V®£ spanned by vectors which
have Vι in positions j Ί , . . . , j r > ?Vfi in positions j{,... ,j£, and vectors from
{t?2,. . ,^n} in the remaining positions. We shall prove the lemma when
v E V^j'j/) for all such j , j ' in two steps:

(i) For s = 1, by induction on r;

(ii) for all r, by induction on 5.
Observe that, by Lemma 4.3 (b) applied to the subalgebra of Uq(sln+ι)

generated by the xf^ kf1 for i G {2,... ,n}, to prove Lemma 4.5 for all
v e V^'\ it suffices to prove it for one v E V ^ J ' ) with the property that no
vector from the set {υ2j... , vn} is repeated. (Note that such vectors v exist
since ί+ I — r — s < ί <n.)

Proof of Step (i). If r = 0 (and 5 = 1), there is nothing to prove, for

we can take v = v2® ®^jj®^n+i®^;+i® * • • ®vι a n ( l u s e the definition of

a~,. Assume that the result holds for r — 1, and let j = ( jΊ , . . . , J r - i) Let

v ; G V^j'ϊ have v2 in the fj1 position, and distinct vectors from {v3,... , vn}
in the remaining positions. Then,

v =

Let v" (resp. v" ;) be the element obtained from v' by replacing vn+ι by υλ

(resp. Ϊ;2 by ^i). We then get, for all m E M,

of Step (ii). Assume that the result holds for all v E F ( j ' j / ) with fewer
than 5 ?;n+iS. It suffices, as in step 1, to prove the result for one element
v € V ^ ' ) which has distinct entries from {^3,... ,i;n} in the remaining
positions. Fix such a v and let v' be the element obtained from v by replacing
υ n + i in positions j[ and j'2 by vn. Then,
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Using a quantized Serre relation we get

~)2x~(x~)2x- ^ _?

Since x~ operates in the j[th and j'2
th positions in v', we obtain, using the

induction hypothesis,

1 + 'Γ 1

 fc=3

On the other hand,

where v" (resp. v'") is obtained from v' by replacing the υn in its j[th

position (resp. j2

th position) by υn+i- Using the induction hypothesis, we

get

χ - χ ~ . ( m ® v f ) = J α ^ ^
kφ2 k k kφl

Noting that v//; has vn only in the j2

th position, we find that

x~. Y* oΓ , {m)®Y7.v" = a~, (m)®Y7 V + q2 V α

Similarly,

! v"' =

kφ\ kφ\

Combining these computations we obtain finally,

k>2
α7^ (^ )®^ [ v + αT/

k>2

", (m)<g>y.7.v

k=l

as required.

This proves Lemma 4.5 for XQ . The proof for α J is similar. D
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4.6.

We can now complete the proof of the theorem. We show that setting

m.yf1 = af(m)

defines a right iϊ^(g2)-module structure on M, extending its Hi(q2)-mod\ne

structure. We have to check the following relations:

(i) J1 = yjιyj = i,

(ϋ)

(iii) q2yj+ι =σjyjσj.
Relations (i) and (ii) are proved by computing both sides of the equation

^

where in the first case we take v to be a vector with vn+ι in the j t h place
and vn_ί+2,... , vn in the remaining places (in any order), and in the second
case we take v to be a vector with υx in the j t h place, v n + 1 in the kth place
and distinct vectors from {υ2,... , vn} i n the other places. Notice that since
the central element c G ϊ/g(sZn+i) acts as 1 on I f we have fco.(ra®v) —

To prove (iii), let v = vh® ®υi£ G K®^, where ij = 2, z J + 1 = 1, and
the remaining ik are distinct elements from {3,... , n} (this is possible since
ί < n). Let v ; be the result of replacing vλ in the z*-^ position in v by vn+ι.
Since

we have, for all 777, G M,

where v" is obtained from v ; by interchanging its j ί Λ and (j + l)th factors,

which

where v"' is obtained from v by interchanging its jth and (j + l)th factors,
which

= q2x^.{m®w) — q2m.yj+1®vt.

Since v' has distinct components, Lemma 4.3 implies that
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for all 7τι E M.
The proof that W = T(M) as ί7g(sZn+1)-modules is now complete. To

show that T is an equivalence, we must prove that it is bijective on sets
of morphisms. Injectivity of T follows from that of J. For surjectivity,
let F : F{M) —>> T{M') be a homomorphism of [7^(«sZn+1)-modules. By
Proposition 4.1 again, F = J(f) for some homomorphism / : M —» M' of
i7^(g2)-modules. The fact that F commutes with the action of x^ gives

3 = 1 3=1

for all m E M, v E V^91. By choosing v suitably, as in the preceding part
of the proof, it is easy to see that this implies

f(m.yj) = f(m).yj

for a l l j - 1 , . . . ,L D

4.7.

The functor T is clearly one of (ZHinear categories. The following result
shows that it also captures part of the tensor structure of the category of
Uq (sln+ι )-modules.

Proposition. Let Mi be a finite-dimensional Hίt(q2)-module, i — 1,2.
Then, there is a canonical isomorphsm of Uq(sln+ι)-modules

Proof. We recall the following elementary fact: If i : B -> A is a homomor-
phism of unital associative algebras over a field, M is a right S-module, W
a left ^4-module, and W\B is W regarded as a left B-module via i, there is
a canonical isomorphism of vector spaces

In fact, the isomorphism is given by

{m®a)®w ->• m®aw (m E M,a E A,w G W).
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Taking A = H£l+£2(q2), B = H£l(q2)®H£2(q2), i = ι£lM, M = Mλ®M2

and W = V®tl+t*, and noting that W - (V®ll)®{V®1*) as an
H£l(q2)<g>H£2(q2)-mod\ύe, we get a canonical isomorphism of vector spaces

T {MXΘM2) -> [Mι®M2) 0

The right-hand side is obviously isomorphic to JΓ(M1)®JΓ(M2) as a vector
space. To complete the proof, one must check that the resulting isomorphism,
of vector spaces

T (M1QM2) -

commutes with the action of Uq(sln+1). This is completely straightfor-
ward. D

4.8.

We analyze the functor T in more detail in Section 7, when the parametriza-
tions of the finite-dimensional irreducible representations of H£(q2) and
Uq(sln+ι) have been described. The following result is, however, easy to
prove now. Recall the universal f^(g2)-modules M a and the Uq(sln+ι)-
modules V(a) defined in Sections 2.4 and 3.4 respectively.

P r o p o s i t i o n . Let a = ( α 1 ? . . . ,aέ) G {Φx)e, £,n>l. There is a canonical

isomorphism of Uq (sin+1) -modules

Proof. As an i^(g2)-module, Ma is the right regular representation. It
follows that the map

(9) V®e -»• J(MΛ)

given by v —> l®v is an isomorphism of C/^(sίn+1)-modules. Now,

v

On the other hand,

3 = 1
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acts on V(a,ι)<8) ®V(at) as

j=ι i=i

One checks in the same way that the map in (9) commutes with the action

of XQ and k0. D

Corollary. Let 1 < t < n.

(a) Every finite-dimensional Uq(sln+ι)-module of type 1 and level ί as a

Uq(sln+ι)-module is isomorphic to a quotient ofV(a,ι)® ®V(aι), for some

au... ,a£eΦx.

(b) If au... ,at G (Cx, then V{aι)® --®V{aί) is reducible as a Uq(sϊn+ι)-

module iff aj = q2ak for some j , k.

Proof. This follows immediately from Proposition 3.4 and the fact that T is

an equivalence of categories. D

4.9.

Theorem 4.2 has a classical analogue, in which Uq(sln+1) is replaced by

(the universal enveloping algebra of) the affine Lie algebra sln+1, and Hi{q2)

by (the group algebra of) the affine Weyl group of GLt{(U), i.e. the semi-

direct product StxZ£, where Si acts on the additive group Z£ by permuting

the coordinates. We recall that sln+ϊ is the universal central extension (with

one-dimensional centre) of the Lie algebra L(sln+ι) of Laurent polynomial

maps (Γx —> sZn+i. We identify sln+ι with the subalgebra of L(s/n +i) con-

sisting of the constant maps.

Theorem. There is a functor T§ from the category of finite-dimensional

SιxZ£-modules to the category offinite-dimensionalL(sin+1)-modules which

are of level ί as «s/n+i -modules, defined as follows. One takes

with the action of f G L(sln+ι) given by

t

(

3=1

where zό = (0,. . . ,0,1,0,... ,0) e Zέ C SexZe (with 1 in the j t h position).

If ί < n, TQ is an equivalence.

Proof. The proof of this theorem is analogous to (but simpler than) that of

Theorem 4.2. D
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Remark. The finite-dimensional irreducible representations of
were classified in [1]. For any a G Φx, there is a homomorphism of Lie
algebras

eυ°a : L(sln+ι) -* sln+λ

given by eυ°a(f) = /(α). If W is an irreducible s/n+i-module, pulling back
by ev® gives an irreducible Zy(sZn+i)-module W(a). It is not difficult to
prove that every finite-dimensional irreducible representation of L(sln+ι) is
isomorphic to a tensor product of W(a)s.

It is easy to identify the corresponding representations of SιxZ£. There
is a homomorphism

eυ°a : SέxZ€-+St

which is the identity on Si and for which eυ°a(zj) = a for all j . If M is an
irreducible ^-module, pulling M back by eυ°a gives an irreducible Si x Z£-
module M(a). It is clear that

By Theorem 4.9, every finite-dimensional irreducible S£ x Z^-module is iso-
morphic to a Zelevinsky tensor product of M(α)s.

5. Evaluation Representations.

In this section, we construct analogues for Uq(sln+ι) and He(q2) of the repre-
sentations of sZn+i and SiXZ£ described in Remark 4.9, and show how these
representations are related by the functor T.

5.1.

The following result was observed by Cherednik [4]. The proof is straight-
forward.

Proposition. For every a € Φx, there exists a homomorphism eva :
H£{q2) -> He{q2) such that

σ2σ\σ2

Note that eυa can be characterized as the unique homomorphism He{q2) —>•
Hι(q2) which is the identity on H£{q2) C Hι(q2) and which maps yx to a.

If M is any i/^(g2)-module, pulling back M by eva gives an ^(g2)-module
M(a) which is isomorphic to M as an iϊ^(<72)-module.
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5.2.

In [7], Jimbo defined a quantum analogue of the homomorphism eυ°a :
sln+ι —> s/n+1. To describe it, we need the following

Definition. Uq(gln+ι) is the associative algebra over (Pwith generators
#f, i = 1,... , n, tfι, r = l , . . . , n + l, and the following defining relations:

trtr = 1 = tr cr,

ZrZs

 z=1 ZsZr ,

/ r ± / - l - ^(ίr.i-ίr.i + l ) ^

[xf, [xf, xf]qi/2]qi/2 =0 if \i - j \ = 1,

,

where ki = Ut^.
The algebra Uq(gln+ι) has a Hopf algebra structure, but we shall not make

any use of it.
Note that there is an obvious homomorphism Uq(sln+ι) —> Uq(gln+ι).

5.3.

Fix an (n + l)th root qι^n^ of q. We shall say that a finite-dimensional
C/g(^/n+i)-module W is of type 1 if
(a) W is of type 1 regarded as a C/g(s/n+i)-module,
(b) the tr act semisimply on W with eigenvalues which are integer powers
ofg1/(n+Dj

(c) tιt2 ... t n + 1 acts as 1 on W.
It is easy to see that restriction to Uq(sln^.1) is an equivalence from the

category of finite-dimensional [/g(ρ/n+i)-modules of type 1 to the category
of finite-dimensional C/9(5/n+1)-modules of type 1. In particular the functor
J of Proposition 4.1 may be viewed as taking values in the category of
finite-dimensional ί7g(pin+i)-modules of type 1.

5.4. We can now state

Proposition ([7]). For any a G Φx, there exists a homomorphism eυa :
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Uq(sln+1) -» Uq(gln+i) such that

eva(xf) =xf, eva(

eva{k0) = {kλk2 ... k

eva(x±) = ( ± i j M

If WΓ is a C/^(sZn+i)-module of type 1, we may regard W as a Uq(gln+ι)-
module by (5.3). The pull-back of W by the homomorphism eυa is a
[/9(θZn+i)-module which we denote by W(a).

5.5.

The main result of this section is

Theorem. Let 1 < ί < n, and let M be a finite-dimensional right Ht{q2)
module. Then there is a canonical isomorphism of Uq(sln+ι)-modules,

T (M ^ J{M){a),

for all aeΦx.

Proof By Theorem 4.2 we know that J(M)(a) = T{N), for some He(q2)-
module N which is isomorphic to M as an i^(<z2)-module. It suffices to
prove that j/χ acts as the scalar a on TV. To prove this, we compute the
action of x$ on m(S)Vι<S>Vn-i+2®υn-e+3® * * ®^n ^ ^(N) in two different
ways, for all m E M.

First, by the definition of T, we have

(10) a;J".

On the other hand, let fn = [ ^ , [ v

(11) XQ .

, [a;^,a;Γ]9i/2 . . . ] 9 i/ 2 ] 9 i/2. T h e n ,

®i>n).

We prove by induction on n that

®vn) =
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The result is obvious if n — 1. Assuming it for n — 1, note that fn =
[#^,/n-i]9i/2, so by the induction hypothesis,

®vn)

Since x~ .υn+ϊ — 0 for 1 < i < n — 1, we see that

by the induction hypothesis again. Hence,

as required.
Hence, from (11), we obtain

Comparing with (10), and using Lemma 4.3, we obtain

m.yi = aq-2£/in+1^m

for all m E M. D

6. Classification of finite—dimensional Uq(sln+ι)—modules.

6.1.

The finite-dimensional irreducible C/g(5/n+1)-modules of type 1 were clas-
sified in [2], [3]. To describe this result, we need an alternative presentation
of Uq(sln+ι) given in [6]. By Proposition 2.6, we need only consider the
quantum loop algebra Lρ(sZn+1), the quotient of Uq(sln+ι) by the two sided
ideal generated by c — 1.
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Proposition. L g(s/n + 1) is isomorphic as an algebra to the algebra A with
generators XΪ. ( i 6 { l , . . . , n } , r 6 Z), Jffi|Γ (ί G {1, . . . ,n}, r G Z\{0}),

T^1, (i G {1,... , n}), and £Λe following defining relations:

KιK~ — 1 — if" ifi,

KiHjir = HjrKi ,

[•fft.Γj-Hj.s] — 0 J

ί,r+lΛj,s ~ Q Λj,sΛi,r+l ~ 9 Λi,rΛj,s+l ~ Λj,s+lΛi,Π

11 Q- q~ι

Σ Σ ( ! ) \k] *t.m • • • Xt.wXt.X&.<>+r) • • • Xt,M = 0 , i Φ 3,Σ Σ(-!) f c \P

k]
πespk=o lhjJ

for all sequences ( r l 5 . . . ,r p) G Z p

7 where p — 1 — a^ and £Λe elements Φfr

are determined by equating coefficients of powers of u in the formal power
series

CO / OO \

Σ $t±rU±r = Kf1 exp ± (q - β"1) ^
Γ = 0 \ 5=1

The isomorphism f : L 9(s/n + 1) —» .Λ is ^

for i G {1,... ,n} ; and

\Xm+lfii [Xϊβi ••• i [Xm-lβiXm,\\qι>2

/(x0-) = μfikό'nXto, [X+_i,o, • , K+i.o,

[•̂ ltoi i K - L O . ^ - l l j 1 ' 2 •• ]]]]9

1/2,

where μ £ Φx is determined by

q-q~ι

Remark. Using the relations in A, it is not difficult to see that the
isomorphism / is independent of the choice of m G {1,2,... , n}.
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6.2.

The following result is proved in [2], [3].

Proposition. Let W be a finite-dimensional irreducible Lq (sin+1) -module

of type 1. Then,

(a) W is generated by a vector WQ satisfying

X+r.w0 = 0, Φ±r.w0 = φftrw0

for all i E {1,... , n}, r E Z ; and some φ^r E Φ.

(b) There exist unique monic polynomials Pι(u),... ,Pn(u) (depending on

W) such that the φf^r satisfy

r=0 *• ι\™/ r=0

in the sense that the left and right-hand sides are the Laurent expansions of

the middle term about 0 and oo respectively. Assigning to W the correspond-

ing n-tuple of polynomials defines a one to one correspondence between the

isomorphism classes of finite-dimensional irreducible Lq(sln+ι) -modules of

type 1 and the set of n-tuples of monic polynomials in one variable u with

non-zero constant term.

A consequence of this proposition is:

Corollary. Let W be a finite-dimensional irreducible representation of

Uq(sln+ι) with associated polynomials Pi. Set λ = (deg P i , . . . ,deg Pn).

Then W contains the irreducible Uq(sln+ι)-module V(\) with multiplicity

one. Further, ifV(μ) is any other Uq(sln+ι)-module occurring in W, then

λ > μ.

6.3.

The next proposition can be proved by studying the action of the comul-

tiplication Δ of Uq(sln+ι) on the generators X^r etc., as in [2].

Proposition. Let W and W be two finite-dimensional irreducible

Uq(sln+ι)-modules with associated monic polynomials Px and P!, i =

1,... , n. Let WQ and w'o be the generating vectors of W and W as in Propo-

sition 6.2. Then, in W®W we have

X+r.(w0®wf

0) - 0
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for all i G {1,... , n} ; r G Z. Further, wo<S>w'o is a common eigenvector of
the Φfr with eigenvalues given as in Proposition 6.2 (b) by the polynomials
p. pi
ΓιΓι '

This result suggests the following

Definition. If i G {1,... ,n}, a G (Γx, the irreducible finite-dimensional
representation of Uq(sln+χ) with associated polynomials

P(u) = lu-a if '̂ = i'
3 1 1 otherwise,

is called the ith fundamental representation of Uq(sln+χ) with parameter α,

and is denoted by V(λi,α).

Remark. Note that it follows from Corollary 6.2 that F ( λ i 5 α ) ~ ^(λi)
as C/g(5Zn+i)-modules.

6.4.

We shall need the following result in Section 7.

L e m m a . Let υXrn be the Uq(sln+χ)-highest weight vector in V(λ m ,α), where

m G {1,... , n), a G Φx. Then,

XVX = ( - l Γ ' ^ α ή s ή X X ϊ ' Xm Vλm '

Proof. By Proposition 2.3 and the preceding remark, we know that the weight
spaces of V(λm,α) as a ?79(,s/n+i)-module are all one-dimensional and that
the weights are precisely e i l 4- ei2 + ... + eirn, 1 <iχ <i2 < . . . < im < n + 1.
It follows that

for some b G (Γ. Using Proposition 6.1 we get

Hence, from Proposition 6.2 (b), we get

q{q~2u -a) = (u- a){q + b{q - q~ι)u + 0{u2)),

so that b = α""1. Finally, from Proposition 6.1 again, we find that

D



QUANTUM AFFINE ALGEBRAS AND AFFINE HECKE ALGEBRAS 321

7. Comparison with results of Zelevinsky and Rogawski.

In this section, we describe a parametrization, due to Zelevinsky [13] and Ro-

gawski [12], of the finite-dimensional irreducible ϋ^(g2)-modules. We then

relate this, via the functor T defined in Theorem 4.2, to the parametrization

of the finite-dimensional irreducible Uq(sin+ι)-modules given in Section 6.

7.1.

Since q is not a root of unity, Hι(q2) = d\S(\ as an algebra. It follows that

the finite-dimensional ί/^(g2)-modules are completely reducible and that the

irreducibles are in one to one correspondence with the partitions of I. We

now describe this correspondence.

The defining relations of Ht(q2) imply that, if w G Si and if

w = τilri2...τik

is any reduced expression for w in terms of the simple transpositions τι —

(i,i + 1), the element

σw = σilσi2...σik E H£{q2)

depends only on w.

Let < be the Bruhat order on 5/, and for w' < w, let Pw>,w(q) be the

Kazhdan-Lusztig polynomial (see [9]). Define elements Cw E Hι(q2) by

cw = 0«-

We write C{ for CTi. Note that C* = q~xθi — q. It is known (see [9]) that

{Cw}wew is a basis of H£(q2), and that

(12) CwGi = -Cw ΊίwTi < w.

Let ί — lχ + ί2 + - + d-p be a partition π of I, with each ίτ > 0, and let

SJ be the subgroup Sίλ x Sί2 x x Sip of Si which fixes π. Let wr be the

longest element of the subgroup S^r, i.e. the permutation which reverses the

order of (ix + ί2 H hί r-i + 1,. -. , ί\ H h t<r), and set wπ = WιW2 . . . wp.

Let / π be the right ideal in H£(q2) generated by CWn.

Proposition ([12]). For every partition π of ί, IΈ has a unique irreducible

quotient Jπ in which CWn has non-zero image. Conversely, every finite-

dimensional irreducible right Hi(q2)-module is isomorphic to some J π .
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7.2.

Using Jimbo's functor J, we can compare this parametrization of the

finite-dimensional irreducible representations of H£(q2) with that of the rep-

resentations of Uq(sln+ι) given by their highest weights.

P r o p o s i t i o n . Let 1 < ί < n and let £χ + ί2Λ— + i v be a partition π of I.

Then,

as Uq(sln+ι)-modules.

Proof. We need the following lemma, which follows from (1).

Lemma, Let π be as in the preceding proposition, and let 1 < i < ί be

such that i φ Σ ^ = 1 ^j for anV 1 ^ Γ < P- Let v G V®e have υr®vs in the ith

and (i + \)th positions, and let v ; be the result of interchanging the vectors

in these positions. Then, in J{J^), we have

( ~q~lCWn®w if r < s,

~qCWπ®v if r> 5,

0 if r = 5.

Returning to the proof of the proposition, note that the weight space of

V®1 of weight \ίλ + λι2 + - + λιp is spanned by the permutations of the

vector

v π =

By Proposition 4.1, there exists a partition π' of t, say ί — ί[ + ί'2 + —\- ί'r,

such that

(13)

By the lemma, if v^® ®vit is any permutation of vπ,

unless the first i[ vectors in the sequence vh,... ,vie are distinct, together

with the next ί'2, . . . , and the last ί'r. It follows that, if < is the usual

lexicographic ordering on the set of partitions of £, we have π' < π. But the

map π -» π ; defined by (13) is a bijection since J is an equivalence. Since

< is a total ordering it follows that this bijection is the identity map, i.e.

π' = π. D
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7.3.

We now turn to the representations of affine Hecke algebras. Recall the

universal modules M a defined in Section 3.4. We begin with the following

elementary result.

Lemma ([12]). Let a = (au . . . ,at) G (Φ*)', w G S£, j G {1,.. . J}. Then,

in Ma, we have

Cw.Ίjj — aw-\(j)Cw + ] P θίw>Cw>
w' <w

for some aw> G Φ.

7.4.

Following Rogawski [12] and Zelevinsky [13], we make the following defi-

nition.

Definition. The segment s with centre a G (Dx and length \s\ — k is the

ordered sequence s — (aq~~k+ι,aq~k+3,... ,aqh~ι) G (Φx)k.

If s = {s l 5 5 2 , . . . ,5P} is any (unordered) collection of segments, and if

| s r | = lτ, then ί = ίλ + i2 H h ίp is a partition π(s) of L

Proposition ([12]). Let ί > 1 αnc? /eί s = {si,... , 5P} 6e αni/ collection of

segments, the sum of whose lengths is ί. Let a — (s i , . . . , sp) G ((Fx)^ δe ίΛe

result of juxtaposing the segments in s. 77zen7

(a) /π(s) is an Hι(q2)-submodule of M a (ίΛis statement makes sense in view

of Proposition 3.4 (b));

(b) with the H£(q2)-module structure from Ma, Iπ^ has a unique irreducible

subquotient VΆ in which CWητ(s) has non-zero image.

Moreover, every finite-dimensional irreducible right H^q2)-module is iso-

morphic to some Va.

7.5.

To prove the main result of this section, we shall need another description

of Jπ(s) (we continue to use the notation of Section 7.4). Let Σ π ( s ) C S£ be

the set of transpositions T* = (i,i + 1) for i G {1,... , £}\{^i, ̂ i Λ-t^ ,^i +

• + ίp-i}- For Ti G Σ π ( s ) , let aTχ be the result of interchanging the ith and

(i + l)th components of a, and let

AΛti : MΆτι -> M a

be the map given by left multiplication by C\ (we identify M a and M a τ with

Hι(q2) in the usual way).
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Proposition ([12]). With the above notation:

(a) Aai is a homomorphism of He(q2)-modules;
(b) regarded as an Hι{q2)-submodule of Ma,

Iπ(s) = Π {image ofA&ti).

7.6.

We can now state the main result of this section.

Theorem. Let s = {θi,... , sp} be a collection of segments, the sum of
whose lengths is ί, let ar be the centre of sr and ίr its length, and let a =
(si , . . . , sp) G (ΦXY be the result of juxtaposing sXi... ,sp, as in Proposition
7.4. Then, if ί < n, ^-"(14) is the irreducible Uq(sln+ι)-module defined by the
polynomials

Pi(u)= J ] ( ^ - S " 1 ) ' i = l , - ,rι .

Proof. We first prove the result in the special case p — 1, so that a =
(aq~ί+ι,aq~M,... ,aq£~λ) (we drop the subscripts for simplicity). Note
that uv(s) = ^05 the longest element of 5^, and that /π(s) (= Jπ{s) — Va) is
one-dimensional and spanned by CWo. By Proposition 7.2,

J(Iπ{s)) * V(λt),

the highest weight vector being

As a ?7g(s/n+i)-module, ^(V'a) is therefore defined by the polynomials

P i ^ = \ 1 ^

[ 1 otherwise,

for some a1 G Φx. To compute α', note first that, by the definition of J7,

Since Jπ(s) is one-dimensional, Lemma 7.3 implies that
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On the other hand Lemma 6.4 gives

zί Vλ, = (-IJ^ίβ'J'^ή^n-i ^Γ+i^Γ^ aϊΓ Vλ,
= {-l)(-1(a')-1(CW0®v2® • • • ®vt®vn+ι).

Now by (12),
s~i —1 •-*

and by (1),
vr®vn+ι = qR~ι{vn+2®vr), if r < n.

Hence,

C

and so

Comparing with (14) gives α' = a"1. (It follows from the proof of Proposition
7.2 that C 0̂(8)?;n+i®^2® * * ®vι Φ 0.)

Suppose now that r is arbitrary. From Proposition 7.5 (b),

(15) Hh{s))= Π (image of

To compute ̂ (Aa^), note that v ι->> l®v defines an isomorphism of C/g

modules V®1 -> f (M a ) , and that

It follows that
T{A^) = q-'Ri - q

From (15) and the r = 1 case, it follows that

By Propositions 7.2 and 7.4 (b), ̂ ( K ) is the unique irreducible subquotient
of T(IΈ(S)) in which the tensor product of the highest weight vectors in
the V(\ιr,a~ι) has non-zero image. The theorem now follows from the
multiplicativity of the polynomials in Proposition 6.3. D
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