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CHAOS OF CONTINUUM-WISE EXPANSIVE
HOMEOMORPHISMS AND DYNAMICAL PROPERTIES OF
SENSITIVE MAPS OF GRAPHS

Hisao KATO

In this paper, we study several properties of chaos of maps
of compacta. We show that if a homeomorphism f: X — X of
a compactum X with dim X > 0 is continuum-wise expansive,
then there is an f-invariant closed subset Y of X withdimY > 0
such that f is (two-sided strongly) chaotic on Y in the sense
of Ruelle-Takens. Also, we investigate dynamical properties
of maps of graphs which are sensitive. In particular, we prove
the decomposition theorem of sensitive maps of graphs as fol-
lows: If f : G — G is map of a graph G which is sensitive, then
there exist finite subgraphs G; (1 <i < N) of G such that (a)
each G; is f-invariant and G; NG, is empty or a finite set for
i #j, (b) for each 1 <i < N, f is (two-sided strongly) chaotic
on G; in the sense of Devaney and there exists a connected
subgraph H; of G; and a natural number n(:) > 1 such that H;
is f*-invariant, f*0)|f*(H;) : f*(H;) — f*(H;) (0 <k <n(i)—1)
is topologically mixing, UZ(:l())_lfk(Hi) =G;, and fE(H;)N ¥ (H;)
is empty or a finite set for 0 < k < k' < n(i) — 1, and (c)
dim F(f) <0, where

F(f)={zeG|f*(z) e CL (G - UN,G;) for each n>0}.

As a corollary, we show that in case of maps of graphs, chaos
in the sense of Ruelle-Takens is equal to (two-sided strongly)
chaos in the sense of Devaney, and sensitive maps of graphs
induce two-sided chaos in the sense of Li-Yorke.

1. Introduction.

All spaces under consideration are assumed to be metric. By a compactum,
we mean a compact metric space. A continuum is a nondegenerate connected
compactum. A map is a continuous function. By dim X, we mean the
topological dimension of X (e.g., see [8]). Note that for a compactum X,
dim X > 0 if and only if there is a nondegenerate subcontinuum of X.

Let Z be the set of all integers. Let X be a compactum with metric d. For
a subset A of X, put diam A = sup{d(z,y)|z,y € A}. A homeomorphism
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f X — X is called ezpansive ([25], [7]) (resp. continuum-wise ezpansive
[14]) if there is a positive number ¢ > 0 such that if z,y € X and z # y
(resp. if A is a nondegenerate subcontinuum of X'), then there is an integer
n € 7 such that

d(f"(z), f*(y)) = ¢ (resp. diam f"(4) > c).

Such a positive number c is called an ezpansive constant for f. Note that
every expansive homeomorphism is continuum-wise expansive, but the con-
verse assertion is not true (see [14]). There are many important examples of
continuum-wise expansive homeomorphisms which are not expansive. Note
that (continuum-wise) expansiveness does not depend on the choice of the
metric d of the compactum X. These properties have frequent applications
in topological dynamics, ergodic theory and continuum theory (e.g., see the
references below). A map f: X — X of a compactum X is sensitive (= f
has sensitive dependence on initial conditions) [5] if there exists a positive
number 7 > 0 such that for each z € X and each neighborhood U of z in
X there exists a point y of U such that d(f™(z), f™(y)) > 7 for some n > 0.
Now, we introduce new notion which is stronger than sensitivity. A map
f: X — X is strongly sensitive if there is a positive number 7 > 0 such that
for each z € X and each nonempty open set U in X (U may not contain z),
there exists a point y of U such that liminf, . d(f"(z), f*(y)) > 7. Such
7 > 0 is also called an ezpansive constant for f.

In this paper, first, we study the relation between (continuum wise) ex-
pansive homeomorphisms and chaos in the sense of Ruelle-Takens. In fact,
we prove that f : X — X is a continuum-wise expansive homeomorphism
of a compactum X with dim X > 0, then there is an f-invariant closed
subset Y with dimY > 0 such that f is “two-sided strongly chaotic” on
Y in the sense of Ruelle-Takens. Note that Y is not a minimal set of f,
because that if f : X — X is a continuum-wise expansive homeomorphism
of a compactum X, then each minimal set of f is 0-dimensional ([14], [20]).
Next, we investigate dynamical properties of maps of graphs which are sen-
sitive. We prove the decomposition theorem of sensitive maps of graphs: If
amap f: G — G of a graph G is sensitive, then there exist finite subgraphs
G, (1 <14 < N) of G such that (a) each G; is f-invariant and G; N G, is
empty or a finite set for i # j, (b) for each 1 < ¢ < N, f is (two-sided
strongly) chaotic on G; in the sense of Devaney, and there exists a con-
nected subgraph H, of G, and a natural number n(i) > 1 such that H;is
fr®-invariant, f"9|f*¥(H,) : f*(H;) — f*(H;) is topologically mixing for
0<k<n@)—1, U o (H,) = G,y f¥(H;) N f¥ (H,) is empty or a finite
set for 0 <k < k' <n(i) — 1, and (c) dim F(f) < 0, where

F(f)={z € G|f*(z) € Cl(G-UY,G,) foreach n>0}.
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Also, as a corollary, we show that in case of maps of graphs, chaos in the
sense of Ruelle-Takens is equal to (two-sided strong) chaos in the sense of
Devaney, and sensitive maps of graphs induce two-sided chaos in the sense
of Li-Yorke.

2. Preliminaries.

In this section, we give some definitions and results which will be needed in
the sequel.

Let f : X — X be a map of a compactum X. Then f is called one-sided
topologically transitive [26] if there exists some z € X with {f"(z)|n > k}
dense in X for each k > 0. Note that if f : X — X is one-sided topologically
transitive, then f is an onto map. Let Y be an f-invariant closed subset of
X, ie, f(Y)=Y. Amap f: X — X is said to be chaotic on Y in the sense
of Ruelle-Takens [23] if the following conditions (C;) and (C,) are satisfied;
(C1) the restriction f|Y : Y — Y of f to the set Y is one-sided topologically
transitive and (C,) f|Y : Y — Y is sensitive. A point p of X is a periodic
point of f with period k if f*(p) = p and fi(p) #pfor 1 <i <k —1.If the
conditions (C)) and (C;) are satisfied, and moreover (Cs) the set of periodic
points of f|Y is dense in Y, then f is said to be chaotic on Y in the sense
of Devaney [5].

Let f: X = X be a map of a compactum X. A subset S of X is called a
scrambled set of f if the following conditions are satisfied. For any z,y € S
and z # v,

(1)  limsup,,. d(f"(z), f*(y)) >0,
(2) lminf, . d(f*(z), /"(y)) =0, and
(3) limsup,_,. d(f™(z), f*(p)) > 0 for any periodic point p of f.

If there is an uncountable scrambled set S of f, is said to be chaotic (on S)
in the sense of Li-Yorke [19].

A map f: X = X of a compactum X is topologically mizing [1] if for any
nonempty open sets U and V of X, there is a natural number ny, > 1 such
that if n > ng, then f*(V) NU # 0. By definitions, we can easily see that
topological mixing implies one-sided topological transitivity.

Let f : X —- X be a map of a compactum X. A two-sided sequence
{Zn}n=o,+1,42,.., of points of X is called a bisequence of f if f(Znt1) = Zn
for each —0o < n < 0o. A map f: X = X is two-sided strongly sensitive if
there is 7 > 0 such that for each bisequence {Z,}n=0,+1,+2,.., of f, and each
nonempty open set U in X, there is a bisequence {yy, }n=0,+1,42,.., of f such
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that yo € U and
lim iilf d(Zp,yn) > 7 and lim i_I)lf AT _pyy_n) >

Similarly, a map f : X — X is two-sided topologically transitive if there is a
bisequence {Z, }n=0+1 42, of f such that {z,|n >k} and {z_,|n > k} are
dense in X for each £ > 0. But, in (2.5) we see that one-sided topological
transitivity is equal to two-sided topological transitivity. It is easily seen
that strong sensitivity implies sensitivity, but the converse assertion is not
true. Also, continuum-wise expansiveness is different from sensitivity and
(two-sided) strong sensitivity. Clearly, (strong) sensitivity does not mean
two-sided (strong) sensitivity.

Let Y be an f-invariant closed set of a map f : X — X. Then f is
said to be two-sided strongly chaotic on' Y in the sense of Ruelle-Takens if
(C1) fIY :' Y — Y is two-sided topologically transitive and (C,)" f|Y is
two-sided strongly sensitive. If the conditions (C))' and (C,)' are satisfied
and moreover (Cs3) the set of periodic points of f|Y is dense in Y, then f is
said to be two-sided strongly chaotic on Y in the sense of Devaney.

Let f : X — X be a map of a compactum X and let G be an uncountable
set of bisequences of f. Then f is said to be two-sided chaotic on G in the
sense of Li-Yorke if the following conditions are satisfied: For any X =
{mn}n=0,:i:1,...’ Y= {yn}n=0,il,... € g with X 7£ Y;

(1) limsup,_,. d(Zn,yn) >0, limsup, . d(z_.,y_,) >0,

(2) liminf, o d(zn,y,) =0 =liminf, | d(z_,,y_,),

(3) limsup,_,., d(Tn,p,) > 0 and limsup,_,  d(z_,,p_,) > 0 for any
P = {Pn}n=0+1,., where p is a bisequence of f such that there is a periodic
point p of f with period & > 1 such that p,.; = p for each i € Z.

To clarify the differences between the above properties of maps, we give
some examples in the Section 6.

Let X be a compactum with metric d. By the hyperspace of X, we mean
C(X) = {4] A is a nonempty subcontinuum of X} with the Hausdorff met-
ric dg, 1.e., dg(A, B) = inf{e > 0| U.(A) D B and U.(B) D A}, where U.(A)
denotes the e-neighborhood of A in X. Then the space C(X) is also a com-
pactum (see [21]). Also, for any sets A and B, put d(4, B) = inf{d(a,d)| a €
A and b € B}.

A subset F of a space X is a Gs-set if E is a countable intersection of
open sets E, of X, ie., E =N E,. A subset F of a space X is an Fj-set
if F' is a countable union of closed sets F), of X, i.e., F = U, F,.

Let f : X — X be a homeomorphism of a compactum X. For each z € X,
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the stable set W*(z) and the unstable set W*(z) of f are defined by
We(z) = {y € X| lim d(f"(z), [*(y)) =0},
w(@) = {y € X | lim d(f"(2), f () =0}

Also, for each closed set Z of X and z € Z, the continuum-wise stable and
unstable sets V*(z; Z) and V¥(z; Z) (see [16]) are defined by

Ve(z; Z) = {y € Z| there is a subcontinuum A of Z such that z,y € A
and lim,,_,, diam f*(A4) = 0},

Vu(z; Z) = {y € Z| there is a subcontinuum A of Z such that z,y € A
and lim,,_,,, diam f~"(A) = 0}.

Note that V°(z; Z) is a connected subset of Z.
A subcontinuum Z of X is called a chaotic continuum of f with respect to s
(resp. u) [16] if

(i) for each z € Z, V5(z;Z) (resp. V*(z; Z)) is dense in Z, and

(ii) there is a positive number 7 > 0 such that for each z € Z and
each neighborhood U of z in X there exists a point y € U N Z such that
liminf, . d(f™(z), f*(y)) > 7 (resp. liminf, . d(f~"(z), f~"(y)) > 7).

From topology, we know that inverse limits spaces yield powerful tech-
niques for constructing complicated spaces and maps from simple spaces
and maps. Also, inverse limit spaces and shift maps are important in chaotic
dynamical systems (e.g., see [24]).

Let f: X — X be a map of a compactum X. Consider the inverse limit
(X, f) of f as follows:

(X, f)=A{(zn)20| 2. € X and f(zny1) =z, foreach n>0}.
For each Z = (£,)%%q, T = (yn)2o € (X, f), define a metric d by

J@m=iaa@wﬂ

Then (X, f) is a compactum. Let p, : (X, f) — X be the natural projec-
tion, i.e., pn((2o,Z1,%2,...)) = T,. Also, define a map f : (X, f) = (X, f)
by f((€o,Z1,Z2,--.)) = (f(%o),Zo,Z1,-..). Then f is a homeomorphism
of (X, f) which is called the shift map of f. Note that for any onto map
f X — X of a compactum X, f is two-sided topologically transitive (resp.
two-sided strongly sensitive) if and only if the shift map f of f is so. Also, a
map f: X — X of a compactum X is two-sided chaotic on an uncountable
set G of bisequences of f in the sense of Li-Yorke if and only if both f and
f ~1 is chaotic on G in the sense of Li-Yorke, where

g+ = {EE—': (mn)nzo (S (X,f) | ( yIT_1,T9,T1,T2y... ,) Gg}
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Note that p, |G* : G* — p, (G) is a bijection for each n > 0.

The following theorem was not explicitly stated in [16], but its proof
follows readily that of [16, (3.6)].

Theorem 2.1 [16, (3.6)]. If f: X — X is a continuum-wise ezpansive
homeomorphism of a compactum X with dim X > 0, then there is a chaotic
continuum Z of f with respect to o = s or u. Moreover, if there is a non-
degenerate subcontinuum A of X such that lim,_,., diam f*(A) = 0 (resp.
lim,,_, ., diam f~"(A) = 0), then there is a chaotic continuum Z of f with
respect to o = s (resp. 0 = u).

The following lemmas will be used in the next sections.

Lemma 2.2 ([14, (2.1)]). Let f: X — X be a continuum-wise expansive
homeomorphism of a compactum X with an expansive constant ¢ > 0 and
let 0 < e <ec If A€ C(X) and diam f*(A) < ¢ for each n > 0 (resp.
diam f~"(A) < € for each n > 0), then lim,_,, onadiamf™(A) = 0 (resp.
lim,_,, diam f~"(A) = 0).

Lemma 2.3 (see the proof of [14, (2.3)]). Let f : X — X be a continuum-
wise ezxpansive homeomorphism of a compactum X with an ezpansive con-
stant ¢ > 0 and let 0 < € < ¢/2. Then there is 6 > 0 such that if A is any
nondegenerate subcontinuum of X such that diam A < § and diam f™(A) > ¢
for some integer m € Z, then one of the following conditions holds:

(a) If m > 0, then diam f"(A) > & for each n > m. More precisely,
for any z € f"(A) there is a subcontinuum B of A such that x € f"(B),
diam f7(B) < ¢ for 0 < j <n and diam f*(B) = 4.

(b) If m < 0, then diam f~™(A) > & for each n > —m. More precisely,
for each z € f~"(A) there is a subcontinuum B of A such that z € f~™(B),
diam f~9(B) < € for 0 < j <n and diam f~"(B) = 4.

In particular, for each n > 0 there is a natural number N(n) > 0 such that if
A € C(X) and diam A > 7, then either diam f*(A) > § for each n > N(n)
or diam f~"(A) > 6 for each n > N(n) holds.

Lemma 2.4 [14, (2.5)]. If f : X — X is a continuum-wise ezpansive
homeomorphism of a compactum X with dim X > 0, then there is a nonde-
generate subcontinuum A of X such that either lim,_, ., diam f*(A) = 0 or
lim,,_,, diam f~"(A) = 0 holds.

The next lemma is trivial and it may be known, but for completeness, we
give the proof.
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Lemma 2.5. Let f : X — X be a map of a compactum X. If f is one-sided
topologically transitive, then f is two-sided topologically transitive.

Proof. Consider the shift map f : (X, f) = (X, f) of f. Since f is one-sided
topologically transitive and hence f is an onto map, we see that f is also
one-sided topologically transitive. Note that f is one-sided topologically
transitive if and only if whenever U, V are nonempty open sets of (X, f)

there exists n > 1 with f" ((j) NV # 0 (see [26, Theorem 5.9]). Since
f ((7) NV #0, then UN f* (17) = fr (f“” (U’) 017) # (0. Hence f~'is
also one-sided topologically transitive. Then the set A of Z € (X, f) with
{f"(ﬁ)l n > k} dense in (X, f) for each k > 0 is a dense G;-set. Also, the
set B of Z € (X, f) with {f‘”(i)] n > k} dense in (X, f) is a dense Gs-set
(see also [26, Theorem 5.9]). By Baire’s category theorem, AN B # (. This

means that f is two-sided topologically transitive, which implies that f is
two-sided topologically transitive. O

Lemma 2.6 (see the proof of [14, (3.2)] and [14, (3.8)]). Let f:G — G
be a map of a graph G which is sensitive. Then there is a positive number
T > 0 such that if A is a subcontinuum of (G, f) with diam A < 7, then

lim,,_, ., diam f‘" (Av) =0.

3. Chaos in the sense of Ruelle-Takens of Continuum-wise
Expansive Homeomorphisms.

Let f : X — X be a map of a compactum X with dim X > 0. Consider the
set [(f) = {E| E is an f-invariant closed subset of X with dim E > 0}, and
put M(f) = {E € I(f)| E is minimal of I(f) with respect to the inclusion}.
In general, M(f) may be an empty set. Note that the family M(f) is not
the family of minimal sets of f.

Now, we prove the following theorem.

Theorem 3.1. Let f: X — X be a continuum-wise ezpansive homeomor-
phism of a compactum X with dim X > 0. Then M(f) # 0 and if Y € M(f),
then f is two-sided strongly chaotic on Y in the sense of Ruelle-Takens.

To prove (3.1), we need Brouwer’s Reduction Theorem.

Brouwer’s Reduction Theorem 3.2 (e.g. see [8, p. 161]). In a space X
with countable basis, let {K\} be a family of closed sets with this property: if
K; D K, D --- is any decreasing sequence of members of { K}, then N2, K;
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is a member of {K\,}. Then there ezists an irreducible set (= minimal set)
mn {K,\} .

Proof of Theorem 3.1. Consider the set I(f). Note that X € I(f). By (2.3),
if E € I(f), then there is a component C of E such that diam C > §, where §
is a positive number as in (2.3). Suppose that E; € I(f) (¢ =1,2,...,) and
E, DE,D>---,.Let C; be a component of E; with diam C; > 4. Since C(X)

is compact, we may assume that lim;_,, C; = C. Then C is a subcontinuum
of N2, F; and diamC > 6.

Hence N2, E; € I(f). By (3.2), there is a minimal element Y of I(f).
Hence M(f) # 0. Let Y € M(f). Then Y is f-invariant and dimY > 0. By
(2.4), we may assume that there exists a nondegenerate subcontinuum A, of
Y such that lim,,_,, diam f~"(Aq) = 0. The other case is similar.

Let y € Y be any point of Y and B a nondegenerate subcontinuum of
Y such that lim,_,. diam f~"(B) = 0. We shall show that the following
condition (*) is satisfied.

(¥) For each € > 0 and each natural number k¥ > 0, there is a natural
number N > k such that d(y, fV(B)) <.

If we put D = Cl (U, f*(B)) CY, then f(D) C D. Put E =N, f*(D).
Then f(E) = E. Since liminf,_,, diam f*(B) > § (see (2.3)), we see that
f™(D) has a component C,, with diamC,, > 4. Since C(Y') is compact, we
may assume that lim,,_,, C,, = C. Then C is a nondegenerate subcontinuum
and C C E. Hence dim £ > 0. This implies that Y = E = D, because that
Y € M(f). Hence we see that for any ¢ > 0, there is N > k such that
d(y, fN(B)) <e.

Let B = {B;},-, be a countable base of Y. By using the condition () and
induction on ¢, we can choose a subcontinuum A; (¢ > 1) of Y such that

(1) 4D A; DA D ---

(2) there is a sequence n(1) < n(2) < --- of natural numbers such that
B;N D (4;) # 0 and f*9(A;) C B; foreach 1 < j <i—1.
Choose a point a € N2 A;. By (2), we see that {f™(a)| n > k} is dense in
Y for each £ > 0. Hence f|Y : Y — Y is one-sided topologically transitive.
By (2.5), we see that f|Y : Y — Y is two-sided topologically transitive.

Next, we shall prove that f|Y : ¥ — Y is two-sided strongly sen-
sitive. Since there is a nondegenerate subcontinuum A, of Y such that
lim,,_,, diam f~"(Ay) = 0, by (2.1) there exists a chaotic continuum Z of
f|Y with respect to o = u. Note that for each n > 0 diam f~"(Z) > 4 -7
for some fixed positive number 1 > 0 (see (ii) of the definition of chaotic
continuum). Let z € Y and let U be any nonempty open set of Y. By
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(2.3), we can choose a natural number N > 1 such that if D € C(Y) and
diam D > 7, then either diam f*(D) > for n > N or diam f~"(D) > ¢
for n > N holds. We may assume that 4 - n < §. Choose a positive number
A > 0 such that if y,9' € Y and d(y,y’) < A, then d(f 7 (y), f 7 (¥')) <n
for each 0 < j < N. Since Y € M(f), diam f~"(Z) > 4 - n for each
n > 0, by the same argument as the above, we see that U, f"(Z) is
dense in Y. Since f~"*(Z) is also a chaotic continuum of f with respect to
o = u, we may assume that the chaotic continuum Z intersects U, i.e.,
U N Z # 0. If necessary, we may replace f~"(Z) by Z. Let 1 = 1,2,3,...,
be any natural number. Choose a subcontinuum Z (i) of f~"%(Z) such that
lim; o, diam f~7(Z(¢)) = 0 and diamZ(¢) > 4 -7 (see (i) of the defini-
tion of chaotic continuum). Choose a subcontinuum H;, of Z(z) such that
diam H;y > n and d(f~N'(z), H; o) > 7. Since diam f¥(H,,) > § > 4 -,
we can choose a subcontinuum H; ; of fV(H,,) such that diam H,; > 7 and
d(f~NG-Y(z),H;;) > n. If we continue this procedure, we obtain a finite
sequence H;,H;1,... ,H;; of subcontinua of ¥ such that

Hi,k C fN (Hi,k—l) 5 diamH,-,k >n
and

d (f_N'(i—k)(fB), ,Hi,k) >N

for each 1 < k < i. Note that H,; C Z. Choose a point z; € H,;. Then
d(f~N9(z;),fNI(x)) > n for each 0 < j < i. Hence we see that
d(f~™(z;), f~"(z)) > Aforeach 0 < n < N-i. Since z; € Z for each i, we may
assume that lim;_,, z; = ' € Z. Then we can see that d(f~"(z), f"(z')) >
7 for each n > 0. Since ZNU # 0 and V*(z'; Z) is dense in Z, we can choose
a nondegenerate subcontinuum H contained in UNV*(z'; Z). Choose a nat-
ural number N’ such that diam fV'(H) > § > 4-7. By the similar argument
to the above, we can choose subcontinua Dy n.; (i > 0) such that

Dy C fN/ (H), Dnryn.(iv1) C Y (Dniyni), diamDyiyn; > 1
and
a(FY i a), f (D) 2

Choose a point y € N, f~N'*N) (Dyiyn;) C H C U. Then we can see
that liminf, , d(f"(z), f*(y)) > X and liminf, . d(f~"(z), f"(y)) =
liminf,, ., d(f~™(z), f~"(z')) > A, because y € V*(z'; Z). Hence f|Y is two-
sided strongly sensitive, which implies that f is two-sided strongly chaotic
on Y in the sense of Ruelle-Takens. This completes the proof. O
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Remark 3.3. In (3.1), by the condition (*) in the proof of (3.1), we see
that there is a positive number § > 0 such that if Y € M(f) and C is any
component of Y, then diam C > é.

4. Sensitive Maps of Graphs induce Chaos in the sense of
Devaney.

In this section, we study some dynamical properties of sensitive maps of
graphs. In particular, we show that sensitive maps of graphs induce two-
sided chaos in the sense of Devaney.

A map f: X = X of a compactum X is positively continuum-wise ez-
pansive [14] if there is a positive number ¢ > 0 such that if A is a nondegen-
erate subcontinuum of X, then there is a natural number n > 0 such that
diam f*(A4) > c.

Lemma 4.1 ([14, (3.1) and (5.7)]). Suppose that f : X — X is a positively
continuum-wise expansive map of a compactum X. Then the shift map f of
f is a (positively) continuum-wise ezpansive homeomorphism. Moreover, if
dim X > 0, then dim(X, f) > 0.

First, we show the following proposition.

Proposition 4.2. Suppose that a map f : X — X of a compactum X
with dim X > 0 is positively continuum-wise ezpansive. Then M(f) # 0
and if Y € M(f), then f is two-sided strongly chaotic on Y in the sense of
Ruelle-Takens.

Proof. Consider the shift map (X, f) = (X, f) of f. By (4.1), dim(X, f) >
0 and the shift map f is (positively) continuum-wise expansive. By (3.1),

M(f) # 0. Note that M(f) = {po (f’)l Y EM(f)}, because that p, -
f=f p.and¥ = (p (V) ,f‘po (Y)) - Let Y € M(f). Then (Y, f|Y) €
M( f) By (3.1), f is two-sided strongly chaotic in the sense of Ruelle-

Takens, and hence f is two-sided strongly chaotic on Y in the sense of
Ruelle-Takens. O

By a graph, we mean a compact 1-dimensional polyhedron which has no
isolated point. We may not assume that it is connected. By a subgraph of
G, we mean a 1-dimensional closed subset of the graph G which is homeo-
morphic to a graph.

Let f : X — X be a map of a compactum X. For each z € X, put
w(z) = {y € X| there is a subsequence {f"®(z)} of {f"(z)}52, such

that lim;_,. [ (z) = y}. Then w(z) is called the w-limit set of . Note
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that if p is a periodic point of f, then p € w(p). A point z € X is called
non-wandering for f if each neighborhood U of z, there exists n > 1 such
that f~"(U)NU # 0. Note that a point z € X is non-wandering for f if and
only if for each neighborhood U of z and every NV > 1, there is n > N such
that f=™(U)NU # 0 (see [26, Theorem 5.7]).

The non-wandering set Q(f) for f consists of all the points that are
non-wandering. Note that w(z) and 2(z) are f-invariant closed subsets
of X,Q(f) contains all periodic points of f, w(z) C Q(f) and if f: X - X
is a homeomorphism, then Q(f) = Q(f™).

Lemma 4.3 ([14, (3.9)]). Let f : G — G be a map of a graph G. Then
the following are equivalent.

(1) f is sensitive.
(2) f is positively continuum-wise expansive.

Now, we prove the following theorem which implies that sensitive maps
of graphs induce two-sided strong chaos in the sense of Devaney.

Theorem 4.4. Let f: G — G be a map of a graph G which is sensitive.
Then M(f) # 0 and M(f) = {G;| 1 <i < N} is a finite set of subgraphs of
G satisfying the following properties:

(a) If i # j, then G; N G, is empty or a finite set.

(b) For each i, f is two-sided strongly chaotic on G; in the sense of De-
vaney.

(¢) Ifwe put L = Cl1(G — UX,G;) and F(f) = {z € L| f*(z) € L for each
n > 0}, then F(f) is a closed subset of L with f(F(f)) C F(f), dim F(f) <
0. If z € L — F(f), then there is a neighborhood U of z in G and a natural
number n(z) > 1 such that f*(U) C UY,G; for each n > n(z), and hence
Q(f) DUX,G; and LN Q(f) C F(f).

Proof. Consider the shift map f : (G, f) — (G, f) and put X = (G, f).
Note that f is a positively continuum-wise expansive homeomorphism and
dim X > 0. By (4.2), we see that M(f) # 0 and if Y € M(f), f is two-sided

strongly chaotic in the sense of Ruelle-Takens. Note that pp (M ( f)) =
M(f). By (3.3), there is a positive number § > 0 such that if ¥ € M(f)
and C is a component of }7, then diamC > 8. Let Y; € M (f) .

Now, we show that ¥; has finite components. Suppose, on the contrary,
that ¥; has infinite components. Since G is a (finite) graph, for each A > 0
there is a natural number n(X) > 1 such that if a family {F}, F5,... , Fay) }
of connected sets of G satisfies that F; N F; is a finite set for ¢ # 7, then there
is some 7 such that diam F; < X. Choose A > 0 and a natural number £ > 0
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such that if D is a subset of X and diam Dk (15) < A, then diam D < 6. Since

Y, has infinite components, we can choose a natural number N > k and com-
ponents CI,C’z, .. Cn(,\) of ¥, such that DN (Cl) PN (C’z) .. ,DN (Cn()\))

are mutually disjoint. Hence there is some j such that diam py (C]») < A
Since pf~(N-® (C’) = pn (Cj) and f~-(N=k) (6’]) is a component of Y,

then we see that diamf~(V—* (C’j) < 4, which is a contradiction. Hence Y;
has finite components.

Put G, = po (171) (: Pn (171)) . Then G, is a graph, G; € M(f) and the
diameters of components of G; are larger than some )\ > 0, because that
the diameters of components of Y, is > 6. By (4.2), f is two-sided strongly
chaotic on G, in the sense of Ruelle-Takens. Note that Y; = (G4, f|G1). If
Y, € M( f) and Y, # Y, then dimY, > 0 and f is (two-sided strongly)

chaotic on Y, in the sense of Ruelle-Takens. By the same argument as
above, we see that G, = pg (}72) has finite components whose diameters
are bigger than Ay > 0. Note that G; N G2 does not contain a nonempty
open set, because that G; # G, and f|G; : G; = G; (i = 1,2) is one-sided
topologically transitive. Hence G; NG, is empty or a finite set. By using this
argument, we can see that M(f) is finite. Let M(f) = {f’;[ 1<:< N}

and pg ( ) = G;. Then G4, G,, ... ,Gy satisfies the property (a).

Next, for each 0 < i < N, we show that the property (b) is satisfied. By
(4.5) below, we can see that the property (b) is satisfied.

Finally, we shall show that property (c) is satisfied. Let z € L — F(f).
Then there is a natural number n(z) > 1 such that f*®)(z) € G — L. Choose
a neighborhood U of z in G such that f*®)(U) c G — L C UY,G,. Since
UY. |G, is f-invariant, we see that f"(U) C UY,G; for each n > n(z).

Next, we show dim F'(f) < 0. Let A be an arc in L. Then there is a natural
number n > 1 such that f*(A)N (G — L) # 0. Suppose, on the contrary, that
f™(A) C L for each n > 1. Put w(A) = U{B € C(L)[ there is a subsequence
{fr@(A)} of {f*(A)}>2, such that lim; ,., f*(A) = B}. Then we see that
w(A) is a closed subset of L, f(w(A)) = w(A) and dimw(A4) > 0. By (4.1), we

can choose another element Yy, € M (f) such that Yy4; C (w(4), flw(A)).
This implies that ?N—H #+ Y, (1 <1 < N). This is a contradiction. Hence the
set F(f) contains no arc. Clearly, dim F(f) < 0. By (b), the set P(f|G;)
of periodic points of f|G; : G; — G, is dense in G; for each i = 1,2,... |N
(see (4.5)). Hence UN |G, = UX CI(P(f|G;)) C Q(f). This completes the
proof. O

Theorem 4.5. Suppose that f : G — G is a map of a graph G. Then the
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following are equivalent.

(1) f is chaotic (on G) in the sense of Ruelle-Takens.
(2) f is chaotic (on G) in the sense of Devaney.
(3) f is two-sided strongly chaotic (on G) in the sense of Devaney.

Proof. We show that (1) implies (2). Suppose that f is sensitive and one-
sided topologically transitive. We must show that the set of periodic points
of f is dense in G. Let U be a nonempty open set of G. Choose an arc
[a,b] in U such that (a,b) (= [a,b] — {a,b}) is an open set of G, because
that G is a graph. Since f is two-sided topologically transitive, we choose
a point T = (z,)%%, € (G, f) such that {z,|n > 0} is dense in G. Since
{zn|n > i} is dense in G for each 7 > 0, we may assume that z, € (a,b).
By (2.7), we can choose a small nondegenerate subcontinuum A of (G, f)

containing Z such that lim,,_, ., diam f (A) =0 and py (A) (a,b). Note
that po (.Z) is a nondegenerate arc, because that f is sensitive. Note that
lim,,_,, diam f‘" (/I) = (0 implies that lim, . diamp, (Z) = 0. Since
{zn|n > i} is dense in G, we can choose a point zy such that zny €
Int (po (ﬁ)) . Also, moreover, we may assume that py (ﬁ) C Int (po (ﬁ)) .

Put [ao, bo] = po (ﬁ) and [ay, by] = pN (ﬁ) . Hence we see that f% ([an, by])
= [ao, bo] and [an,bn] C [ag, bo]- This implies that we can choose a point p in
[an,bn] such that fV(p) = p. Therefore the set of periodic points of f is dense
in G, which implies that f is chaotic in the sense of Devaney. The rest of
the proof follows from Proposition (4.2), because that M(f) = {G}. O

Corollary 4.6. Let f : G — G be a map of a graph G that is sensitive,
and let f : (G,f) = (G, f) be the shift map of f and X = (G, f). Then
M(f) = {}71,172, ,leN} is nonempty and a finite set and the following
conditions are satisfied:

(a) EachY; has finite nondegenerate components, Y; N ?J (7 # 7) is empty
or a finite set whose elements are periodic points of f.

(b) f is two-sided strongly chaotic on Y; (1 < i < N) in the sense of

Devaney.
(c) There is a closed subset F (f) in Cl (X — Uf\;lYi) such that dim F’ (f)

< 0 and F(f) 18 f-z’nvariant and if any T € X — ((Uf‘;lﬁ) UF(f))ﬂ
and any € > 0, then there is a neighborhood U of T in X and a natural
number n(e) > 1 such that f"( ) is contained in the e-neighborhood of

U{ilffi in X for each n > n(e), and hence (f) o Ul Yi and (f) N
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(ct(x -uLy)) c F(f).

Proof. Let G; (1 <i < N) be the subgraphs as in (4.4). Put Y; = (G;, f|G;)
for each . If i # j, then Y;NY; = (G, NG,, f|G;NG;) and G; NG, is empty
or a finite set. Note that f(G;NG;) C G;NG;. If G;NG; # 0, we can find a
natural number k such that for each n > k, f*(G;NG,) = f*(G;NG,). Note
that (GiN Gy, f1G:NGy) = (F5(GiNGy), fIf*(GiNG;)) and fIf*(GiN Gy)
is bijective. Hence we see that each point of Y;N }73 is a periodic point of f .
Put F (f) = (F(f), fI(F(f))), where F(f) is the set as in (4.4). Then the

set F' ( f) satisfies the desired properties. This completes the proof. O

Corollary 4.7. Suppose that f : G — G is a map of a graph G which is
sensitive. Then the following are equivalent.

(1) The set of periodic points of f is dense in G.

(2) Qf) =G.

(3) G =U{Gi|Gi e M(f)}.
Hence f is chaotic in the sense of Devaney if and only if M(f) = {G}.

Proof. By the definitions, we can easily see that (1) implies (2). We show
that (2) implies (3). Let G; (1 < i < N) be the subgraphs as in (4.4). Let
L = Cl(G - UY,G,) and F(f) be as in (c) of (4.4). Suppose that L # 0.
Note that dim F(f) < 0, hence L — F(f) # 0. By (c) of (4.4), we see that
each point of L — F(f) is wandering for f. This is a contradiction. Hence
G = UY | G;. The rest of the proof follows from (4.4). t

Corollary 4.8. Let f : G — G be a map of a graph G which is sensitive.
Then

(1) dimw(z) > 0 if and only if w(z) € M(f),

(2) the set W = {z € G| dimw(z) > 0} is Gs-dense G, and

(3) the set W' = {z € G| the orbit O(z) = {f™(z)|n > 0} is a finite
set} is F,-dense in G.

Proof. Suppose that M(f) = {G,| 1 < i < N}. Note that w(z) is an f-
invariant closed set.

We prove (1). Suppose that dimw(z) > 0. If z € G; (1 <17 < N), then
w(z) C G;. Since we can choose a subgraph H in w(z) such that H € M(f)
(see the proof of (4.4)), we see that w(z) = G;. If z € L, then z is not
contained in F'(f), because that dim F'(f) < 0. Hence there is n > 1 such
that f"(z) € G; for some i. Hence w(z) = w(f™(z)) = G,. The converse
assertion is trivial.

Next, we prove (2). Let {Bi},., be an open base of G;. Put W, =
Np2, U2, f7(B;) for each i. Then each W, is Gs. Then W = UX, W, is
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also G5. We show that W is dense in G. Note that {z € G;| dimw(z) > 0,
ie, {f*(z)] n > 0} is dense in G;} is dense in G;. If U is a nonempty
open set of L, then we can choose an arc A in U such that AN F(f) = 0,
because that dim F/(f) < 0. By (c) of (4.4), we can choose a point y in A
such that dimw(y) > 0, because that f®(A) has nonempty interior. Hence
W is Gs-dense in G.

Finally, we shall prove (3). Let P, = {z € G| the cardinal number [O(z)|
of the set O(z) is < n}. Clearly, P, is a closed subset of G and U2 | P, = W'.
Hence W' is F,. Let U be a nonempty open set of G. If U NUY | G; # 0,
U contains a periodic point p of f, and hence p € W'. If U C L, by (4.4)
there is a nonempty open set V in U such that f*(V) C UX G, for some n.
Since f™(V') contains a periodic point of f, there is a point ¢ € V such that
g € W'. Hence W' is F,-dense in G. O

Related to transitivity, sensitivity and the property that periodic points
are dense, the following are known.

Theorem 4.9 ([2]). If f: X — X is a map of a metric space X such
that X is an infinite set, f is one-sided topologically transitive and the set
of periodic points of f is dense, then f is sensitive, and hence f is chaotic
in the sense of Devaney.

Theorem 4.10 ([3]). If f: I — I is a. map of the unit interval I = [0,1]
such that f is one-sided topologically transitive, then f is chaotic on I in the
sense of Devaney.

5. Topological Mixing and Sensitive Maps of Graphs.

In this section, furthermore we investigate more detailed dynamical proper-
ties of sensitive maps of graphs.

First, we prove the following.

Theorem 5.1. Suppose that f : G — G is a map of a graph G which is
sensitive and one-sided topologically transitive, i.e., f is chaotic in the sense
of Ruelle-Takens. Then there is a connected subgraph H of G and a natural
number N such that f¥(H) = H, UX_0 f*(H) = G, f{(H) N f7(H) is empty
or a finite set for 0 <i < j < N —1, and fN|f"(H) : fr(H) —» f~(H) 1s
topologically mizing.

Proof. Note that for a sensitive map g : K — K of a graph K, a subgraph
K' (ie., dimK' > 0) of K is a member of M(g) if and only if g(K') = K’
and g|K' : K' = K' is one-sided topologically transitive (see the proof of
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(4.4)). Also, by (4.4), if g : K — K is a sensitive map of a graph K, then
there is a subgraph K’ of M(g).

Put K; = G and f; = f. Since f is one-sided topologically transitive,
K, € M(f,). Suppose that there is a natural number n(1) > 2 and a proper
subgraph K of K; (ie., K; 2 K) such that fM(K) = K. Then we can

choose a subgraph K, ofM( "(1)) Put f, = f7"|K,. Since K, is a member
of M(fln(l)) and K, is a member of M(f;), we see that

(1) for each 0 < i < j < n(1) =1, fi(K,)N fi(K,) is empty or a finite set
and Ur8) ™ fn(K,) = K;, because that the set UU) ™! f7(K,) is fy-invariant.
If there is a natural number n(2) > 2 and a proper subgraph K of K, such
that f,' @) (K) = K, we can continue this procedure. Hence we obtain a
sequence n(1),n(2),... , of natural numbers, a sequence fi, fs,... , of maps

and a sequence K, 2 K, 2, ..., of subgraphs of G such that

(2) for each k =1,2,..., K} is a member of M(f}),

(3) for each 0 < i < j < n(k) —1, fi(Kip1) N fi(Kry1) is empty or a finite
set and U',:_ko'lfk (Kk+1) K;.
Since (K, f) is fy-invariant and f: (G, f) = (G, f) is a continuum-wise
expansive homeomorphism , by (2.3) we can see that there is a positive
number A > 0 such that for each k, diam K; > \. Hence by (3), we see
that the above sequence K; 2 K, 2,... , is a finite sequence. Therefore we
must reach the situation that there is a natural number » > 1 such that K.
is a member of M(f") for each n = 1,2,... , ie., f?(K) # K if n is any
natural number n > 1 and K is any proper subgraph of K,. By using this
fact, we shall show that K, is connected. If K, is not connected, K, has
finite components C,, Cy, ... ,C;. Then fi(C;) = C,;. This is a contradiction.
Put H = K, and g = f, : H — H. Note that ¢" : H — H is one-sided
topologically transitive for each n > 1. Since f, = fV|H for some natural
number N > 1, f¥(H) = g(H) = H, f'(H) # f/(H) (0<i<j < N-1).
Since f : G — G is one sided topologically transitive, we see that fi(H )
f?(H) is empty or a finite set for 0 < i < j < N —1 and UNJ} f*(H) =
Next, we shall show that g : H — H is topologically mixing. Consider the
shift map g : (H,g) = (H,g) of g. Since g is sensitive, g is a continuum-wise
expansive homeomorphism of the continuum (H,g). By (4.5), we see that
the set of periodic points of g is dense in (H, g). Also, g satisfies the following
condition:

(#) For each natural number n > 1 and for any proper closed subset E
of (H,g) with dimE > 0, g"(E) # E. O

By the following proposition (5.2) below, we see that g is topologically mix-
ing, which implies that g is topologically mixing.
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Proposition 5.2. Let f : X — X be a continuum-wise ezpansive homeo-
morphism of a continuum X. Suppose that the set of periodic points of f is
dense in X and for each natural number n > 1 and each proper closed subset
E of X with dimE > 0, f*(E) # E. Then f is topologically mizing.

Proof. Let U and V be nonempty open sets of X. Let p be a periodic point
of f. By (2.4), there is a nondegenerate subcontinuum A of X such that
lim,,_, o, diam f*(A) = 0 or lim,_, diam f~"(A) = 0. We may assume that
lim,,_, o, diam f~™(A) = 0. The other case is similarly proved.

Now, we shall prove that for each z € X, there is nondegenerate subcon-
tinuum A, of X such that z € A, and lim,_,,, diam f~"(A4,) = 0. Let ¢
and 4 be positive numbers as in (2.3). We may assume that diam A < §/2.
Let z be any point of X. Since X € M(f), by the same way as in the
proof of (3.1), we see that for each k¥ > 0, U2, f"*(A) is dense in X. By
(2.3), we can choose a sequence n(l) < n(2) < ---, of natural numbers
and subcontinua B; (i = 1,2,3,...) of f"¥(A) such that diam B; = 4,
lim;_, o, d(z, B;) = 0 and diam f~7(B;) < € for each 0 < j < n(z). We may
assume that lim; ,,, B; = A,. Then z € A, and lim,_,, diam f~"(4;) =0
(see (2.2)). Hence, we see that V*(z;X) is a nondegenerate connected
set. Choose a periodic point p € V and let ny be the period of p. Since
Fi(VH(p; X)) = V*(f(p); X) for 0 < j < ng — 1, CUV*(f¥(p); X)) is an
f™-invariant set for 0 < j < ny — 1. By the hypothesis, we see that X =
Cl(V*(fi(p); X)) for each 0 < j < ny — 1. For each 0 < j < ng — 1, choose
a point ; of U N V*(f3(p); X). Then lim o0 f~"(y;) = fi(p) € FI(V).
Hence, for each 0 < j < ny — 1, we can choose a natural number N; > 1
such that if n > Nj;, then f~""(y;) € fi(V), i.e.,, fCnoM=i(y;) € V. Put
N' = Max{N,| 0 < j§ < ng— 1} and N” = ng - N'. Suppose that n > N".
Then put n = s-np+ j, where 0 < j <mg—1. Then s-ng+j > ng - N’
implies that s > N’. Hence f~"(y;) = f(-™'®~i(y,) € V, which implies that
f™(V)NU # 0. Hence f : X — X is topologically mixing. O

Combining (4.4) with (5.1), we obtain the following theorem.

Theorem 5.3 (Decomposition theorem of sensitive maps of graphs). Let
f: G — G be a map of a graph G which is sensitive. Then M(f) # 0 and
M(f) = {G| 1 < i < N} is a finite set of subgraphs of G satisfying the
following properties:

(a) If i # j, then G; N G; is empty or a finite set.

(b) For each i, f is two-sided strongly chaotic on G; in the sense of De-
vaney, and there exists a connected subgraph H; of G; and a natural number
n(i) > 1 such that H; is f"@-invariant, f*|f*(H;) : f’“SHi) — f*(H;)
is topologically mizing for 0 < k < n(i) — 1 and G; = UZSO‘lfk(Hi), and
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FRH) N Y (H) (0 < k< k' < n(i) — 1) is empty or a finite set.

(c) If we put L = Cl(G —UX.,G;) and F(f) = {z € L| f*(z) € L for
each n > 0}, then F(f) is a closed subset of L with f(F(f)) C F(f) and
dim F(f) <0. Ifz € L—F(f), then there is a neighborhood U of z in G and
a natural number n(z) > 1 such that f*(U) C UX |G, for each n > n(zx). In
particular, Q(f) D UN,G; and LN Q(f) C F(f).

By (4.6), (5.3) and [16, (3.15) and (5.4)], we obtain the following theo-
rem.

Theorem 5.4. Suppose that f : G — G is a map of a graph G which is
sensitive. Let f : (G, f) — (G, f) be the shift map of f and X = (G, f). Then
M(f) = {171,172,... ,?N} is nonempty and a finite set, and the following
conditions are satified:

(a) lz N )7] (i # j) is empty or a finite set of periodic points of f.

(b) f is two-sided strongly chaotic on Y; in the sense of Devaney, and
there is a continuum Z; in Y; and a natural number n(i) > 1 such that
F@ (Z,) = Z;, UZ_(__i(),_lfk (Z) =Y, f* (Z,) n f¥ (Z) is empty or a finite
set of periodic points of f for 0 < k < k' < n(i) — 1, and f*®|f* (Z) :
f* (Z) — fk (Z,) is topologically mizing. In particular, Z; is a chaotic

continuum of f and hence Z; is an indecomposable continuum.
(c) There is a closed subset F (f) in Cl (X - UfilYi) such that F (f)

is f-invariant, dim F (f) <0andifz€ X — ((Uf;lﬁ) UF (f)) and any
€ > 0, there is a neighborhood U of T in X and a natural number n(e) > 1
such that f" ((7 ) s contained in the e-neighborhood of U{il}z i X for each

n > n(e), and hence Q(f) > UNY; and Q(f) n (Cl (X—U{ilf’i)) C
F(f).

Corollary 5.5. Let f : G — G be a map of a connected graph G. Then f is
topologically mizing if and only if [ is sensitive and one-sided topologically
transitive and the inverse limit (G, f) of f is indecomposable.

Theorem 5.6. Let f: G — G be a map of a graph G which is sensitive.
Then there is a connected subgraph H of G and a natural number s > 1 such
that f$(H) = H and the shift map f of f is two-sided chaotic on almost all
Cantor sets of Z in the sense of Li-Yorke, where Z = (H, f*|H) C (G, f*) &
(G, f). Hence there exists an uncountable set G of bisequence of f such that
Pn (GT) is a Cantor set of G and f is two-sided chaotic on G in the sense of
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Li-Yorke.

To prove (5.6), we need the following notations. A subset of X is of the
first category if there are subset E, of X such that £ = U2, E,, and E,
is nowhere dense, i.e., Intx Cl(E,) = 0. A subset F' of a space X is said
to be independent in R C X™(n > 1), if for every system z,,z,,...,z,
of different points of F, the point (z1,z,...,z,) € F™ never belongs to
R. In [18, Main theorem and Corolary 3], Kuratowski proved the following
theorem.

Theorem 5.7 (Kuratowski’s Independent Theorem). If X is a complete
space and R C X™ is an F,-set of the first category, then the set of J(R)
of all compact subsets F of X independent in R is a dense Gs-set in 2% of
all compact subsets of X with the Hausdorff metric. Moreover, if X has no
solated points, then almost all Cantor sets of X are independent in R.

A homeomorphism f : X — X of a continuum X is continuum-wise
fully expansive [17] if for any € > 0 and any n > 0, there is a natural
number N = N(e,n) > 1 such that if A is a nondegenerate subcontinuum
of X with diam A > 7, then either dy(f"(A),X) < ¢ for each n > N or
dg(f~"(A), X) < € for each n > N holds. Note that foramap f: G — G of
a connected graph G, f is topologically mixing if and only if the shift map
f of f is continuum-wise fully ezpansive (see [17, (3.11)]).

Proposition 5.8. Let f: X — X be a homeomorphism of a compactum
X and Z an f-invariant nondegenerate subcontinuum of X. If f|\Z : Z — Z
is continuum-wise fully expansive, then f is two-sided chaotic on almost all
Cantor sets of Z in the sense of Li-Yorke.

Proof. We may assume that there is a subcontinuum A of Z such that
lim,, o, diam f~"(A4) = 0 (see (2.5)). By [16, (3.15)], Z is a chaotic contin-
uum of f|Z with respect to 0 = u. Let 7 > 0 be a positive number as in the
definition of chaotic continuum. Consider the following sets.

Ry = {(z,y) € Z x Z|limsup,_, . d(f (), f"(y)) <7/2},

Ry = {(z,y) € Z x Z|liminf, , d(f"(z), f"(y)) > 0},

P* = {z € Z| there is a periodic point of f such that

limsup, ., d(f~"(z), f~"(p)) < 7/5}.
Since Z is a chaotic continuum of f|Z with respect to u, by the proof of
[16, (4.1)], we see that R}, RY,Z x P* and P* x Z are F,-sets of the first
category.

Put diam Z = 7' > 0. Similarly, consider the sets:

R} ={(z,y) € Z x Z|limsup, ., d(f"(z), f"(y)) < 7'/3},
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R = {(z,y) € Z x Z|liminf,_,., d(f"(z), f"(y)) > 0},

P* = {z € Z| there is a periodic point p of f such that

limsup, _,,, d(f"(z), f"(p)) < 7'/5}.
By the same way as in the proof of [16, (4.1)], we see that R, RS, P* x Z
and Z x P?® are F,-sets. Since Z is a chaotic continuum of f with respect to
o = u and by the condition (i) of the definition of chaotic continuum, we see
that for each z € Z, there is a nondegenerate subcontinuum A, of Z such
that z € A, and lim,,_,., diam f~"(A4,) = 0. Since lim,,_,, f*(4,) = Z, by
the argument as before, for each z € X and each nonempty open set U of
Z, there exists a point y € U such that liminf, ,. d(f"(z), f*(y)) > 7'/3,
ie., flZ: Z — Z is strongly sensitive. This implies that R is of the first
category in Z x Z. Next, we shall show that RS is of the first category in
Z x Z. Let (z,y) € Z x Z. Choose a small nondegenerate subcontinuum 4,
of Z such that y € A, and lim,_,,, diam f~"(A4,) = 0. Note that for each
nondegenerate subcontinuum B of A, lim,_, d(f"(y), f*(B)) = 0, because
that lim,_,., f*(B) = Z. Hence we can choose a point y' in A, such that
liminf, . d(f"(z), f*(y')) = 0. This implies that R} is of the first category
in Z x Z. Also, by the similar way as in the proof of [16, (4.1)], we see that
P? x Z and Z x P? are of the first category in Z x Z.

Consider the set in Z x Z :

R=R'UR'U(P*x Z)U(Z x P*)URURLU (P* x Z) U (Z x P*).

Then R is an F,-set of the first category in Z x Z. Note that if (z,y) &€ R,
then

(1) limsup,_,, d(f~"(z), f"(y)) = 7/2, and
limsup,,_,, d(f"(z), f"(y)) = T’/3
(2)  liminf, e d(f"(2), f7"(y)) = 0 = liminf, o d(f"(z), f"(¥)),
(3) limsup, ., d(f™"(z), f"(p)) = T/ 5, and
limsup,,_, . d(f™(z), f"(y)) > 7'/5 for each periodic point p of f.
By Kuratowski’s independent theorem, f is two-sided chaotic on almost all
Cantor sets of Z in the sense of Li-Yorke. This completes the proof. O

Proof of Theorem 5.6. By (5.3), there is a connected subgraph H of G
and a natural number s > 1 such that f*(H) = H and f*|H : H — H is
topologically mixing. Put g = f°. Then (H,g|H) C (G,g) = (G, f). Put
X = (G,9) and Z = (H,g|H), and §|Z : Z — Z is a continuum-wise fulty
expansive. By (5.8), we see that g is two-sided chaotic on almost all Cantor
sets of Z in the sense of Li-Yorke. We may assume that Z C (G, f). Then
we can easily see that f is two-sided chaotic on almost all Cantor sets on Z
in the sense of Li-Yorke. Also, if f is two-sided chaotic on a Cantor set C
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in the sense of Li-Yorke, then p,|C : C — p,(C) is a homeomorphism. This
completes the proof. O

Now, we consider the case that G is the unit interval I = [0, 1]. By (5.3),
we obtain the following.

Corollary 5.9. Ifa map f : I — I is sesitive, then M(f) # 0 and
M(f) = {Gi,... ,Gn} is a finite set satisfying the following properties:

(a) If i # j, then G; N G; is empty or a finite set of periodic points of f.

(b) For each 1 <1 < N, f is two-sided strongly chaotic on G; in the sense
of Devaney, and if the cardinality of the set of components of G; is N (i),
then one of the following two conditions holds:

(1)  For each component C of G;, fND|C : C — C is topologically
mizing.

(2)  For each component C of G;, there is a subinterval J of C such that
JUNO(T) = C, Jn fNO(J) is a one point set of a periodic point of f
whose period is N (i), f>N®D(J) = J, and

fENO RO ) fNO() 5 fNO(T) (5 =0,1)

1s topologically mizing.

(c) There is a closed subset F(f) of L = CL(I —UN G;) with f(F(f)) C
F(f) and dim F(f) < 0 such that if x € L — F(f), then there is a neighbor-
hood U of z in I and a natural number n(z) such that f*(U) € UY,G; for
each n > n(zx).

Proof. Let G; (1 < i < N) be the subgraphs as in (5.3). If G; N G; (i # j)
is nonempty, then G; N G, is a set of periodic points of f, because that the
total space I is an arc and hence f|G; NG, : G;NG; — G;NG; is injective
and hence bijective. For each i, there is a connected subgraph H; C C and
a natural number n(i) > 1 as in (5.3). Consider the map f¥®|C: C — C.
Since C is an interval, there is a fixed point p of f¥® ie., p is a periodic
point of f with period N(i). Since C = UT® f#NG)(H;), we may assume
that p € H, C C. Put H; = J = [a,b]. If p € Inte J, then fNO(J) = J.
Then J = C. If p ¢ Intc J, there is 1 < k such that p € f5VN@(J). Put
J' = f¥N@(J). Then we see that fN(J U J') = J U J', which implies
that J U J' = C. Hence we see that ¥k = 1. Then C = J U f¥@(J), and
JN NO(T) = {p}. Hence fZNO(J) = J. |

6. Examples.

In this section, we give some examples which are related to the results ob-
tained in the previous sections.
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Ezample 6.1. In (3.1), we can not conclude that f (or f~!) is chaotic
on some closed subset of X in the sense of Devaney. Let 0 : M — M
be the shift map as in [7, 12.39 Theorem|. Then dimM = 0, o is an
expansive homeomorphism and there are no periodic points of o in M. Let
g : Y — Y be any expansive homeomorphism of a compactum Y with
dimY > 0. Consider the product f =oxg: M xY — M xY. Then f is an
expansive homeomorphism of a compactum X = M x Y with dim X > 0,
but there are no periodic points of f in X. By (3.1), f is chaotic in the sense
of Ruelle-Takens, but f is chaotic on no closed subset of X in the sense of
Devaney. Also, in (4.5), we can not omit the condition that G is a graph.

Ezample 6.2. In the statement of (3.1), we can not replace the condition
that f is continuum-wise expansive by the condition that f is sensitive. Let
S be the unit circle and I the unit interval. Let r, denote the rotation of
length 27 on S. Put X = S x I. Define a homeomorphism f : X — X
by f(z,t) = (r¢(z),t) for z € S and t € I. Then f is sensitive, but f is
not strongly sensitive on any closed subset. Of course, f is not continuum-
wise expansive. If ¢t € [ is an irrational number, then f|S; : S; — S; is
two-sided topologically transitive, but f|S; : S; — S; is not sensitive, where
S = {(z,t)|z € S}. We see that there is no closed set Y of X such that f is
chaotic on Y in the sense of Ruelle-Takens. Also, this example implies that
in the statement of (4.4), we can not replace the condition that G is a graph
by the condition that G is a n-dimensional polyhedron (n > 2). Note that
the set of periodic points of f is dense in X.

Ezample 6.3. Let D = {0,1} and C = II_<cn<to0Dn, where D, = D
for each n. Let 0 : C — C be the shift of C, i.e., 0 ((an)n) = (Gn-1)n-
Consider the cone X of C, i.e., X = (C x I)/(C x {0}) is obtained from
C x I by shrinking C x {0} to a point. Then X is called a Cantor fan.
Define a homeomorphism f : X — X by f([z,t]) = [J(x),\/f] for each
z € C and t € I. Then f is strongly sensitive, but it is not continuum-wise
expansive. Note that there is no point z of X such that dim(CI{f"(z)|n =
0,+1,%2,...}) > 0. Hence f is not one-sided topologically transitive on any
closed subset Y of X with dimY > 0. This implies that in the statement of
(4.4), we can not replace the condition that G is a graph by the condition
that G is a one-dimensional continuum.

Ezample 6.4. Let G =[0,2] and let f : G — G be the map defined by

2.1, if0<z<1/2

2.z+2, ifl/2<z<l,
flz) = .

4.1 —~4, ifl1<z<3/2,

—4.z+8, if3/2<z<2
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Then f is sensitive and (G, f) is an indecomposable continuum, but f is not
one-sided topologically transitive. Hence f is not topologically mixing (see
(5.5)).

The author wishes to thank the referee for his helpful comments.
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