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QUANTUM AFFINE ALGEBRAS AND AFFINE HECKE
ALGEBRAS

VYJAYANTHI CHARI AND ANDREW PRESSLEY

We describe a functor from the category C,, of finite-dimen-
sional representations of the affine Hecke algebra of GL(m)
to the category D, of finite-dimensional representations of
affine sl(n). If m < n, this functor is an equivalence between
Cmn and the subcategory of D, consisting of those representa-
tions whose irreducible components under quantum sl(n) all
occur in the m-fold tensor product of the natural represen-
tation of quantum si(n). These results are analogous to the
classical Frobenius-Schur duality between the representations
of general linear and symmetric groups.

1. Introduction.

One of the most beautiful results from the classical period of the repre-
sentation theory of Lie groups is the correspondence, due to Frobenius and
Schur, between the representations of symmetric groups and those of general
or special linear groups. If V; is the natural irreducible (n + 1)-dimensional
representation of SL, (), the symmetric group S, acts on V& by permut-
ing the factors. This action obviously commutes with the action of SL,, ().
It follows that one may associate to any right S,—module M a representation
of SL,,4,(€), namely
FS(M) = M®g, V5,

the action of SL,,(€) on FS(M) being induced by its natural action on
V2% The main result of the Frobenius-Schur theory is that, if £ < n,
the assignment M — FS(M) defines an equivalence from the category of
finite-dimensional representations of Sy to the category of finite-dimensional
representations of SL, (@), all of whose irreducible components occur in
VI)®Z~

Around 1985, Drinfeld and Jimbo independently introduced a family of
Hopf algebras U,(g), depending on a parameter ¢ € €, associated to any
symmetrizable Kac-Moody algebra g. Assuming that ¢ is not a root of
unity, Jimbo [7] proved an analogue of the Frobenius-Schur correspondence
in which SL,.,(€@) is replaced by U,(sl,+1), Vo by the natural (n + 1)-
dimensional irreducible representation V' of U,(sl,.;), and S, by its Hecke
algebra H,(q?).
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In [5], Drinfeld announced an analogue of the Frobenius-Schur theory for
the Yangian Y (sl,1), which is a “deformation” of the universal enveloping
algebra of the Lie algebra of polynomial maps @ — sl,;;. The role of S, in
this theory is played by the degenerate affine Hecke algebra A,, an algebra
whose defining relations are obtained from those of the affine Hecke algebra
H,(g?) by letting ¢ — 1 in a certain non—trivial fashion.

In the same paper, Drinfeld conjectured that there should be an analogue
of the Frobenius—Schur theory relating the quantum affine algebra Uq(sAlnH)
and H +(¢%). In this paper, we construct a functor from the category of finite—
dimensional H,(g2)-modules to the category of finite-dimensional U,( Slpi1)-
modules W of ‘type 1’ (a mild spectral condition) with the property that
every irreducible U, (sl,,1)-type which occurs in W also occurs in V¢ (we
assume that ¢ is not a root of unity). We prove that this functor is an
equivalence if £ < n. Drinfeld’s theory can be obtained from ours by taking
a suitable limit ¢ — 1. Related results were obtained by Cherednik in [4].

We give a precise description of our functor at the level of irreducible
representations, using the known parametrizations of such representations
of U,(sln41) and of Hy(q?). Namely, in [2], [3] we showed that the finite-
dimensional irreducible Uq(;ln“)—modules of type 1 are in one to one cor-
respondence with n—tuples of monic polynomials in one variable. On the
other hand, Zelevinsky [13] and Rogawski [12] have given a one to one
correspondence between the finite-dimensional irreducible H +(¢*)-modules
and the set of (unordered) collections of ‘segments’ of complex numbers, the
sum of whose lengths is £. (A segment of length k is a k—tuple of the form
(a,q%a,...,q**2a), for some a € €*.) We compute explicitly the n—tuple of
polynomials associated under our functor to any such collection of segments.

The affine Lie algebra sAlnH is a central extension, with one-dimensional
centre, of the Lie algebra of Laurent polynomial maps f : @° — sl,,1.
An obvious way to construct representations of sAl,hLl is to pull back a rep-
resentation of sl,,; by the one-parameter family of homomorphisms ev? :
gln+1 — sl,41 which annihilate the centre and evaluate the maps f at a € €~
In [7], Jimbo defined a one-parameter family of algebra homomorphisms
ev, : Uq(glnH) — U,(sl,41) which are quantum analogues of the ev? (ac-
tually, ev, takes values in an ‘enlargement’ of U,(sl,+1)). On the other
hand, in [4] Cherednik defined a one-parameter family of homomorphisms
v, : Hy(q?) — Hy(q?) which are the identity on Hy(¢?) C H,(q?). Pulling
back representations of U,(sl,..) (resp. H,(¢*)) under ev, (resp. €v,) gives
a one-parameter family of representations of Uq(.;lnH) (resp. Hq(q?)). We
show that these ‘evaluation’ representations correspond to each other under
our functor.

Acknowledgement. We would like to thank I.V. Cherednik for several
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discussions related to this work.

2. Quantum Kac—Moody algebras.

Let A = (a;;) be a symmetric generalized Cartan matrix, where the indices
i, j lie in some finite set I. Thus, a;; € Z, a;; = 2, and a;; < 0 if i # 5. To
A one can associate a Kac-Moody Lie algebra g(A) (see [8]).

Let g be a non—zero complex number, assumed throughout this paper not
to be a root of unity. For n,r € N, n > r, define

[n], = il
g—qt’
[”} _ [nfyln —1],...[n—r+1],
rlq [Mlofr = 1.1,

2.1.

Definition. The quantum Kac-Moody algebra U,(g(A)) associated to a
symmetric generalized Cartan matrix A = (a;;); jer is the unital associative
algebra over @ with generators z, k' (¢ € I) and the following defining
relations:

kzk;—l = 1 = ki_lk,',

kikj == kjki,
hapk! = g*osat,
ki— k!
il= 51 —'—z,
[ ] J q- q_l

1—a;;

> |t ] (25) 55 (@) T =0, i £ 5.

r=0

It is well-known that U,(g(A)) is a Hopf algebra with comultiplication A
given on generators by
A(k:l:l) _ k:l:l k:l:l
A(z}) = z} Qk; + 1®z],
Alz;) =27 ®1 + k7 '®z;

(we shall not need the formulas for the counit and antipode of U,(g(A))).
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2.2.
By a representation of a quantum Kac-Moody algebra U,(g(A)) we shall
mean a left U,(g(A))-module. A representation W is said to be of type 1 if

W= w,

pezZl

where W, = {w € Wlk;.w = ¢*Dw}. If W, is non—zero, then W, is called
the weight space of W with weight u. Restricting consideration to type
1 representations results in no essential loss of generality, for any finite-
dimensional irreducible representation can be obtained by twisting a type 1
representation with a suitable automorphism of U,(g(A)) (cf. [10]).

2.3.

Assume that dim(g(A)) < oo. A representation W of U,(g(A)) is said to be
highest weight with highest weight A € Z' if W is generated as a U,(g(A))-
module by an element w), satisfying

.y =0, kawy = ¢ Dwy,

for allz € I.
A weight A € Z! is said to be dominant if A(z) is non-negative for all
1€ 1.

Proposition ([10]). Assume that dim (g(A)) < oo.

(i) Every finite-dimensional U,(g(A))-module is completely reducible.

(ii) Every irreducible finite-dimensional U,(g(A))-module of type 1 is high-
est weight. Assigning to such a representation its highest weight defines a
one to one correspondence between the set of isomorphism classes of finite-
dimensional irreducible representations of type 1 and the set of dominant
weights.

(iii) The finite-dimensional irreducible U,(g(A))-module V()) of type 1 and
highest weight \ has the same character (in particular, the same dimension)
as the irreducible g(A)-module of the same highest weight.

(iv) The multiplicities of the irreducible components in a tensor product
V(A)®V (i) of irreducible finite-dimensional U,(g(A))-modules is the same
as in the tensor product of the irreducible g(A)-modules of the same highest
weights.
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2.4

The case of most interest to us is when A is the matrix
2 -10 0---0 -1
-12-10---0 0
0-12-1---0 0
0 0 0 ---12 -1

-10 0 --- 0 —-12

where 4,5 € {0,1,... ,n}. Then g(A) is the affine Lie algebra .;:ln“. Fix a
square root q'/2 of q. For any elements a, b of an associative algebra over ,
set

(a,b]g1/2 = q/%ab — ¢ ?ba.

Since a;; = 0 or —1 if ¢ # j, the quantized Serre relations in Uq(glnﬂ) can
be written
[a:f:,mf] =0 if i—3j#0, £1 (mod n),
[:E?:,[xf,mit]ql/z]quz =0 if 2 —j = +1 (mod n)

Deleting the 0'* row and column of A gives the Cartan matrix of sl,;.
Thus, there is a natural Hopf algebra homomorphism from U,(sls+1) to
U,(sly41); this homomorphism is injective (this follows from Proposition 5.4
below).

If g(A) = slpyq, then I = {1,... ;n} and so weights are identified with
n—tuples of integers. It is useful to introduce the weights ¢;, for 1 < ¢ < n,
defined by

-1 ifj=14-1,
0 otherwise.

Note that 7' e; = 0.

Set a; = €; —€41. If A\, p € ZT, we write A > p if A —p =Y ra; for
some non-negative integers r;. ‘

The elements \; = E;=1 €j, 1 < i < n, are called fundamental weights
and the corresponding irreducible representations V();) the fundamental
representations of U, (sl,41).

The representation V (;) is called the natural representation of U,(sln41);
it will be denoted by V from now on. It has a basis {v;,... ,v,4+1} on which
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the action is given by:

+

:L'i Uy = 6r,i+lvr~1,

.’L'i—.‘U«,- = (5r,ivr+la

kv, = g Do,

(we set v_; = v,49 = 0).
Let zF be the operators on V defined by
x;.vr = 5r,n+1v1a :I,';.’Ur = 51‘,lvn+17

and let kg = kyky ... k,. It is easy to see that V' can be made into a Uq(sAlnH)—
module V(a), for all a € €*, by letting ko act as k; ' and z7 as a*'z}.

2.5.

Definition.  If £ < n, a finite-dimensional U,(sl,+1)-module W is said
to be of level ¢ if every irreducible component of W is isomorphic to an
irreducible component of V®¢,

Note that every level £ representation of U,(sl,+1) is of type 1.
The next result follows immediately from Proposition 2.3 and the corre-
sponding classical result (which is well-known and easy to prove).

Proposition. Assume that £ < n. Then, the finite-dimensional U, (sl,11)~
module V() is of level £ < n iff Yo, iA(3) = £.

Remark. This proposition shows that the concept of level is well-defined.
The assumption that £ < n is necessary, for if £, or ¢, is greater than n, it
is possible for V®4 and V®% to have an irreducible component in common
even if ¢ # £,.

2.6.
It is easy to check that ¢ = kok; ...k, is central in Uq(;lnﬂ).

Proposition. The central element ¢ of Uq(glnﬂ) acts as 1 on every finite-
dimensional U, (sl,+1)-module W of type 1.

Proof. This was proved in [2] when n = 1 and W is irreducible. Es-
sentially the same proof works for all n and the extension to arbitrary
finite-dimensional W follows by an easy argument using Jordan-Holder se-
ries. ]
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3. Hecke algebras and affine Hecke algebras.

In this section, we collect some well-known definitions and results concerning
(affine) Hecke algebras (cf. [9], [12]). We continue to assume that ¢ € € is
not a root of unity.

3.1.

Definition. Fix ¢ > 1. The affine Hecke algebra ﬁg(qz) is the unital
associative algebra over @ with generators o', i € {1,...,¢ — 1}, ¥,
j €{1,...,£}, and the following defining relations:

0',-0';1 = a{lai =1,
0i0i410; = 041030541,
0,05 = 0;0; lfl’t—]|>1,
(0: +1)(0: = ¢*) = 0,
Yy =Yy =1,
YiYe = YrYj,
Yjoi = 0;Y; lf] # 10r ¢+ 1,

_ 2
0:Yi0i = q Yit1-

The unital associative algebra with generators o', i € {1,...,£ — 1},
defined by the first four sets of relations above is called the Hecke algebra
Hy(q%).

__ There is an obvious homomorphism of H,(¢?) onto the subalgebra of
H,(q?) generated by the o;.

Lemma. The multiplication map Clyf!, ... ,yF' |®H,(¢?) — Hy(q?) is an
isomorphism of vector spaces.

3.2.

The following well-known result provides an analogue for affine Hecke and
Hecke algebras of the canonical homomorphism Sy, X Sy, = Se,4e,-

Proposition. There ezists a unique homomorphism of algebras
ffl,fz : Hll (q2) ® le(qz) - H£1+£2 (qZ)

such that
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?[1,52(a,®1) = 0y, Z\glyg.‘,(y]‘®1) = yj7 = ].,. .. ,Zl - ]., j = ].,. .. ,El,
?31752(1®0i) = Oiters Z£1,£2(1®y]‘) = Yj+e1s 1= 17 762 - 1: .7 = 17' .o 7£2'

Clearly the restriction of 7y, 4, to Hy, (¢*) ® Hy,(g*) induces a homomor-
phism bey ey - Hll (q2) &® Hfz(q2) - Hh—i—lfz (q2)

Let M; be a right H, (¢*)-module for 1 = 1,2, and let M;®M, be their
outer tensor product (an Hy, (¢%) ® Hy,(q*)-module). Then, the Hy, ¢, (q*)-
module M; ® M5, sometimes called the Zelevinsky tensor product of M; and
M,, is defined by

M, © My = ind 1300 0 (My@ M)

= (M1®M2) ® H51+52(q2)‘
Hl] (q2)®H¢2 (42)

The Zelevinsky tensor product ® for affine Hecke algebra modules is defined
similarly. Standard properties of induced modules show that the Zelevinsky
tensor products are associative up to isomorphism.

3.3.

Proposition. Let M; be a finite-dimensional I:Alg,.(qQ)—module, 1= 1,2.
Then, there is a canonical isomorphism of Hy, ,(q*)-modules

(MiOM:)l e, 1oy0) = Ml (i) © Malre, ),
where M;|p, (;2) means M; regarded as an H,, (¢*)-module by restriction, etc.
Proof. 1t is easy to see that the canonical map
My, () © Mol () = (MOM:) |1, 1y (a2)
given by
(Mm1®@my)®h = (m1@my)®h  (m; € M, h € Hy, 14,(q%))

is a well-defined surjective homomorphism of Hy, ., (q )-modules. But, by
Lemma 3.1, the rank of Hy, ., (¢?) as an Hy, (¢*)®H,,(¢%)-module is the
same as that of Hy, ¢,(q?) as an Hy, (¢*)®Hy,(¢?)-module. It follows that
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3.4.

Affine Hecke algebras have a family of universal modules, defined as fol-
lows. Let a = (ay,a,,... ,a;) € (€*)¢ and set

Ma = ﬁl(qz)/Haa
the quotient of I:Q(qz) by the right ideal H, generated by y;—a;,j =1,... ,¢

Proposition ([12]).

(a) Every finite-dimensional irreducible Hy(q*)-module is isomorphic to a
quotient of some M,.

(b) For all a € (€)%, M, is isomorphic as an H,(q*)-module to the right
reqular representation.

(c) M, is reducible as an H,(¢q?)-module iff a; = ¢*ay, for some j, k.

4. Duality between U, (sl ;1) and H,(¢?).

We begin by recalling the duality, established by Jimbo [7], between repre-
sentations of U,(sl,1.) and Hy(q?).

4.1.

Let V' be the natural (n + 1)-dimensional representation of U,(sl,+1)
defined in 2.4, and let R: V®V — V@V be the linear map given by

q*v,Qu, ifr =s,
(1) R(v,®v,) = { qusQu, ifs >,
qus®v, + (¢* — 1)v,Qu; ifr > s.

Fix £ > 1 and let R; € Endar(V®‘) be the map which acts as R on the it*
and (z + 1)** factors of the tensor product, and as the identity on the other
factors.

Proposition ([7]). Fiz {,n > 1. There is a unique left H,(g*)-module
structure on V® such that o; acts as R; fori=1,... ,£—1. Moreover, the
action of Hy(q*) commutes with the natural action of U,(slp41) on Ve,

If M is a right Hy(q*)-module, define

J(M) = M ®p,zy V&,

equipped with the natural left U,(sl,+1)-module structure induced by that
on VO Then, if £ < n, the functor M — J(M) is an equivalence from
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the category of finite-dimensional H,(q*)-modules to the category of finite-
dimensional U, (sl,1)-modules of level £.

4.2.

We now state the main result of this section, which is an analogue of
Proposition 4.1 for quantum affine algebras. Recall the operators kg, 27 €
Endg(V') defined in Section 2.4.

Theorem. Fiz {,n > 1. There is a functor F from the category of finite—
dimensional right ﬁg( 2)-modules to the category of finite—dimensional left
Uq(sAln.H) -modules of type 1 which are of level £ as U,(sl,+1)-modules, de-
fined as follows. If M is an H,(q?)-module, then F(M) J(M) as a
U,(slp+1)-module and the action of the remaining generators of Uq(sAlnH) is
given by

(2) (mv) E m. yi1®Yi

3) ko (m@v) = m@(k H®y,
where m € M, v € VO! and the operators Y;® € Endg VoY j=1,...,¢
are defined by
Y= 1%971@0; @ (k1) ®4,
Y, :k;@J 1®z}®1®l i
The functor F is an equivalence of categories if £ < n.

Proof. We first show that the formulas (2) and (3) are well-defined. We do
this for the action of z7, leaving the verification for z; and k, to the reader.
Thus, we must prove that

zg.(m.o;®v) = . (m®0;.v)

fort=1,... ,¢, v E V®¢. This is equivalent to proving that, as operators
on J(M) =M ®OH,(¢2) V®l,

(4) Z 0y;®Y;F = Z y; ® Y o

j=1 Jj=1

If j #14,i+1, the j** terms on the left and right-hand sides of (4) are equal,
since 0;y; = y;0; and 0,Y;" = Y;*0;. Hence we must show that

0 yi®Y;" + 01y ®Y, = 4®Y, 0i + 411 ®Y ], 0s.
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Using the relation o; — (¢* — 1) = ¢®0;', this reduces to
CYin® (07 = Y100 +ui® (oY —YiTos) =0.
Thus, it suffices to prove that

+ _ v+
oY =Y oy

1.e. that
(5) R(1®z;) = (z; ®k; )R

as operators on V®V. But this is easily checked by using the formula for R
in (1) and that for z; in 2.4.

In proving that the formulas (2) and (3) define a representation of
Uq(sAlnH), we shall assume that n > 1. The proof for the sl, case is similar
(the difference arises because the Dynkin diagram of sl, has a double bond).

The only relations to be checked are those involving zg, 5 and k. This
is straightforward except for the quantized Serre relations:

(6) [w;ta [x(f’mit]ql/z]q”z =0,

(7) [(B(:)t, [xf, C[I(:)t]quz]quz = 0,

for i = 1,n. We verify (7) for z, leaving the other cases to the reader.
Applying the left—-hand side of (7) to J(M) and considering the terms
involving y,yx, one sees that it suffices to prove that

®) v faoenye] ] +Gen=o

qt/2 ql/2
where (j <> k) means the result of interchanging j and & in the first term
and A is the ¢** iterated comultiplication (so that A® = A). Equation

(8) will be proved by induction on £, and we accordingly denote Y, by Y,:L(e).
If £ =1, then (8) becomes

[xo—a [$1_,$E]q1/z]q1/z =0,

which holds by the remarks at the end of 2.4.
For the inductive step we distinguish three cases:
(i) 4,k <&,
(i) j<lk=florj=4L k<,
(iii) j =k = ¢£.
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For the first case, notice that the left—-hand side of (8) is

vk, [8 N e)eh +1eat, ek ] | Gk

q1/2

= [Yf‘““”, [ACD(at) + 102, 1Y) qm] , Okihs 4 (G o k)

qt/

+ [Yf“‘”@k;l,Yk+(e‘l)®[zf,k;1]q1/2] +(j e k).

q1/2
The sum of the first two terms on the right-hand side vanishes by the induc-
tion hypothesis, and the sum of the last two terms is a multiple of -

[V Veks vV skyat] L+ (e k)
q

1/2

— q1/2 [Yj+(£—1),Yk+(£—1)] ®k9_22:?' +(j o k).

But the expression on the right-hand side is zero since [Yf”“l), Y,:r(l“l)] =0,
so the induction step is established in this case. The other two cases are
similar; we omit the details.

We have thus proved that formulas (2) and (3) define a representation of
Uq(sAlnH). If f: M — M’ is a homomorphism of H,(q?)-modules, we define
F(f): F(M) - F(M') by

F(f)(mev) = f(m)®v.

The proof that F(f) is a well-defined homomorphism of Uq(sAlnH)-modules
is completely straightforward. It is now obvious that F is a functor between
the appropriate categories of representations. Il

4.3.
Assume for the remainder of the proof that ¢ < n. To prove that F is an

equivalence, we must prove that

(a) every finite-dimensional Uq(sAlnH)—module W of type 1 which is of level
¢ as a U,(sl,41)-module is isomorphic to F (M) for some H,(¢?)-module M;
(b) F is bijective on sets of morphisms.

(See [11], p. 91.)

To prove (a), note that by Proposition 4.1, we may assume that W =
J (M) for some H,(g*)-module M. We shall reconstruct the action of the
yjil on M from the known action of 27 and ko on W.

We need the following lemma.

Lemma (a). Let M be a finite-dimensional Hy(q*)-module, and let v €
VO, The linear map M — J(M) given by m — mQ®v is injective if v has
non-zero component in each isotypical component of J(M).
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(b) If {v1,...,vnq1} is the standard basis of V', iy,...,5 € {1,... ,n+ 1}
are distinct, and v = v;,®@- - - ®u;,, then v = U,(slpt1).v. In particular,
v satisfies the condition in part (a).

Proof. Part (a) follows easily from Proposition 4.1, and part (b) is elemen-
tary. O

4.4.

For 1 <j <mn,let

V(j) = V- ®’Uj®’Un+1 ®’Uj+1® ree ®'U£,
w) = 0,® - QU QU ®Vj11® - Q.
Let w\ be the result of permuting the factors of w¥) by 7 € S,. Since
{wi} s, clearly spans the subspace of V® of weight )., we get, for any
m e M,
Ty . (m@v(j)) = Z m,®w$j)
TES[

for some m, € M. By (1), w9 is a (non-zero) scalar multiple of o.w(? for
some o € Hy(q*) (depending on 7). It follows that

Ty - (m®V(j)) =m'@w?)

for some m' € M. By Lemma 4.3, there exists o € Endg(M) such that
m' = a; (m) for all m € M. By a similar argument, there exists o €
Endg(M) such that

Ty (MOVp_42® -+ AUy 4 j OV QU4 j41® - - - QU)

= Oéf (m)®vn_g+2® T ®’Un__g+j®’l)n+1®’()n_g+j+1® A ®’Un
for all m € M.

4.5.

We need to prove the following lemma. The proof of the theorem itself
continues in Section 4.6.

Lemma. Forallme M, v e V® we have

¢
. (mev) = Z af (m)®Y v
Jj=1
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Proof. Let v = v;,®---®u;,. If {¢y,...,4} C {1,...,n}, it is clear that

Ty .(m®Vv) = 0, since €;, + ...+ €, + € +. ..+ ¢, cannot be a weight of V&,
Let 7>0,s>1,1<j;1 < <...<j, <4 1<ji<jh<...< j <§,

and assume that {j;,..., 7.} N {ji,...,7: = 0. Write j = (J1,-..,J,), J' =

(i,...,7.), and let Vi) be the subspace of V® spanned by vectors which

have v; in positions ji,... ,J,, Up41 in positions ji,... ,7:, and vectors from

{v2,... ,v,} in the remaining positions. We shall prove the lemma when

v € Vi) for all such j,j' in two steps:

(i) For s =1, by induction on r;

(ii) for all r, by induction on s.

Observe that, by Lemma 4.3 (b) applied to the subalgebra of U,(sl,1)
generated by the zF, kX! for i € {2,...,n}, to prove Lemma 4.5 for all
v € V@) it suffices to prove it for one v € V04 with the property that no
vector from the set {v,,... ,v,} is repeated. (Note that such vectors v exist
since{+1—r—s<{<n.)

Proof of Step (i). If r = 0 (and s = 1), there is nothing to prove, for
we can take v = 1,® - - - @Uj: @Up11®Vj1 11® - - - ®vg and use the definition of
o - Assume that the result holds for r — 1, and let j = (J1y--+ yJr-1). Let

v' € V@) have v, in the jt* position, and distinct vectors from {vg, ... ,v,}
in the remaining positions. Then,

V= .V.

Let v (resp. v'") be the element obtained from v' by replacing v,.; by v;
(resp. vy by v;). We then get, for all m € M,
g .(m@v) = 7175 .(MAV')
— ql{t<r|j‘<j,1}laj—; (m)®(l®j”_1®$;—®kf_j').V”
— ql{t<T|jt<j§}|q65r<i’1 a;{ (m)®v”'
= ql{ﬂSr’lJ}<.7';}|a;‘~l1 (m)®v///
= oy (m)®Y;, .v.

Proof of Step (ii). Assume that the result holds for all v € V64 with fewer
than s v,y;s. It suffices, as in step 1, to prove the result for one element
v € VG which has distinct entries from {v3,...,v,} in the remaining
positions. Fix such a v and let v’ be the element obtained from v by replacing
Un41 in positions j; and j; by v,. Then,

(@)

V=——mV.
q+q!
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Using a quantized Serre relation we get

(z7)*zg

=Y q-l (mav").

zy .(mOV) =z x5z, .(MAV') —
Since z;, operates in the 7,** and j,!* positions in v', we obtain, using the
induction hypothesis,

CEN N 28 o -
—q—:qu(m®V ) =4q Pt Olj;c (’fTL)@YJ;c V.

On the other hand,
T, .(meVv') = mev’ + ¢ 'mev"”,

where v/ (resp. v") is obtained from v’ by replacing the v, in its j*
position (resp. j;t" position) by v,,;. Using the induction hypothesis, we
get

zy z, .(mMRV') Za m)RY; v +q~ IZa, )@Y V"
k2 k#£1

Noting that v"”’ has v, only in the j,'* position, we find that

2,y oy (MY, V' = o (m)®Y;; v +¢° ) o (MY v’

k#£2 k>2

Similarly,

z, Za ®Y v —an, m)®Y,.
k#1 k#1

Combining these computations we obtain finally,

zy .(m®V) = —q Za, m)®Y,.

k>2
+¢*Y o5 (m)®Y;; v + aj, (M)&Y; v
k>2
+Y oy (meY; v
k#1
= Zaj”;c (m)®Y}Z.v,

k=1

as required.
This proves Lemma 4.5 for z; . The proof for z{ is similar. O



310 VYJAYANTHI CHARI AND ANDREW PRESSLEY

4.6.

We can now complete the proof of the theorem. We show that setting
my;" = a;(m)

defines a right H ¢(¢*)-module structure on M, extending its H,(q*)-module
structure. We have to check the following relations:
() yyi' =yi'y =1,
(1) Y5y = YrYyj,
(il))  *yj+1 = ojy;0;.
Relations (i) and (ii) are proved by computing both sides of the equation

where in the first case we take v to be a vector with v,,, in the j** place
and v, _¢y9,... ,v, in the remaining places (in any order), and in the second
case we take v to be a vector with v; in the j** place, v,,; in the k" place
and distinct vectors from {v,, ... ,v,} in the other places. Notice that since
the central element ¢ € Uq(sAlnH) acts as 1 on W we have ko.(m®v) =
m®(ky;)®v.

To prove (iii), let v = v;,®---Qu;, € V® where i; =2, 441 = 1, and
the remaining i, are distinct elements from {3,... ,n} (this is possible since
¢ < n). Let v' be the result of replacing v; in the 1311 position in v by v,4;.
Since

R(12QUy41) = qUa11®v2, R(v1@v2) = qua®uy,

we have, for all m € M,
m.o;y;0;,Qv' = qm.o;y;Qv",

where v” is obtained from v’ by interchanging its j:* and (5 + 1)** factors,
which
= qzg.(m.o;@v"),

where v is obtained from v by interchanging its j** and (j + 1)** factors,
which

— 2.+ — 2 ]

= ¢°zg .(MOV) = ¢*Mm.y; 119V

Since v’ has distinct components, Lemma 4.3 implies that

2 _
q"Mm.Yjr1 = M.0;Y;0;,
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for all m € M.

The proof that W = F(M) as Uq(glnﬂ)—modules is now complete. To
show that F is an equivalence, we must prove that it is bijective on sets
of morphisms. Injectivity of F follows from that of 7. For surjectivity,
let F: F(M) — F(M') be a homomorphism of U,(sln4;)-modules. By
Proposition 4.1 again, F = J(f) for some homomorphism f : M — M’ of
Hy(q?)-modules. The fact that F' commutes with the action of z§ gives

4
Zf (m.y; ®Y+V~Z.f y]®y;'+-v
j=1 i=1

for all m € M, v € V®¢ By choosing v suitably, as in the preceding part
of the proof, it is easy to see that this implies

f(m.y;) = f(m).y;

forall j=1,... ¢ O

4.7.

The functor F is clearly one of ¢-linear categories. The following result
shows that it also captures part of the tensor structure of the category of
U, (sl;+1)—modules.

Proposition. Let M; be a finite-dimensional I:A[g‘(qz)—module, i=1,2.
Then, there is a canonical isomorphsm of U,(sl,+1)-modules

F (M,OM;) = F(M,)®F (M,).
Proof. We recall the following elementary fact: If . : B — A is a homomor-
phism of unital associative algebras over a field, M is a right B-module, W
a left A-module, and W|p is W regarded as a left B-module via ¢, there is

a canonical isomorphism of vector spaces

indjy(M)QW = M®W|B

In fact, the isomorphism is given by

(m®a)@w - maw (me M,a€ A,weW).
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Ta'king A= H51+t’2(q2)) B = Hll (q2)®le(q2)7 U= lg o M = M1®M2
and W = V®att and noting that W = (V®0)@(V®2) as an
Hy, (¢>)®H,,(¢?)-module, we get a canonical isomorphism of vector spaces

f (M16M2) — (M1®M2) ® (V®ZI®V®12> .
H,, (¢*)®He, (¢%)
The right-hand side is obviously isomorphic to F(M;)®F(M,) as a vector

space. To complete the proof, one must check that the resulting isomorphism.

of vector spaces
F (M,OM,;) — F(M)QF (M,)

commutes with the action of Uq(.s/:\lnﬂ). This is completely straightfor-
ward. g

4.8.

We analyze the functor F in more detail in Section 7, when the parametriza-
tions of the finite-dimensional irreducible representations of H,(q?) and
U, (sAl,H_l) have been described. The following result is, however, easy to
prove now. Recall the universal H,(q?)-modules M, and the U, (sln+1)
modules V' (a) defined in Sections 2.4 and 3.4 respectively.

Proposition. Leta = (ay,...,a;) € (€*)", £,n > 1. There is a canonical
isomorphism of U,(slp+1)-modules

F(M,) =2 V(a1)® - QV(ay).
Proof. As an Hy(¢*)-module, M, is the right regular representation. It
follows that the map
9) Ve - J(M,)
given by v — 1®v is an isomorphism of U,(sl,;)-modules. Now,

¢ ¢
z.(1®v) = Z l-yj®Yj+_v - (Z anf) V.

=1 =1

On the other hand,

AO(zH) _21@); Lozt ®k®"’

j=1
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acts on V(a;)®---®V(a,) as

¢ ¢

Y 1®1ga0; @k )® T = Y a;Y
One checks in the same way that the map in (9) commutes with the action
of z5 and k. O

Corollary. Letl1 </{<n.

(a) Every finite-dimensional Uq(sAlnH)—module of type 1 and level £ as a
U, (slp+1)—-module is isomorphic to a quotient of V(a;)® - - - ®V (ay), for some
ay,...,ap € C*.

(b) If ay,... ,ap € @, then V(a,)®--- @V (a,) is reducible as a Uq(§n+1)—
module iff a; = ¢*ay for some j, k.

Proof. This follows immediately from Proposition 3.4 and the fact that F is
an equivalence of categories. (]

4.9.

Theorem 4.2 has a classical analogue, in which Uq(sAlnH) is replaced by
(the universal enveloping algebra of) the affine Lie algebra sl,,,, and H,(¢?)
by (the group algebra of) the affine Weyl group of GL,(Q), i.e. the semi-
direct product S;xZ¢, where S; acts on the additive group Z¢ by permuting
the coordinates. We recall that ;lnﬂ is the universal central extension (with
one-dimensional centre) of the Lie algebra L(sl,;;) of Laurent polynomial
maps € — sl,,;. We identify sl,,; with the subalgebra of L(sl,;;) con-
sisting of the constant maps.

Theorem. There is a functor Fy from the category of finite-dimensional
Sy x Zt-modules to the category of finite~dimensional L(sl,1)-modules which
are of level ¢ as sl ,—modules, defined as follows. One takes

fo(M) =M®VB®Z
Sy

with the action of f € L(sl,41) given by
¢
f.(mev) = Em.z]@ (1®j_1®f(1)®1®e“'j) v,
=1

where z; = (0,...,0,1,0,...,0) € Z* C SyXZ* (with 1 in the j** position).
If ¢ < n, Fy is an equivalence.

Proof. The proof of this theorem is analogous to (but simpler than) that of
Theorem 4.2. O
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Remark. The finite-dimensional irreducible representations of L(sl, ;)
were classified in [1]. For any a € €, there is a homomorphism of Lie
algebras

ev? : L(slpyq) = sl

given by ev?(f) = f(a). If W is an irreducible sl,,;—module, pulling back
by ev? gives an irreducible L(sl,;)-module W (a). It is not difficult to
prove that every finite-dimensional irreducible representation of L(sl, 1) is
isomorphic to a tensor product of W (a)s.

It is easy to identify the corresponding representations of S,xZ*. There
is a homomorphism

67112 : Sg>~<Z‘f — S{

which is the identity on S, and for which €v2(2;) = a for all j. If M is an
irreducible S;-module, pulling M back by €v) gives an irreducible S;xZ¢-
module M(a). It is clear that

Fo(M(a)) = FS(M)(a).
By Theorem 4.9, every finite-dimensional irreducible S;x Z*~module is iso-

morphic to a Zelevinsky tensor product of M(a)s.

5. Evaluation Representations.

In this section, we construct analogues for Uq(sAlnH) and H,(q?) of the repre-
sentations of sl,;; and S;xZ¢ described in Remark 4.9, and show how these
representations are related by the functor F.

5.1.

The following result was observed by Cherednik [4]. The proof is straight-
forward.

Proposition.  For every a € @, there exists a homomorphism év, :
H,(¢*) — H,(q®) such that
é”uﬂ(ai) = 0j,

é"l)a(yj) = aq“z(j’l)aj_laj_g .o 020'120'2 < 051,
fori=1,...0—-1,57=1,... ¢

Note that év, can be characterized as the unique homomorphism H,(g?) —
H,(¢?) which is the identity on H,(¢?) C H,(q?) and which maps y; to a.

If M is any H,(q?)-module, pulling back M by €v, gives an H,(¢*)-module
M (a) which is isomorphic to M as an H,(q?)-module.
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5.2.

__In [7], Jimbo defined a quantum analogue of the homomorphism ev, :
Slpy1 — slyyq. To describe it, we need the following

Definition.  U,(gl,4+1) is the associative algebra over € with generators

zf,i=1,...,n,t*, r=1,... ,n+1, and the following defining relations:

tt;t =1 =t7',,
trts = tst, ,
tr.’L';-ht;l — qi(lsr,i—&r,i-l-l)x?: ,
[.’I)?:, [.Tf,m;t]ql/z]ql/z =0 lfl’L — ]I = 1,
23,251 =0 if i - j| > 1,
ki — k!
e i R
[z}, 2] = 5ij-—_“F ,
where ki = tlt:_’_ll
The algebra U,(gl,+1) has a Hopf algebra structure, but we shall not make

any use of it.
Note that there is an obvious homomorphism U,(sl,+1) = U,(9ln+1)-

5.3.

Fix an (n 4 1)** root ¢/("*1) of q. We shall say that a finite-dimensional
U,(gln+1)-module W is of type 1 if
(a) W is of type 1 regarded as a U,(sl,+;)-module,

(b) the ¢, act semisimply on W with eigenvalues which are integer powers
of ql /(n+1),
(c) tata...tyy acts as 1 on W.

It is easy to see that restriction to U,(sl,+1) is an equivalence from the
category of finite-dimensional U,(gl,1)-modules of type 1 to the category
of finite-dimensional U, (sl,+;)-modules of type 1. In particular the functor
J of Proposition 4.1 may be viewed as taking values in the category of
finite-dimensional U,(gl,+:)-modules of type 1.

5.4. We can now state

Proposition ([7]). For any a € @, there ezxists a homomorphism ev, :
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Uq(;lnﬂ) — Uy (9glny1) such that

ev, (zF) £ eva(k) =k, 1=1,...,n,
eva(ko) = kn) 7",

Z;
(kx
6’%(%) (:f: 1)(n 1) (n+1)/2a’;{:1(t1 )il

tn+1

. [.’E [mf 1y ,[.’I?;F,.’I,'T]ql/e . .]q1/2]q1/2.

If Wis a U,(sl,41)-module of type 1, we may regard W as a U,(gln+1)-
moq\ule by (5.3). The pull-back of W by the homomorphism ev, is a
U,(slp+1)-module which we denote by W (a).

5.5.

The main result of this section is

Theorem. Let 1< ¢ < n, and let M be a finite-dimensional right H,(q*)-
module. Then there is a canonical isomorphism of U,(slp+1)-modules,

F (M (q—2e/(n+1)a)) ~ 7(M)(a),
for alla € T*.

Proof. By Theorem 4.2 we know that J(M)(a) = F(N), for some H,(¢?)-
module N which is isomorphic to M as an H,(¢?)-module. It suffices to
prove that y; acts as the scalar a on N. To prove this, we compute the
action of z§ on MV, ®Vp_r12@Vy_p43® - ®v, € F(N) in two different
ways, for all m € M.

First, by the definition of F, we have

(10) 27 .(MBV1®Vp_142@Vn_143@ - - - QVy)

= MY OVUn1QUn_r2QVn_p13Q -+ - QU
On the other hand, let f, = [z;,[z,_1,... , (23,27 )72 ... ]g/2] /2. Then,

(11) Td (MU, @V, 2® - ®V,)
=m®ev,(z).(V1®Vp_412Q - - - V)
= gV £ ) @ @ D).

We prove by induction on n that

fa(01®Vn_42® - ®v,) = ¢V 20,1 @V, 112® - QU
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The result is obvious if n = 1. Assuming it for n — 1, note that f, =
[z, fa=1]qi/2, sO by the induction hypothesis,

Fr (0180128 - ®V) = ¢V (0, OVn_42® -~ B,)
— q_1/2fn_1.(v1®vn—e+z® c BV 1 ®Un )

Since z; v,y =0 for 1 <7 <n —1, we see that

Joo1-(V1®Up_42® -+ QUy_1)®Upy1)
= (fn-—l'(vl QUp_p 2@~ ®Un—1))®'1)n+1

= g2, @V ® - QUp—1Q@Vpt1,
by the induction hypothesis again. Hence,

fn'(v1®'un—l+2® e ®U")
_ q(n_l)/2('0n+1®vn——l+2® - Qu, + q_l’Un®'Un—l+2® e ®'Un—1®/un+1)
_ q("_s)/z’l)n®vn—£+2® et ®Un—1 ®vn+1

= q(n_l)/2vn+l®vn—l+2® . ®Una

as required.
Hence, from (11), we obtain

—2¢/(n+1

zg—'(m®vl®vn—l+2® e ®Un) = aq )m®vn+1®vn-—l+2® < QUp.

Comparing with (10), and using Lemma 4.3, we obtain

m.an = ag~2/ D,

for all m € M. 0

6. Classification of finite—dimensional Uq(sAlnH)—modules.

6.1.

The finite-dimensional irreducible Uq(gln+l)~modules of type 1 were clas-
sified in [2], [3]. To describe this result, we need an alternative presentation
of Uq(sAlnH) given in [6]. By Proposition 2.6, we need only consider the
quantum loop algebra L,(sl,+1), the quotient of Uq(sAlnH) by the two sided
ideal generated by ¢ — 1.
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Proposition. L,(sl,1) is isomorphic as an algebra to the algebra A with
generators X7, (i € {1,... ,n},r € Z), H;, (i € {1,...,n}, r € Z\{0}),
and K*', (i € {1,... ,n}), and the following defining relations:

KK;'=1 = K 'K,,
KiHj,r - Hj,rKi 3
[Hi,mH],s] = O )

K XFK' = g™ X,

1
[Hl T?Xi] [T‘aij]qxjir—}—s ’
Xz T_HX:&: _ q:{:az]X:i: Xzir+1 — qiauX:t X]:t8+1 X]:ts—{—leira
¢+ - q)z_r s
[X:—r’X_ ] — 5ij‘—lﬂs—:]"i ,
q9—dq

:l: + + v+ + — : :
Z Z [ J Lra(1) " Xivrﬂ(k)vas'Xia"'n(k-}-l) T Xiﬂ”n(p) =0,1#7,

TESy k=0

for all sequences (r1,...,r,) € Z?, where p = 1 — a;; and the elements @fr
are determined by equating coefficients of powers of u in the formal power

series -
z Qz +rU = Kz:tl €xXp ( + (q - q—l) z H’i,:tsu:ts> .
s=1
The isomorphism f : L,(sl,11) = A is given by
f(a:;t) = XfO’ f(kzil) = Kiila
forie{1,...,n}, and
flk") = (K1 Ky ... K,)
f(”f'o ) = (— nm™ lq—(n 3)/2[X7:,0’[Xn_—1,07"' )
[Xn—z-!-l 0’ [Xl_,oa SRR [X;L—l,m Xr:z,l]ql/z s ]]]]ql/zf(ko)a
f(zg) = pf(ky )[ij-o’[X: 1,00 " ’[X:zﬂ,o,
[ 1,00 [ 10a 1]q’/2 --~]mq1/2’

where p € @ is determined by

Y fge _ f(ko) — fk)
[f(z5), f(z5)] q—q1 :

Remark. Using the relations in A, it is not difficult to see that the
isomorphism f is independent of the choice of m € {1,2,... ,n}.
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6.2.

The following result is proved in (2], [3].

Proposition. Let W be a finite-dimensional irreducible L,(sl,1)-module
of type 1. Then,
(a) W s generated by a vector wy satisfying

+ — + _
Xirwo =0, @7 .wo = ¢;  wo

foralli€{1,...,n}, r € Z, and some ¢}, € C.
(b) There ezist unique monic polynomials Py (u),... ,P,(u) (depending on
W) such that the ¢7, satisfy

= LPilg%u) &
+ T — deg P; = 1 — - T
rz:% P =a P;(u) ; Pt

in the sense that the left and right-hand sides are the Laurent expansions of
the middle term about 0 and 0o respectively. Assigning to W the correspond-
ing n-tuple of polynomials defines a one to one correspondence between the
isomorphism classes of finite-dimensional irreducible L,(sl,1)-modules of
type 1 and the set of n—tuples of monic polynomials in one variable u with
non-zero constant term.

A consequence of this proposition is:

Corollary. Let W be a finite-dimensional irreducible representation of
Uq(sAlnH) with associated polynomials P;. Set A\ = (deg Py,...,deg P,).
Then W contains the irreducible U,(sl,11)-module V(X) with multiplicity
one. Further, if V(u) is any other U,(sl,+1)-module occurring in W, then
A>pu.

6.3.

The next proposition can be proved by studying the action of the comul-
tiplication A of U, (sl,11) on the generators X', etc., as in [2].

Proposition. Let W and W' be two finite-dimensional irreducible
Uq(.;ln+1)~modules with associated monic polynomials P, and P!, i =
1,...,n. Let wy and wy be the generating vectors of W and W' as in Propo-
sition 6.2. Then, in WRW' we have

X (wo®wy) =0
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for alli € {1,... ,n}, r € Z. Further, wo@uwy, is a common eigenvector of
the ®F, with eigenvalues given as in Proposition 6.2 (b) by the polynomials

1,7

PP

This result suggests the following

Definition. Ifi € {1,... ,n}, a € €, the irreducible finite-dimensional
representation of U,(sl,;,) with associated polynomials

_Ju—a ifj =i,
Py(u) = {1 otherwise,

is called the :*" fundamental representation of Uq(sAlnH) with parameter a,
and is denoted by V(\;,a).

Remark. Note that it follows from Corollary 6.2 that V(A;,a) = V(X))
as U,(slp41)-modules.

6.4.

We shall need the following result in Section 7.

Lemma. Let vy, be the U (sl,1)-highest weight vector in V (A, a), where
m € {l,...,n}, a € C*. Then,

+ _ m-1,_~1_— - - - -
zy .o, = (1) T T, T T T U

Proof. By Proposition 2.3 and the preceding remark, we know that the weight
spaces of V(A,,,a) as a U,(sl,q;)-module are all one-dimensional and that
the weights are precisely €;, + €, +...4+¢€;,,1 <4 <93 <... <y, <n+1
It follows that

X010, = bz,

for some b € €. Using Proposition 6.1 we get
D} 10a, =0(g— g7 )vs,.
Hence, from Proposition 6.2 (b), we get
g(¢7%u —a) = (u — a)(g + b(g — ¢7")u + O(u?)),
so that b = a™!. Finally, from Proposition 6.1 again, we find that

+ — m—1_-1_-_— - - -
T3, = (=1)" e T T, T T T Uy
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7. Comparison with results of Zelevinsky and Rogawski.

In this section, we describe a parametrization, due to Zelevinsky [13] and Ro-
gawski [12], of the finite-dimensional irreducible H,(¢?)-modules. We then
relate this, via the functor F defined in Theorem 4.2, to the parametrization
of the finite-dimensional irreducible U, (.;ln_H)—modules given in Section 6.

7.1.

Since ¢ is not a root of unity, H,(¢*) = @[S,] as an algebra. It follows that
the finite-dimensional H,(¢?)-modules are completely reducible and that the
irreducibles are in one to one correspondence with the partitions of £. We
now describe this correspondence.

The defining relations of Hy(q?) imply that, if w € S; and if

w = TilTiz P T’ik
is any reduced expression for w in terms of the simple transpositions 7; =
(i,7 + 1), the element

Ow = 04,0y, ...0; € Hy(q?)

depends only on w.
Let < be the Bruhat order on S;, and for w' < w, let P,/ ,(q) be the
Kazhdan-Lusztig polynomial (see [9]). Define elements C,, € H,(¢?) by

Cu=q"™ D (-1 OB, 4 (g%

w!' <w

We write C; for C,,. Note that C; = ¢'0; — ¢q. It is known (see [9]) that
{Cy}wew is a basis of Hy(¢*), and that

(12) Cypo; = —Cy ifwr; < w.

Let £ = £, + £y + --- + £, be a partition 7 of ¢, with each £, > 0, and let
S7 be the subgroup Sg, x S, X - x S, of S; which fixes w. Let w, be the
longest element of the subgroup S, i.e. the permutation which reverses the
order of (6, +4y+---+€,_1+1,... 6 +---+£,), and set w, = wws ... wW,.
Let I, be the right ideal in H,(q*) generated by C,,, .

Proposition ([12]). For every partition w of £, I, has a unique irreducible
quotient J, in which C,, has non-zero image. Conversely, every finite—
dimensional irreducible right H,(q?)-module is isomorphic to some J,.
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7.2.

Using Jimbo’s functor J, we can compare this parametrization of the
finite-dimensional irreducible representations of H,(q?) with that of the rep-
resentations of U,(sl,1) given by their highest weights.

Proposition. Let1 <{<n and let {; + 4y, +---+ £, be a partition © of £.
Then,
J(J,r) = V()\gl + /\g2 + - + /\gp)

as U,(sly41)-modules.
Proof. We need the following lemma, which follows from (1).

Lemma. Let m be as in the preceding proposition, and let 1 < ¢ < £ be
such that i # 3 ,_, £; for any 1 <r <p. Let v € VO have v,®v; in the 1"
and (i + 1)™* positions, and let v' be the result of interchanging the vectors
in these positions. Then, in J(J,), we have

—q7'C,,®v if T<s,
Cyp, V' =< —qC, Qv if T>s,
0 if r=s.

Returning to the proof of the proposition, note that the weight space of
V& of weight Ag, + Ag, + -+ + A, is spanned by the permutations of the
vector

Vi = U1QU; - - - QUp, QU1 QU2Q - - - @V, QV; * - » Q.

By Proposition 4.1, there exists a partition 7’ of £, say £ = ¢ + £, +--- + £,
such that

(13) T () ZV(Ae, +---+ Ag,).
By the lemma, if v;, ® - - - ®v;, is any permutation of v,
Cw"®’lji‘® v ®Uiz =0

unless the first #; vectors in the sequence v,,,... ,v;, are distinct, together
with the next £, ..., and the last £,. It follows that, if < is the usual
lexicographic ordering on the set of partitions of £, we have 7’ < 7. But the
map 7 — 7' defined by (13) is a bijection since J is an equivalence. Since
< is a total ordering it follows that this bijection is the identity map, i.e.
' =m. a
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7.3.

We now turn to the representations of affine Hecke algebras. Recall the
universal modules M, defined in Section 3.4. We begin with the following
elementary result.

Lemma ([12]). Leta = (ay,...,a;) € (€*), w e Sy, j €{1,... ,¢}. Then,
mn Mg, we have

Cw.yj = aw—~l(]')Cw + Z O(wle/

w' <w

for some a,, € C.

7.4.

Following Rogawski [12] and Zelevinsky [13], we make the following defi-
nition.
Definition.  The segment s with centre a € @ and length |s| = k is the
ordered sequence s = (aqg~ "+, aq™**3,. .. Jaq*"t) € (@™)*.

If s = {s1,82,...,8,} is any (unordered) collection of segments, and if
|sr| = £, then £ = ¢, + {3 + --- + £, is a partition 7(s) of £.

Proposition ([12]). Let ¢ > 1 and let s = {s;,...,s,} be any collection of
segments, the sum of whose lengths is £. Let a = (sy,... ,s,) € (T*)* be the
result of juztaposing the segments in s. Then,
(a) In(s) is an H,(q?)-submodule of M, (this statement makes sense in view
of Proposition 3.4 (b));
(b) with the Hy(q?)-module structure from M,, I(s) has a unique irreducible
subquotient V, in which C.,_,, has non-zero image.

Moreover, every finite-dimensional irreducible right ﬁg(qz)—module 1S 150~
morphic to some V.

7.5.

To prove the main result of this section, we shall need another description
of I.(s) (we continue to use the notation of Section 7.4). Let Y (s) c S, be
the set of transpositions 7; = (1,4 +1) forz € {1,... ,£}\{€1,41 + 4o, ... , {1 +
o« +4£, 1}. For 7; € £"® let a,, be the result of interchanging the i** and
(i + 1)** components of a, and let

Aa,i . Ma"x — Ma

be the map given by left multiplication by C; (we identify M, and M, _ with
Hy(g?) in the usual way).
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Proposition ([12]). With the above notation:
(a) Aa; is a homomorphism of H,(q*)-modules;
(b) regarded as an H,(q*)-submodule of M,,

Iis) = ﬂ (image of Aa;).

T €L™(s)

7.6.

We can now state the main result of this section.

Theorem. Lets = {s1,...,s,} be a collection of segments, the sum of
whose lengths is £, let a, be the centre of s, and £, its length, and let a =
(51, ,8p) € (T°) be the result of juztaposing si,. .. , Sp, as in Proposition
7.4. Then, if £ < n, F(V,) is the irreducible Uq(sAlnH)—module defined by the
polynomials

Pi(u) = H (u—aj'l), 1=1,...,n.
{515 =1}
Proof. We first prove the result in the special case p = 1, so that a =
(ag=** aq=t*3 ... ;ag’™!) (we drop the subscripts for simplicity). Note
that w.) = wy, the longest element of Sy, and that L) (= Jaxs) = Va) is
one-dimensional and spanned by C,,,. By Proposition 7.2,

T (Ins)) = V(A),
the highest weight vector being
Vi, = Cuy QU1 QU2® - - - Q.
As a Uq(sAlnH)—module, F(Va) is therefore defined by the polynomials

Pi(u)z{u——a ifi =14,

1 otherwise,

for some a' € €. To compute a’, note first that, by the definition of F .
mf{.v,\l = Cuo Y1 V1@V - - - Qg

Since I () is one-dimensional, Lemma 7.3 implies that

(14) g vy, = ¢710C0, @Vn 1 BV ® - - - .
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On the other hand Lemma 6.4 gives

ZL‘;)'-.VM = (_1)1—-1 (a‘l)—lxn n—-1""" xl_+1m1_$2— T Ty AV,
= (—1)‘_1((1')_1(0“,0@112@ v ®’U£®'Un+1)~

Now by (12),
Cuo07 ! = —Clyy,
and by (1), )
V,®Untr = R (Vp42®v,), ifr <n.
Hence,

Cue®02® - - RV ®Unt1 = (—1)71¢" 7 Cupy @1 @2 ® - - - @y,

and so
.’Eg—.V)‘l = qt_l (a')“10w0®vn+1®v2® < QUy.

Comparing with (14) gives o' = a™!. (It follows from the proof of Proposition
7.2 that Cw0®'0n+1®'02® < Quy # 0)
Suppose now that r is arbitrary. From Proposition 7.5 (b),

(15) Flrs) = ﬂ (image of F(Aa,)).

TiET™(®)

To compute F(A, ;), note that v — 1®v defines an isomorphism of U, (sln41)-
modules VO — F(M,), and that

f(Aay,;)(:l@V) = Ci®v = 1®01V

It follows that )
F(Aay) =q'R; — g € End g (V®).
From (15) and the r = 1 case, it follows that
‘7:('["(3)) = V()‘lual_l)® e ®V()\ep,a;1).

By Propositions 7.2 and 7.4 (b), F(V,) is the unique irreducible subquotient
of F(I.()) in which the tensor product of the highest weight vectors in
the V() ,a;') has non-zero image. The theorem now follows from the
multiplicativity of the polynomials in Proposition 6.3. o
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