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CHAOS OF CONTINUUM-WISE EXPANSIVE

HOMEOMORPHISMS AND DYNAMICAL PROPERTIES OF

SENSITIVE MAPS OF GRAPHS

HISAO KATO

In this paper, we study several properties of chaos of maps
of compacta. We show that if a homeomorphism / : X -» X of
a compactum X with dimX > 0 is continuum-wise expansive,
then there is an /-invariant closed subset Y of X with dim Y > 0
such that / is (two-sided strongly) chaotic on Y in the sense
of Ruelle-Takens. Also, we investigate dynamical properties
of maps of graphs which are sensitive. In particular, we prove
the decomposition theorem of sensitive maps of graphs as fol-
lows: If / : G ->• G is map of a graph G which is sensitive, then
there exist finite subgraphs G% (1 < i < N) of G such that (a)
each Gi is /-invariant and Gi Π Gj is empty or a finite set for
i φ j , (b) for each 1 < i < N, / is (two-sided strongly) chaotic
on Gi in the sense of Devaney and there exists a connected
subgraph Hi of Gi and a natural number n(ί) > 1 such that Hi
is /"^-invariant, fn^\fk(Hi) : /*(#;) -> fk(Hi) (0 < k < n(i) - 1)
is topologically mixing, U ^ " 1 /*(#*) - Gu and /*(#<) Π /*' (Hi)
is empty or a finite set for 0 < k < kf < n(i) — 1, and (c)
dimF(/) < 0, where

F(f) = {x6 G\fn{x) eCl(G- U^iGi) for each n > 0} .

As a corollary, we show that in case of maps of graphs, chaos
in the sense of Ruelle-Takens is equal to (two-sided strongly)
chaos in the sense of Devaney, and sensitive maps of graphs
induce two-sided chaos in the sense of Li-Yorke.

1. Introduction.

All spaces under consideration are assumed to be metric. By a compactum,
we mean a compact metric space. A continuum is a nondegenerate connected
compactum. A map is a continuous function. By dimX, we mean the
topological dimension of X (e.g., see [8]). Note that for a compactum X,
dim X > 0 if and only if there is a nondegenerate subcontinuum of X.

Let Z be the set of all integers. Let X be a compactum with metric d. For
a subset A of X, put diamA = sup{d(x,y)\x,y e A}. A homeomorphism
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/ : X -> X is called expansive ([25], [7]) (resp. continuum-wise expansive
[14]) if there is a positive number c > 0 such that if x,y E X and x φ y
(resp. if A is a nondegenerate subcontinuum of X), then there is an integer
n G Z such that

d(fn(x)Jn(y)) > c (resp. diam/n(Λ) > c).

Such a positive number c is called an expansive constant for f. Note that
every expansive homeomorphism is continuum-wise expansive, but the con-
verse assertion is not true (see [14]). There are many important examples of
continuum-wise expansive homeomorphisms which are not expansive. Note
that (continuum-wise) expansiveness does not depend on the choice of the
metric d of the compactum X. These properties have frequent applications
in topological dynamics, ergodic theory and continuum theory (e.g., see the
references below). A map / : X -> X of a compactum X is sensitive (= f
has sensitive dependence on initial conditions) [5] if there exists a positive
number r > 0 such that for each x G X and each neighborhood U of x in
X there exists a point y of U such that d{fn{x), fn{y)) > r for some n > 0.
Now, we introduce new notion which is stronger than sensitivity. A map
/ : X -> X is strongly sensitive if there is a positive number r > 0 such that
for each x £ X and each nonempty open set U in X (U may not contain #),
there exists a point y of U such that liminfn_>oo d(fn(x), fn(y)) > τ. Such
r > 0 is also called an expansive constant for f.

In this paper, first, we study the relation between (continuum wise) ex-
pansive homeomorphisms and chaos in the sense of Ruelle-Takens. In fact,
we prove that / : X —> X is a continuum-wise expansive homeomorphism
of a compactum X with dimX > 0, then there is an /-invariant closed
subset Y with dim^ > 0 such that / is "two-sided strongly chaotic" on
Y in the sense of Ruelle-Takens. Note that Y is not a minimal set of /,
because that if / : X -> X is a continuum-wise expansive homeomorphism
of a compactum X, then each minimal set of / is 0-dimensional ([14], [20]).
Next, we investigate dynamical properties of maps of graphs which are sen-
sitive. We prove the decomposition theorem of sensitive maps of graphs: If
a map / : G —>• G of a graph G is sensitive, then there exist finite subgraphs
Gt (1 < i < N) of G such that (a) each Gι is /-invariant and Gι Π G3 is
empty or a finite set for % φ j : (b) for each 1 < i < TV, / is (two-sided
strongly) chaotic on Gi in the sense of Devaney, and there exists a con-
nected subgraph Hτ of Gτ and a natural number n(i) > 1 such that H^-'is
/n^-invariant, / n ( i ) |/^(iϊ i) : /*(#;) -> fk(H{) is topologically mixing for
0 < k < n(i) - 1, U^l^f^Hi) = Gu fk(Hi) Π /*'(#*) is empty or a finite
set for 0 < k < kr < n(i) - 1, and (c) dimF(/) < 0, where

F(f) = {xe G\fn(x) eCl(G- U?=1Gt) for each n > 0} .
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Also, as a corollary, we show that in case of maps of graphs, chaos in the
sense of Ruelle-Takens is equal to (two-sided strong) chaos in the sense of
Devaney, and sensitive maps of graphs induce two-sided chaos in the sense
of Li-Yorke.

2. Preliminaries.

In this section, we give some definitions and results which will be needed in
the sequel.

Let / : X -> X be a map of a compactum X. Then / is called one-sided
topologically transitive [26] if there exists some x £ X with {fn(x)\n > k]
dense in X for each A; > 0. Note that if / : X -> X is one-sided topologically
transitive, then / is an onto map. Let Y be an f-invariant closed subset of
X, i.e., f(Y) — Y A map / : X ->• X is said to be chaotic on Y in the sense
of Ruelle-Takens [23] if the following conditions (CΊ) and (C2) are satisfied;
(Ci) the restriction f\Y : Y ~> Y of / to the set Y is one-sided topologically
transitive and (C2) f\Y : Y —v Y is sensitive. A point p of X is a periodic
point of f with period k if fk(p) = p and /*(p) 7̂  p for 1 < i < k — 1. If the
conditions (CΊ) and (C2) are satisfied, and moreover (C3) the set of periodic
points of f\Y is dense in Y, then / is said to be chaotic on Y in the sense
of Devaney [5].

Let / : X —y X be a map of a compactum X. A subset S of X is called a
scrambled set of / if the following conditions are satisfied. For any x,y e S
and x φ y,

(1) l i m s u p ^ d(f»(x), fn(y)) > 0,
(2) lhninfn^oo d(/n(s), fn{y)) = 0, and
(3) l imsup^^ d(fn(x), fn(p)) > 0 for any periodic point p of /.

If there is an uncountable scrambled set S of /, is said to be chaotic (on S)
in the sense of Li-Yorke [19].

A map / : X —> X of a compactum X is topologically mixing [1] if for any
nonempty open sets U and V of X, there is a natural number n 0 > 1 such
that if n > n0, then / n (F) Π t/" 7̂  0. By definitions, we can easily see that
topological mixing implies one-sided topological transitivity.

Let / : X —> X be a map of a compactum X. A two-sided sequence
{#n}n=o,±i,±2,..., of points of X is called a bisequence of f if /(#n+i) = #n
for each —00 < n < 00. A map / : X -» X is two-sided strongly sensitive if
there is r > 0 such that for each bisequence {#n}n=o,±i,±2,..., of /, and each
nonempty open set U in X, there is a bisequence {j/n}n=o,±i,±2,..., of / such



96 HISAO KATO

that y0 G U and

lim inf d(xn,yn) > τ and lim inf d(x_n,y-_n) > τ.
π—»oo n—>oo

Similarly, a map / : X —)> X is two-sided topologically transitive if there is a
bisequence {xn}n=o,±i,±2,..., of/ such that {xn |n > k} and {x_n |n > &} are
dense in X for each k > 0. But, in (2.5) we see that one-sided topological
transitivity is equal to two-sided topological transitivity. It is easily seen
that strong sensitivity implies sensitivity, but the converse assertion is not
true. Also, continuum-wise expansiveness is different from sensitivity and
(two-sided) strong sensitivity. Clearly, (strong) sensitivity does not mean
two-sided (strong) sensitivity.

Let Y be an /-invariant closed set of a map / : X —» X. Then / is
said to be two-sided strongly chaotic on Y in the sense of Ruelle-Takens if
(Ci)' f\Y : Y -» Y is two-sided topologically transitive and (C2)' f\Y is
two-sided strongly sensitive. If the conditions (CΊ)' and (C 2)' are satisfied
and moreover (C3) the set of periodic points of f\Y is dense in Y, then / is
said to be two-sided strongly chaotic on Y in the sense of Deυaney.

Let / : X —> X be a map of a compactum X and let Q be an uncountable
set of bisequences of /. Then / is said to be two-sided chaotic on Q in the
sense of Li-Yorke if the following conditions are satisfied: For any X =

{Zn}n=0,±l,..., Y = {ί/n}n=0,±l,.. Ξ Q With X φ Y,

(1) l i m s u p ^ ^ d(xn, yn) > 0, l i m s u p ^ ^ φ ; _ n , y_n) > 0,
(2) lim'mΐn^oo d(xn,yn) = 0 = lim'mΐn^ood(x_n,y_n),

(3) limsupn_>TOd(a;n,pn) > 0 and limsupn_> o od(a;_n,p_n) > 0 for any
p = {pn}n=o,±i,..., where p is a bisequence of / such that there is a periodic
point p of f with period k > 1 such that p ^ — p for each ί E Z .

To clarify the differences between the above properties of maps, we give

some examples in the Section 6.

Let X be a compactum with metric d. By the hyperspace of X, we mean
C(X) = {A\ A is a nonempty subcontinuum of X} with the Hausdorff met-
ric dH, i.e., dH(A, B) = inf{ε > 0| Uε(A) D B and Uε(B) D A}, where Uε(A)
denotes the ε-neighborhood of A in X. Then the space C(X) is also a com-
pactum (see [21]). Also, for any sets A and 5 , put rf(A, i?) = inf{d(α, 6)| a G
A and 6 G J5}.

A subset E of a space X is a Gs-set if i? is a countable intersection of
open sets En of X, i.e., i? = n™=ιEn. A subset F of a space X is an Fδ-set
if F is a countable union of closed sets Fn of X, i.e., F — \J™=1Fn.

Let / : X —)• X be a homeomorphism of a compactum X. For each x G X,
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the stable set Ws(x) and the unstable set Wu(x) of / are defined by

Ws(x) = [y € X

Wu(x) = {yeX

Also, for each closed set Z of X and x G Z, the continuum-wise stable and
unstable sets Vs(x; Z) and Vu(x] Z) (see [16]) are defined by

Vs(x;Z) = {y G Z\ there is a subcontinuum A of Z such that #, y G A
and limn_>oo diam/n(A) = 0},

Vu(x; Z) — {y G Z| there is a subcontinuum A of Z such that #,?/ G A
and linv+oo diam/~n(τ4) = 0}.

Note that Vσ(x\ Z) is a connected subset of Z.
A subcontinuum Z of X is called α chaotic continuum of f with respect to s
(resp. u) [16] if

(i) for each x € Z, Vs{x\ Z) (resp. Vu{x\ Z)) is dense in Z, and
(ii) there is a positive number r > 0 such that for each x G Z and

each neighborhood 17 of # in X there exists a point y £ U Π Z such that
liminfn_>ood(/n(α;),/n(y)) > r (resp. limin^^oo d(f~n(x),f~n(y)) > τ).

Prom topology, we know that inverse limits spaces yield powerful tech-
niques for constructing complicated spaces and maps from simple spaces
and maps. Also, inverse limit spaces and shift maps are important in chaotic
dynamical systems (e.g., see [24]).

Let / : X —> X be a map of a compactum X. Consider the inverse limit
(X, /) of / as follows:

(X, /) = {(rrn)~=0| xn G X and f(xn+1) = xn for each n > 0} .

For each x = (xn)^°=0, y = (yn)Z=o € (-*>"/)> d e f i n e a metric d by

oo

a\xfy) — / j ^K^n-ί Vn) IΔ -
n = 0

Then (X, /) is a compactum. Let pn : (X, /) -> X be the natural projec-
tion^i.e., pn{(xo,XuX2, ")) — xn> Also, define a map / : (X, /) ->• (X,/)
by /((^o?^ij^2> )) = (/0&o)?ffo?ffij ) Then / is a homeomorphism
of (X, /) which is called the shift map of /. Note that for any onto map
/ : X —> X of a compactum X, / is two-sided topologically transitive (resp.
two-sided strongly sensitive) if and only if the shift map /of / is so. Also, a
map / : X —> X of a compactum X is two-sided chaotic on an uncountable
set Q of bisequences of / in the sense of Li-Yorke if and only if both / and
f"1 is chaotic on Q+ in the sense of Li-Yorke, where

Q+ = { 2 = ( x n ) n > o G ( X , / ) I ( . . . , x - U x Ό , x u x 2 , . . . ,)eG}
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Note that pn \Q+ : Q+ -» pn (£?+) is a bijection for each n > 0.

The following theorem was not explicitly stated in [16], but its proof

follows readily that of [16, (3.6)].

Theorem 2.1 [16, (3.6)]. If f : X -» X is a continuum-wise expansive
homeomorphism of a compactum X with dimX > 0, then there is a chaotic
continuum Z of f with respect to σ = s or u. Moreover, if there is a non-
degenerate subcontinuum A of X such that limn^oodi3iinfn(A) = 0 (resp.
limn_> o odiam/~n(A) = 0), then there is a chaotic continuum Z of f with
respect to σ = s (resp. σ = u).

The following lemmas will be used in the next sections.

L e m m a 2.2 ([14, (2.1)]). Let f : X ->• X be a continuum-wise expansive
homeomorphism of a compactum X with an expansive constant c > 0 and
let 0 < ε < c. If A G C(X) and di&m fn(A) < ε for each n > 0 (resp.
diam/~n(A) < ε for each n > 0), then Yιmn^OQonadiamfn(A) = 0 (resp.

- 0 ) .

Lemma 2.3 (see the proof of [14, (2.3)]). Let f : X -> X be a continuum-
wise expansive homeomorphism of a compactum X with an expansive con-
stant c > 0 and let 0 < ε < c/2. Then there is δ > 0 such that if A is any
nondegenerate subcontinuum of X such that diamA < δ anddiamfm(A) > ε
for some integer m £ Z, then one of the following conditions holds:

(a) If m > 0, then diam/n(y4.) > δ for each n > m. More precisely,

for any x G fn(A) there is a subcontinuum B of A such that x G fn(B),

diam/''CB) < ε for 0 < j < n and diam/n(£) = δ.
(b) If m < 0, then diam/~n(^4) > δ for each n > —m. More precisely,

for each x G f~n(A) there is a subcontinuum B of A such that x G / ~ n ( S ) ,
diam/-•?(£) < ε forO<j <n and diam f~n(B) = δ.

In particular, for each η > 0 there is a natural number N(η) > 0 such that if
A G C(X) and diam A > ry, then either diam fn (A) > δ for each n > N(η)
or diam/~~n(^4) > δ for each n > N(η) holds.

Lemma 2.4 [14, (2.5)]. If f : X -* X is a continuum-wise expansive
homeomorphism of a compactum X with dimX > 0, then there is a nonde-
generate subcontinuum A of X such that either l im^oo diam/ 7 1 (A) — 0 or
limn_^oo diam/~n(^4) = 0 holds.

The next lemma is trivial and it may be known, but for completeness, we

give the proof.
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Lemma 2.5. Let f : X —> X be a map of a compactum X. If f is one-sided
topologically transitive, then f is two-sided topologically transitive.

Proof. Consider the shift map / : (X, /) -> (X, /) of /. Since / is one-sided
topologically transitive and hence / is an onto map, we see that / is also
one-sided topologically transitive. Note that / is one-sided topologically
transitive if and only if whenever U', V are nonempty open sets of (X, /)
there exists n > 1 with f~n (ϋ^j ΠV φ 0 (see [26, Theorem 5.9]). Since

f~n (f/) Π V φ 0, then U Π fn ( F ) = fn [f~n (ϋ) Π V) φ 0. Hence f~ι is

also one-sided topologically transitive. Then the set A of x G (X, /) with

| / n ( 2 ) | n>k\ dense in (X, /) for each k > 0 is a dense G^-set. Also, the

set B of x e (X, /) with <f~n(x)\ n > k\ dense in (X, /) is a dense Gj-set

(see also [26, Theorem 5.9]). By Baire's category theorem, AΠB φ 0. This
means that / is two-sided topologically transitive, which implies that / is
two-sided topologically transitive. D

Lemma 2.6 (see the proof of [14, (3.2)] and [14, (3.8)]). Let f : G -+ G
be a map of a graph G which is sensitive. Then there is a positive number
τ > 0 such that if A is a subcontinuum of (G, /) with diamA < r, then

^ = 0 .

3. Chaos in the sense of Ruelle-Takens of Continuum-wise
Expansive Homeomorphisms.

Let / : X —> X be a map of a compactum X with dimX > 0. Consider the
set E(/) = {E\ E is an /-invariant closed subset of X with άimE > 0}, and
put M(/) = {E E I(/) | E is minimal of !(/) with respect to the inclusion}.
In general, M(/) may be an empty set. Note that the family M(/) is not
the family of minimal sets of /.

Now, we prove the following theorem.

Theorem 3.1. Let f : X —> X be a continuum-wise expansive homeomor-
phism of a compactum X with dimX > 0. Then M(/) φ 0 and ifYe M(/),
then f is two-sided strongly chaotic on Y in the sense of Ruelle-Takens.

To prove (3.1), we need Brouwer's Reduction Theorem.

Brouwer's Reduction Theorem 3.2 (e.g. see [8, p. 161]). In a space X
with countable basis, let {K\} be a family of closed sets with this property: if
Kι D K2 D - is any decreasing sequence of members of {Kχ\ , then Π^Ki
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is a member of {Kχ}. Then there exists an irreducible set (= minimal set)
in{Kx}.

Proof of Theorem 3.1. Consider the set I(/). Note that X G I(/). By (2.3),
if E G ! (/) , then there is a component C of E such that diam C > <5, where δ
is a positive number as in (2.3). Suppose that Ei G I(/) (i = 1,2,... ,) and
Eι D E2 D ,. Let Ci be a component of E{ with diamCj > £. Since C(X)
is compact, we may assume that lim^oo Ĉ  = C. Then C is a subcontinuum
of n^Ei and diamC > δ.

Hence Π g ^ G I(/). By (3.2), there is a minimal element Y of I(/).
Hence M(/) φ 0. Let Y G M(/). Then y is /-invariant and dim.y > 0. By
(2.4), we may assume that there exists a nondegenerate subcontinuum Ao of
Y such that limn_>oodiam/~n(^40) = 0. The other case is similar.

Let y G Y be any point of Y and B a nondegenerate subcontinuum of
Y such that limn_>oodiam/~n(i?) = 0. We shall show that the following
condition (*) is satisfied.

(*) For each ε > 0 and each natural number k > 0, there is a natural
number N >k such that d(y, fN(B)) < ε.

If we put D = Cϊ (U£=Jn(S)) C y, then /(JO) C Zλ Put £ = Π~=1/
n(I>).

Then f(E) = E. Since liminfn_>oodiam/n(S) > δ (see (2.3)), we see that
fn(D) has a component Cn with diam(7n > δ. Since C(Y) is compact, we
may assume that limn_^oo (7n = C. Then C is a nondegenerate subcontinuum
and C C E. Hence dimE > 0. This implies that Y = E = D, because that
y G M(/). Hence we see that for any ε > 0, there is N > k such that

Let B = {Bί}^! be a countable base of Y. By using the condition (*) and
induction on i, we can choose a subcontinuum A» (i > 1) of y such that

(1) AQ D Aλ D A2 D
(2) there is a sequence n(l) < n(2) < of natural numbers such that

Bi Π / n W ( ^ i ) ^ 0 and / n ( j ) (^i) C i?̂  for each 1 < j < i - 1.

Choose a point α G Π°^0Ai. By (2), we see that {/n(α)| n > k} is dense in
y for each k > 0. Hence / | y : y -> y is one-sided topologically transitive.
By (2.5), we see that f\Y : Y —>- y is two-sided topologically transitive.

Next, we shall prove that / | y : y -> y is two-sided strongly sen-
sitive. Since there is a nondegenerate subcontinuum Ao of Y such ΐhcit
linin^oo diam/~n(^40) = 0, by (2.1) there exists a chaotic continuum Z of
f\Y with respect to σ = u. Note that for each n > 0 diam/~n(Z) > 4 77
for some fixed positive number 77 > 0 (see (ii) of the definition of chaotic
continuum). Let x G Y and let U be any nonempty open set of Y. By
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(2.3), we can choose a natural number N > 1 such that if D E C(Y) and
diamD > 77, then either diam/n(£>) > δ for n > N or diam/-n(L>) > δ
for n > N holds. We may assume that 4 η < δ. Choose a positive number
λ > 0 such that if y,y' E Y and d(y,y') < λ, then d(f-j(y)J-j(y')) < η
for each 0 < j < N. Since Y E M(/), diam/~n(Z) > 4 η for each
^ > 0, by the same argument as the above, we see that U^ίzlf~

n(Z) is
dense in Y. Since f~n{Z) is also a chaotic continuum of / with respect to
σ — u, we may assume that the chaotic continuum Z intersects £7, i.e.,
U Π Z φ 0. If necessary, we may replace f~n{Z) by Z. Let i = 1,2,3,... ,
be any natural number. Choose a subcontinuum Z(i) of f~Nι(Z) such that
Hindoo diam/~J(Z(i)) = 0 and diamZ(i) > 4 η (see (i) of the defini-
tion of chaotic continuum). Choose a subcontinuum Hi0 of Z(i) such that
diami/^o > V and d{f-Nί{x),H^0) > η. Since dia,mfN{Hiβ) > δ > 4 7/,
we can choose a subcontinuum iJ^i of fN(Hii0) such that diamίf^! > η and
d(f~N'(t~1\x),Hi^) > η. If we continue this procedure, we obtain a finite
sequence uf;,o> Hiλ^... , ϋ/^ of subcontinua of Y such that

Hiik C /N'(#<,*-!)

and

for each 1 < k < i. Note that Hii C Z. Choose a point 2̂  E H^. Then
^(/-^^(xi),/-^^:!;)) > r/ for each 0 < j < i. Hence we see that
d(f~n(xi),f~n(x)) > λ for each 0 < n < N i. Since Xi E Z for each i, we may
assume that lim^oo Xι = rr; E ^. Then we can see that d(f~n(x)1 f~n(x')) >
T for each n > 0. Since ZΠ U Φ 0 and Fu(:r'; Z) is dense in Z, we can choose
a nondegenerate subcontinuum H contained in UΠVu(x'; Z). Choose a nat-
ural number N' such that diam/^ (H) > δ > 4 η. By the similar argument
to the above, we can choose subcontinua DN>+N.i (i > 0) such that

DN, C fN'(if), ZV+jv (i+i) C / ^ (DN,+N.i), diamDATz+iv.i > 77

and

Choose a point y E n^f-iN'+N-i) (DN,+Nm.) c H C U. Then we can see
that l i m i n f ^ o o d ί r ^ ) , / " ^ ) ) > λ and limmf^^d(f-n(x)J-n{y)) =
liminf^oo d{f~n{x), f~n{x')) > λ, because y E Vu(α;'; Z). Hence f\Y is two-
sided strongly sensitive, which implies that / is two-sided strongly chaotic
on Y in the sense of Ruelle-Takens. This completes the proof. D
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Remark 3.3. In (3.1), by the condition (*) in the proof of (3.1), we see
that there is a positive number δ > 0 such that if Y G M(/) and C is any-
component of Y, then diam C > δ.

4. Sensitive Maps of Graphs induce Chaos in the sense of
Devaney.

In this section, we study some dynamical properties of sensitive maps of
graphs. In particular, we show that sensitive maps of graphs induce two-
sided chaos in the sense of Devaney.

A map / : X —» X of a compactum X is positively continuum-wise ex-
pansive [14] if there is a positive number c > 0 such that if A is a nondegen-
erate subcontinuum of X, then there is a natural number n > 0 such that
diam/n (.4) > c.

Lemma 4.1 ([14, (3.1) and (5.7)]). Suppose that f : X -* X is a positively
continuum-wise expansive map of a compactum X. Then the shift map f of
f is a (positively) continuum-wise expansive homeomorphism. Moreover, if
dimX > 0, then dim(X,/) > 0.

First, we show the following proposition.

Proposition 4.2. Suppose that a map f : X —> X of a compactum X
with dimX > 0 is positively continuum-wise expansive. Then M(/) φ 0
and ifY(z M(/), then f is two-sided strongly chaotic on Y in the sense of
Ruelle-Takens.

Proof. Consider the shift map / : (X, /) -> (X, /) of /. By (4.1), dim(X, /) >
0 and the shift map / is (positively) continuum-wise expansive. By (3.1),
M ( / ) φ 0. Note that M(/) - {PO ( ? ) | Ϋ € M ( / ) } , because that pn

/ = / • pn and y = (po ( ? ) , / |po ( ? ) ) . Let Y G M(/). Then (Y, f\Y) E

Mi 7) By (3.1), / is two-sided strongly chaotic in the sense of Ruelle-
Takens, and hence / is two-sided strongly chaotic on Y in the sense of
Ruelle-Takens. D

By a graph, we mean a compact 1-dimensional polyhedron which has no
isolated point. We may not assume that it is connected. By a subgraph of
G, we mean a 1-dimensional closed subset of the graph G which is homeo-
morphic to a graph.

Let / : X —> X be a map of a compactum X. For each x G X, put

ω(x) = ίy G XI there is a subsequence {/n^(^)}^! of {fn(x)}<^Lι such

that lim^oo /n ( i )(x) = y\. Then ω(x) is called the ωΊimit set of x. Note
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that if p is a periodic point of /, then p £ ω(p). A point x G X is called
non-wandering for f if each neighborhood U of #, there exists n > 1 such
that f~n(U) Π U φ 0. Note that a point x G X is non-wandering for / if and
only if for each neighborhood U of x and every JV > 1, there is n > N such
that /~n(?7) Π 17 ^ 0 (see [26, Theorem 5.7]).

The non-wandering set Ω(/) /or / consists of all the points that are
non-wandering. Note that ω(x) and Ω(x) are /-invariant closed subsets
of X, Ω(/) contains all periodic points of /, ω(x) C Ω(/) and Ίΐ f : X —> X
is a homeomorphism, then Ω(/) = Ω(/~1).

Lemma 4.3 ([14, (3.9)]). Let / : G -> G be a map of a graph G. Then
the following are equivalent.

(1) f is sensitive.

(2) / is positively continuum-wise expansive.

Now, we prove the following theorem which implies that sensitive maps
of graphs induce two-sided strong chaos in the sense of Devaney.

Theorem 4.4. Let f : G -> G be a map of a graph G which is sensitive.
Then M(/) φ 0 and M(/) = {G{\ 1 < i < N} is a finite set of subgraphs of
G satisfying the following properties:

(a) // i φ j , then d Π Gj is empty or a finite set.
(b) For each i, / is two-sided stronglϊ) chaotic on Gι in the sense of De-

vaney.
(c) If we put L = Cl {G - UgxGi) andF(f) = {x e L\ fn{x) G L for each

n > 0}, then F(f) is a closed subset of L with f(F(f)) C F(/), dimF(/) <
0. // x G L — F(f), then there is a neighborhood U of x in G and a natural
number n(x) > 1 such that fn(U) C U^LλGi for each n > n(#), and hence
Ω(/) D U^d and L Π Ω(/) C F{f).

Proof. Consider the shift map / : (GJ) -> (GJ) and put X = (GJ).
Note that / is a positively continuum-wise expansive homeomorphism and
dimX > 0. By (4.2), we see that M(/) φ 0 and if Y G M(/), / is two-sided
strongly chaotic in the sense of Ruelle-Takens. Note that p0 ( M ( / Π =

M(/). By (3.3), there is a positive number δ > 0 such that if Ϋ G M ( / )

and C is a component of Y, then diamC > δ. Let Ϋx G M (fj .

Now, we show that Yλ has finite components. Suppose, on the contrary,
that Ϋι has infinite components. Since G is a (finite) graph, for each λ > 0
there is a natural number n(λ) > 1 such that if a family {i^, F 2, . , ̂ n(λ)}
of connected sets of G satisfies that Fi Π Fj is a finite set for i φ j , then there
is some i such that diamFi < λ. Choose λ > 0 and a natural number k > 0
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such that if D is a subset of X and diamp*. (Dj < λ, then diam D < δ. Since

Yi has infinite components, we can choose a natural number N > k and com-

ponents Gi, G 2,. . . , Cn{x) of Ϋλ such that pN [C^j ,pN \C2J ,.. ,PΛΓ (^n(λ))

are mutually disjoint. Hence there is some j such that diam pN [CΛ < λ.

Since pJ~{N~k) (c , ) = Piv (c, ) and /-(*-*) ( c ^ is a component of fx,

then we see that d iam/"^"^ ( ^ ) ^ '̂ which is a contradiction. Hence Yi
has finite components.

Put Gi = po (Yi) (= pn (Yi)) - Then Gλ is a graph, Gλ G M(/) and the
diameters of components of G\ are larger than some λ0 > 0, because that
the diameters of components of Yi is > δ. By (4.2), / is two-sided strongly
chaotic on Gx in the sense of Ruelle-Takens. Note that Ϋx — (Gi,/|Gi). If
Y2 G M ί / J and Y2 φ Yi, then diml^ > 0 and / is (two-sided strongly)
chaotic on Ϋ2 in the sense of Ruelle-Takens. By the same argument as
above, we see that G2 = Po (Y2) has finite components whose diameters
are bigger than λ0 > 0. Note that G\ Π G2 does not contain a nonempty
open set, because that Gγ φ G2 and f\Gi : Gi —> Gi (i = 1,2) is one-sided
topologically transitive. Hence Gi ΠG2 is empty or a finite set. By using this
argument, we can see that Mf/J is finite. Let M ( / J = lY{\ 1 < i < N\

and p0 (ΫΛ = Gi. Then Gx, G 2 , . . . , GN satisfies the property (a).

Next, for each 0 < i < iV, we show that the property (b) is satisfied. By
(4.5) below, we can see that the property (b) is satisfied.

Finally, we shall show that property (c) is satisfied. Let x £ L — F(f).
Then there is a natural number n(x) > 1 such that fn^(x) G G — L. Choose
a neighborhood U of x in G such that fn^(U) C G - L C U^G*. Since
U^ 1 G i is /-invariant, we see that fn(U) C U ^ G j for each n > n(x).

Next, we show dimF(/) < 0. Let A be an arc in L. Then there is a natural
number n > 1 such that fn{A) Π(G — L) φ 0. Suppose, on the contrary, that
fn(A) C L for each n > 1. Put ω(A) = U{B e C(L)\ there is a subsequence
{fn[i){Λ)} of {fn{A)}™=1 such that l im^^ fn(ι)(A) = B). Then we see that
ω(A) is a closed subset of L, f(ω(A)) — ω(A) anddimα;(^4) > 0. By (4.1), we
can choose another element YN+1 G M ί /] such that YN+I C (ω(A), f\ω(A)).

This implies that ΫN+I φ Ϋ% (1 < i < N). This is a contradiction. Hence the
set F(f) contains no arc. Clearly, dimF(/) < 0. By (b), the set P(/|G;)
of periodic points of f\Gi : G{ -> Gi is dense in Gi for each i — 1,2,... , N
(see (4.5)). Hence U ^ G ; = U^1Gί(P(/|G i)) C Ω(/). This completes the
proof. D

Theorem 4.5. Suppose that f : G —ϊ G is a map of a graph G. Then the
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following are equivalent.

(1) / is chaotic (on G) in the sense of Ruelle-Takens.
(2) / is chaotic (on G) in the sense of Deυaney.
(3) / is two-sided strongly chaotic (on G) in the sense of Deυaney.

Proof. We show that (1) implies (2). Suppose that / is sensitive and one-

sided topologically transitive. We must show that the set of periodic points

of / is dense in G. Let U be a nonempty open set of G. Choose an arc

[α, b] in U such that (α, b) (= [α, b] — {α, b}) is an open set of G, because

that G is a graph. Since / is two-sided topologically transitive, we choose

a point x — (α;n)£L0 6 (G,/) such that {xn\n > 0} is dense in G. Since

{:rn |n > i} is dense in G for each i > 0, we may assume that x0 G (α,ί>).

By (2.7), we can choose a small nondegenerate subcontinuum A of (G,/)

containing x such that limn_>oo diam/~ n (A) — 0 and p0 (Άj C (α, b). Note

that p0 (AJ is a nondegenerate arc, because that / is sensitive. Note that

lirtin-^oo diam/~ n (AJ — 0 implies that limn^oo diamp n (Aj = 0. Since

{xn\n > i} is dense in G, we can choose a point xN such that xN E

Int (p0 (Aj J . Also, moreover, we may assume that p^ (Aj C Int (p0 (Aj J .

Put [α0,60] = p0 (Λj and [aN, bN] — PN [AJ . Hence we see that fN ([aN, bN})

= [α0,6o] a n d [α v̂, 6^] C [α0,6o] This implies that we can choose a point p in

[OΛΓ, 6AΓ] such that fN(p) — p. Therefore the set of periodic points of / is dense

in G, which implies that / is chaotic in the sense of Devaney. The rest of

the proof follows from Proposition (4.2), because that M(/) = {G}. D

Corollary 4.6. Let f : G —» G be a map of a graph G that is sensitive,

and let f : (G,/) -± (GJ) be the shift map of f and X = (GJ). Then

M ί / j — JYi,Y^,... ,Y/v| is nonempty and a finite set and the following

conditions are satisfied:

(a) Each Ϋι has finite nondegenerate components, Ϋι ΠΫj (i φ j) is empty
or a finite set whose elements are periodic points of f.

(b) / is two-sided strongly chaotic on Yi (1 < i < N) in the sense of
Devaney.

(c) There is a closed subset F (f) in Cl (x - U^Ϋλ such that dimF (Ά

< 0 and F (j) is f-invariant and if any x G X - ((u^Y*) UF^/JjΓ

and any ε > 0, then there is a neighborhood U of x in X and a natural

number n(ε) > 1 such that fn (Uj is contained in the ε-neighborhood of

U^Yi in X for each n > n(ε), and hence Ω (/) D U^Y^ and Ω (/) Π
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Proof. Let G{ (1 < i < N) be the subgraphs as in (4.4). Put Ϋ{ = (G;,/|G;)
for each i.Iΐiφ j , then YiΠYj = (Gi Π Gj, /|G» Π Ĝ  ) and G{ Π G^ is empty
or a finite set. Note that f(G{ΠG,) C ^ n G j . If G*ΠG^ φ 0, we can find a
natural number k such that for each n> k, fn{Gi ΠGj) = fk{Gi ΠGj). Note
that (G4 Π G i5 /|G< Π G, ) - (fk(Gτ n G, ), /1/^GijΊ G,)) and / |/*(G, n GJ
is bijective. Hence we see that each point of ϊ^ Π 1̂  is a periodic point of /.

Put F(j) = (F(f)J\{F(f))), where F(f) is the set as in (4.4). Then the

set F (jj satisfies the desired properties. This completes the proof. D

Corollary 4.7. Suppose that f : G -* G is a map of a graph G which is
sensitive. Then the following are equivalent.

(1) The set of periodic points of f is dense in G.
(2) Ω(/) = G.
(3)G = U{Gι\Gi€M(f)}.

Hence f is chaotic in the sense of Devaney if and only z/M(/) = {G}.

Proof. By the definitions, we can easily see that (1) implies (2). We show
that (2) implies (3). Let G{ (1 < i < N) be the subgraphs as in (4.4). Let
L = Cl(G- U?=1Gi) and F(f) be as in (c) of (4.4). Suppose that L φ 0.
Note that dimF(/) < 0, hence L - F(f) φ 0. By (c) of (4.4), we see that
each point of L — F(f) is wandering for /. This is a contradiction. Hence
G = U^Gi . The rest of the proof follows from (4.4). D

Corollary 4.8. Let f : G -> G be a map of a graph G which is sensitive.
Then

(1) dimα (a ) > 0 if and only if ω(x) G M(/),
(2) the set W — {x £ G\ dimα (x) > 0} is Gs-dense G, and
(3) the set W = {x G G\ the orbit O(x) = {fn(x)\n > 0} is a finite

set} is Fσ -dense in G.

Proof. Suppose that M(/) = {Gτ\ 1 < i < N}. Note that ω(x) is an /-
invariant closed set.

We prove (1). Suppose that dimω(rc) > 0. If x <E G{ (1 < i < N), then
ω(x) C G{. Since we can choose a subgraph H in ω(x) such that H G M(/)
(see the proof of (4.4)), we see that ω(x) — Gi. If x G L, then x is not
contained in F(/), because that dimF(f) < 0. Hence there is n > 1 such
that fn(x) G Gi for some i. Hence ω(x) — ω(fn(x)) = Gτ. The converse
assertion is trivial.

Next, we prove (2). Let {Bι

k}™=1 be an open base of Gi. Put Wι —
Πfcii U^! f-j (Bl) for each i. Then each Wt is Gδ. Then W = U^W, is
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also Gδ. We show that W is dense in G. Note that {x G G{\ dimα (^) > 0,
i.e., {fn(x)\ n > 0} is dense in G }̂ is dense in Gi. If U is a nonempty
open set of L, then we can choose an arc A in U such that 4̂ Π -F(/) = 0,
because that dim F(f) < 0. By (c) of (4.4), we can choose a point y in A
such that dimω(y) > 0, because that fn(A) has nonempty interior. Hence
W is G<r dense in G.

Finally, we shall prove (3). Let Pn — {x G G\ the cardinal number \O(x)\
of the set O(x) is < n}. Clearly, Pn is a closed subset of G and U ^ P * == W.
Hence W is F σ . Let U be a nonempty open set of G. If U Π U^G* 7̂  0,
[/ contains a periodic point p of /, and hence p G W. If 17 C L, by (4.4)
there is a nonempty open set V in U such that fn(V) C U^G* for some n.
Since / n (F) contains a periodic point of /, there is a point q G V such that
q G W. Hence W is Fσ-dense in G. D

Related to transitivity, sensitivity and the property that periodic points
are dense, the following are known.

Theorem 4.9 ([2]). If f : X -+ X is a map of a metric space X such
that X is an infinite set, f is one-sided topologically transitive and the set
of periodic points of f is dense, then f is sensitive, and hence f is chaotic
in the sense of Devaney.

Theorem 4.10 ([3]). If f : I -* I is a. map of the unit interval I — [0,1]
such that f is one-sided topologically transitive, then f is chaotic on I in the
sense of Devaney.

5. Topological Mixing and Sensitive Maps of Graphs.

In this section, furthermore we investigate more detailed dynamical proper-
ties of sensitive maps of graphs.

First, we prove the following.

Theorem 5.1. Suppose that f : G —)• G is a map of a graph G which is
sensitive and one-sided topologically transitive, i.e., f is chaotic in the sense
of Ruelle-Takens. Then there is a connected subgraph H of G and a natural
number N such that fN(H) = H, Ό^fn{H) = G, f*(H)nfj(H) is empty
or a finite set for 0 < i < j < N - 1, and fN\fn(H) : fn(H) -> fn{H) is
topologically mixing.

Proof. Note that for a sensitive map g : K —> K of a graph UT, a subgraph
K' (i.e., dim if' > 0) of K is a member of M{g) if and only if g{Kι) - K'
and g\K' : K' —> K1 is one-sided topologically transitive (see the proof of
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(4.4)). Also, by (4.4), if g : K —> K is a sensitive map of a graph if, then
there is a subgraph if' of M(g).

Put Kι = G and fx = /. Since / is one-sided topologically transitive,
ifi e M(fι). Suppose that there is a natural number n(l) > 2 and a proper
subgraph K of Kx (i.e., Kλ ^ if) such that /Γ(1)(if) = if. Then we can
choose a subgraph if2 of M ί fx

 x'J . Put /2 = /̂  |if2. Since if2 is a member

of Mί/^ X M and Kλ is a member of M(/χ), we see that

(1) for each 0 < % < j < ra(l) - 1, /ί(if2) Π f{\K2) is empty or a finite set
and Un=ofι{K2) — ifi5 because that the set U ^ Q " 1 fχ(K2) is /i-invariant.
If there is a natural number n(2) > 2 and a proper subgraph if of if2 such
that f2^

2\K) — if, we can continue this procedure. Hence we obtain a
sequence n(l), n(2),... , of natural numbers, a sequence /i, / 2 , . . . , of maps
and a sequence ifx ^ if2 2 , . . . , of subgraphs of G such that

(2) for each k — 1,2,... , if& is a member of M(/fc),
(3) for each 0 < i < j < n(k) — 1, fl

k{Kk+i) Πfΐ(Kk+1) is empty or a finite
set and U^=Q fk(Kk+ι) = if̂ .

Since (Kk,fk) is /^-invariant and / : (G, /) —» (G, /) is a continuum-wise
expansive homeomorphism , by (2.3) we can see that there is a positive
number λ > 0 such that for each k, diamif* > λ. Hence by (3), we see
that the above sequence Kx ^ if2 ^ , . . . , is a finite sequence. Therefore we
must reach the situation that there is a natural number r > 1 such that ifr

is a member of M(/^) for each n = 1,2,... , i.e., /"(if) φ K if n is any
natural number n > 1 and if is any proper subgraph of ifr. By using this
fact, we shall show that ifr is connected. If ifr is not connected, ifr has
finite components Cu G 2 , . . . , Ct. Then fl{Cι) — CΊ This is a contradiction.
Put H = Kr and g = fr : H -> iί. Note that gn : H -+ H is one-sided
topologically transitive for each n > 1. Since / r = fN\H for some natural
number N > 1, /^(iϊ) = ^(tf) = ^ , Z 4 ^ ) Φ fj(H) (0<i<j<N-l).
Since / : G —> G is one sided topologically transitive, we see that fι{H) Π
fj(H) is empty or a finite set for 0 < i < j < N - 1 and U^~Qfn(H) = G.
Next, we shall show that g : H -» H is topologically mixing. Consider the
shift map ίj : (iϊ, #) —> (ΐί, ̂ ) of g. Since 5 is sensitive, g is a continuum-wise
expansive homeomorphism of the continuum (H,g). By (4.5), we see that
the set of periodic points of g is dense in (H, g). Also, g satisfies the following
condition:

(#) For each natural number n > 1 and for any proper closed subset E
of (H,g) with dimE > 0, gn(E) φ E. D

By the following proposition (5.2) below, we see that g is topologically mix-
ing, which implies that g is topologically mixing.
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Proposition 5.2. Let f : X -» X be a continuum-wise expansive homeo-
morphism of a continuum X. Suppose that the set of periodic points of f is
dense in X and for each natural number n > 1 and each proper closed subset
E of X with άimE > 0, fn(E) φ E. Then f is topologically mixing.

Proof. Let U and V be nonempty open sets of X. Let p be a periodic point
of /. By (2.4), there is a nondegenerate subcontinuum A of X such that
limn_>oodiam/n(^4) = 0 or limn_^oodiam/~n(A) = 0. We may assume that
limn_>oo diamf~n(A) = 0. The other case is similarly proved.

Now, we shall prove that for each x G X, there is nondegenerate subcon-
tinuum Ax of X such that x G Ax and linv^oo diam/~n(AίC) = 0. Let ε
and δ be positive numbers as in (2.3). We may assume that diam ̂ 4 < δ/2.
Let x be any point of X. Since X G M(/), by the same way as in the
proof of (3.1), we see that for each k > 0, U%Lkf

n(A) is dense in X. By
(2.3), we can choose a sequence n(l) < n{2) < , of natural numbers
and subcontinua B{ (i = 1,2,3,...) of fn^(A) such that diam J3; = <5,
lim^oo d(x,Bi) = 0 and diam f~j(Bi) < ε for each 0 < j < n(i). We may
assume that lim^oo Bι = Ax. Then x G Ax and limn_>oodiam/~n(AE) = 0
(see (2.2)). Hence, we see that Vu(x;X) is a nondegenerate connected
set. Choose a periodic point p G V and let n0 be the period of p. Since
fj(V»{p',X)) = V"(/''(p);X) for 0 < j < n0 - 1, Cl(Vu(p(p);X)) is an
/n°-invariant set for 0 < j < n0 — 1. By the hypothesis, we see that X =
Cl(Vu{fj(p);X)) for each 0 < j < n0 - 1. For each 0 < j < n 0 - 1, choose
a point Vj of U Π V»ψ{p)\X). Then l i m ^ ^ / ' ^ - ί y , ) = /''(p) G p ( F ) .
Hence, for each 0 < j < n0 — 1, we can choose a natural number Nj > 1
such that if n > Nj, then /"n°n(%) G jP(F), i.e., f{~no'n)-j{yj) G F. Put
JNT; = Max{ΛΓ, | 0 < j < n0 - 1} and JV" = n0 iV' Suppose that n > ΛΓ".
Then put n = s n0 + j , where 0 < jί < n0 — 1. Then s - n0 + j > n0 - N1

implies that s > N'. Hence f~n(yj) = f{~n°'s)~j(yj) G V, which implies that
Π C/ ̂  0. Hence / : X -> X is topologically mixing. D

Combining (4.4) with (5.1), we obtain the following theorem.

Theorem 5.3 (Decomposition theorem of sensitive maps of graphs). Let
f : G —> G be a map of a graph G which is sensitive. Then M(/) φ 0 and
M(/) = {G\ 1 < i < N} is a finite set of subgraphs of G satisfying the
following properties:

(a) If i φ j , then G{ Π Gj is empty or a finite set.
(b) For each i, / is two-sided strongly chaotic on Gι in the sense of De-

vaney, and there exists a connected subgraph Hi of Gi and a natural number
n(i) > 1 such that Hi is fn^-invariant, fn{i)\fk(Hi) : /*(#*)
is topologically mixing for 0 < k < n(i) — 1 and Gi = u££o /



110 HISAO KATO

fk(Hi) Π fk'{Hi) (0<k <k' < n(i) - 1) is empty or a finite set.

(c) // we put L = Cl(G- U ^ G * ) and F(f) = {x e L\ fn{x) e L for
each n > 0}, then F(f) is a closed subset of L with f(F(f)) C F(f) and
dim F(f) < 0. If x E L — F(f), then there is a neighborhood U of x in G and
a natural number n(x) > 1 such that fn{U) C U ^ G * for each n > n(x). In
particular, Ω(/) D U ^ G , and L Π Ω(/) C F(f).

By (4.6), (5.3) and [16, (3.15) and (5.4)], we obtain the following theo-
rem.

Theorem 5.4^ Suppose that f : G —» G is a map of a graph G which is

sensitive. Let f : (G, /) —» (G, /) δe £Λe ̂ Λi/ί map o// and X — (G,/) . TΛen

M ί / j — <Y1?Y2,... ,YTV| is nonempty and a finite set, and the following

conditions are satified:

(a) Yi ΠYj (i φ j) is empty or a finite set of periodic points of f.

(b) / is two-sided strongly chaotic on Yi in the sense of Devaney, and

there is a continuum Zι in Yi and a natural number n(i) > 1 such that

/*W (Zi) = Zu \Jn

k

{XlJk (βi) = Ϋu fk (βi) Π /*' (βi) is empty or a finite

set of periodic points of f for 0 < k < k' < n(i) — 1, and fn^ fk [βλ :

fk (zΛ —> fk [zΛ is topologically mixing. In particular, Zι is a chaotic

continuum of f and hence Zi is an indecomposable continuum.

(c) There is a closed subset F (/) in Cl (x - U^x Y<) such that F (/)

is f -invariant, dimF (/) < 0 and ifxeX- ((u^Ϋλ U F (Ά] and any

ε > 0, there is a neighborhood U of x in X and a natural number n(ε) > 1

such that fn lU) is contained in the ε-neighborhood ofU^L^i in X for each

n > n(ε), and hence Ω (/) D U^f, and Ω (/) Π (Cl (x - U ^ f i ) ) C

F(ί).

Corollary 5.5. Let f : G —> G be a map of a connected graph G. Then f is
topologically mixing if and only if f is sensitive and one-sided topologically
transitive and the inverse limit (G, /) of f is indecomposable.

Theorem 5.6. Let f : G —> G be a map of a graph G which is sensitive.
Then there is a connected subgraph H of G and a natural number s > 1 such
that fs(H) = H and the shift map f of f is two-sided chaotic on almost all
Cantor sets of Z in the sense of Li-Yorke, where Z = (H,fs\H) C (GJS) =
(G,/) . Hence there exists an uncountable set Q of bisequence of f such that
Pn (G+) ^ a Cantor set of G and f is two-sided chaotic on Q in the sense of
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Li- Yorke.

To prove (5.6), we need the following notations. A subset of X is of the
first category if there are subset En of X such that E = \J^=1En^ and En

is nowhere dense, i.e., IntχCZ(En) = 0. A subset F of a space X is said
t o b e independent in R C Xn (n > 1) , if for e v e r y s y s t e m xlix2j... ,xn

of different points of i*1, the point (xux2)... ,xn) £ Fn never belongs to
R. In [18, Main theorem and Corolary 3], Kuratowski proved the following
theorem.

Theorem 5.7 (Kuratowski's Independent Theorem). If X is a complete
space and R C Xn is an Fσ-set of the first category, then the set of J(R)
of all compact subsets F of X independent in R is a dense Gs-set in 2X of
all compact subsets of X with the Hausdorff metric. Moreover, if X has no
isolated points, then almost all Cantor sets of X are independent in R.

A homeomorphism / : X —> X of a continuum X is continuum-wise
fully expansive [17] if for any ε > 0 and any η > 0, there is a natural
number N = ΛΓ(ε, η) > 1 such that if A is a nondegenerate subcontinuum
of X with diam A > η, then either cf#(/n(A),X) < ε for each n > N or
dH(f-n(A), X) < ε for each n > N holds. Note that for a map / : G -* G of
a connected graph G, / is topologically mixing if and only if the shift map
/ of / is continuum-wise fully expansive (see [17, (3.11)]).

Proposition 5.8. Let f : X —» X be a homeomorphism of a compactum
X and Z an f-invariant nondegenerate subcontinuum of X. If f\Z : Z -> Z
is continuum-wise fully expansive, then f is two-sided chaotic on almost all
Cantor sets of Z in the sense of Li- Yorke.

Proof. We may assume that there is a subcontinuum A of Z such that
limn-ίoo diam/~n(,4) = 0 (see (2.5)). By [16, (3.15)], Z is a chaotic contin-
uum of f\Z with respect to σ = u. Let r > 0 be a positive number as in the
definition of chaotic continuum. Consider the following sets.

Rι = {(x,y) £Zx Z|limsupn_o od(/-n(x),/-n(y)) < τ/2} ,
#2 = {(*,y) € Z x Z|liminfn_κ s od(/-n(x),/-n(y)) > 0} ,
Pu = {x £ Z\ there is a periodic point of / such that
l imsu P l w o o <*(/-"(*),/-») < τ/5}.

Since Z is a chaotic continuum of f\Z with respect to ΪX, by the proof of
[16, (4.1)], we see that #?, /?£, Z x Pu and P w x Z are Fσ-sets of the first
category.

Put diam Z — τ' > 0. Similarly, consider the sets:

Λί = {(x,y) EZx Z | l i m s u P ί W 0 O d ( r (*),/"(</)) < τ'/3} ,
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0},
Ps — {x E Z\ there is a periodic point p of / such that

By the same way as in the proof of [16, (4.1)], we see that R{, R^ Ps x Z
and Z x Ps are Fσ-sets. Since Z is a chaotic continuum of / with respect to
σ — u and by the condition (i) of the definition of chaotic continuum, we see
that for each z G Z, there is a nondegenerate subcontinuum Az of Z such
that z £ Az and lim^oo diam/~n(^4z) = 0. Since limn_^oo fn(Az) = Z, by
the argument as before, for each x E X and each nonempty open set U of
Z, there exists a point y E U such that liminfn_>oocί(/n(a;),/n(y)) > τ'/3,
i.e., f\Z : Z -» Z is strongly sensitive. This implies that R{ is of the first
category in Z x Z. Next, we shall show that R^ is of the first category in
Z x Z. Let (#, y) e Z x Z. Choose a small nondegenerate subcontinuum Ay

of Z such that y e Ay and linv+oo diam/~~n(A2/) = 0. Note that for each
nondegenerate subcontinuum B of Ay, limn_^oo d(/n(y), fn(B)) — 0, because
that limn_^oo f

n(B) = Z. Hence we can choose a point y' in Ay such that
liminf^oo d(fn(x), fn(y')) = 0. This implies that R% is of the first category
in Z x Z. Also, by the similar way as in the proof of [16, (4.1)], we see that
Ps x Z and Z x Ps are of the first category in Z x Z.

Consider the set in Z x Z :

R = R^UR^U(PuxZ)U{Zx Pu) UR{URS

2U {Ps xZ)U(Zx Ps).

Then R is an Fσ-set of the first category in Z x Z. Note that if (#, y) 0 ϋ ,
then

(1) l i m s u p ^ d(f-n(x), f-n(y)) > r/2, and

(2) liminfn_o od(/-(α:),/-(y)) - 0 = l i m i n f ^ d(fn(x)Jn(y)),
(3) l i m s u p ^ <*(/-*(*), f-n(p)) > r/5, and

limsupn_>oo d(fn(x), fn(y)) > τ'/5 for each periodic point p of /.

By Kuratowski's independent theorem, / is two-sided chaotic on almost all
Cantor sets of Z in the sense of Li-Yorke. This completes the proof. D

Proof of Theorem 5.6. By (5.3), there is a connected subgraph H of G
and a natural number s > 1 such that fs(H) = H and fs\H : H -> H is
topologically mixing. Put g = fs. Then (H,g\H) C (G,g) = (GJ). Put
X = (G,g) and Z = (if,#|iϊ), and <?|Z : Z —> Z is a continuum-wise fully
expansive. By (5.8), we see that g is two-sided chaotic on almost all Cantor
sets of Z in the sense of Li-Yorke. We may assume that Z C (G,f). Then
we can easily see that / is two-sided chaotic on almost all Cantor sets on Z
in the sense of Li-Yorke. Also, if / is two-sided chaotic on a Cantor set C
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in the sense of Li-Yorke, then pn\C : C —ϊ pn(C) is a homeomorphism. This
completes the proof. •

Now, we consider the case that G is the unit interval / = [0,1]. By (5.3),
we obtain the following.

Corollary 5.9. // a map f : I -> I is sesitive, then M(/) φ 0 and
M(/) = {Gi,... ,Gτv} is a finite set satisfying the following properties:

(a) If iφ j , then Gi Π Gj is empty or a finite set of periodic points of f.
(b) For each 1 < i < JV, / is two-sided strongly chaotic on Gi in the sense

of Devaney, and if the cardinality of the set of components of Gi is N(i),
then one of the following two conditions holds:

(1) For each component C of Gi, fN^\C : C -> C is topologically
mixing.

(2) For each component C of Gii there is a subinterval J of C such that
J U fN{i)(J) = C, J Π fN{i)(J) is a one point set of a periodic point of f
whose period is N(i), f2N^\j) = J, and

f2.N(i)

is topologically mixing.
(c) There is a closed subset F(f) ofL = Cl(I- U^d) with f(F(f)) C

F(f) and dimF(f) < 0 such that if x G L — F(f), then there is a neighbor-
hood U of x in I and a natural number n(x) such that fn(U) G U^Gi for
each n>n(x).

Proof. Let d (1 < i < N) be the subgraphs as in (5.3). If <7< Π Gj (i φ j)
is nonempty, then Gi Π Gj is a set of periodic points of /, because that the
total space / is an arc and hence f\G{Γ\ Gj : Gi Π Gj —>- dΠ Gj is injective
and hence bijective. For each i, there is a connected subgraph Hi C C and
a natural number n(i) > 1 as in (5.3). Consider the map fN^\C : C -> C.
Since C is an interval, there is a fixed point p of fN^\ i.e., p is a periodic
point of / with period N(i). Since C = U™^fk'N^(Hi), we may assume
that p G Hi C C. Put Hi = J - [α,6]. If p G Int c J, then /"«(./) = J.
Then J = a If p 0 Intσ J, there is 1 < jfe such that p G fkN{i){J). Put
jι = fk.N(i)(jy T h e n w e g e e t h a t ^JV«)(J u j ' ) = j u j ' 5 which implies

that JU Jf = C. Hence we see that A; = 1. Then C = J U fN(i)(J), and
JΠ /"W(J) = {p}. Hence f2N^{J) = J. Π

6. Examples.

In this section, we give some examples which are related to the results ob-
tained in the previous sections.
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Example 6.1. In (3.1), we can not conclude that / (or / - 1 ) is chaotic
on some closed subset of X in the sense of Devaney. Let σ : M —> M
be the shift map as in [7, 12.39 Theorem]. Then dimM = 0, σ is an
expansive homeomorphism and there are no periodic points of σ in M. Let
g : Y -> Y be any expansive homeomorphism of a compactum Y with
dimy > 0. Consider the product / = σ x g : M xY —> M xY. Then / is an
expansive homeomorphism of a compactum X = M x Y with dimX > 0,
but there are no periodic points of / in X. By (3.1), / is chaotic in the sense
of Ruelle-Takens, but / is chaotic on no closed subset of X in the sense of
Devaney. Also, in (4.5), we can not omit the condition that G is a graph.

Example 6.2. In the statement of (3.1), we can not replace the condition
that / is continuum-wise expansive by the condition that / is sensitive. Let
S be the unit circle and / the unit interval. Let ra denote the rotation of
length 2πα on S. Put X — S x I. Define a homeomorphism / : X —)• X
by f{x,t) — (r t(x),t) for x G 5 and t G /. Then / is sensitive, but / is
not strongly sensitive on any closed subset. Of course, / is not continuum-
wise expansive. If t G / is an irrational number, then f\St:St^Stis
two-sided topologically transitive, but f\St: St -> St is not sensitive, where
St — {(χ,t)\x G S}. We see that there is no closed set Y of X such that / is
chaotic on Y in the sense of Ruelle-Takens. Also, this example implies that
in the statement of (4.4), we can not replace the condition that G is a graph
by the condition that G is a n-dimensional polyhedron (n > 2). Note that
the set of periodic points of / is dense in X.

Example 6.3. Let D — {0,1} and C — Ii^00<n<+00Dn^ where Dn — D

for each n. Let σ : C —ϊ C be the shift of C, i.e., σ((α n ) n ) = (α n_i) n .

Consider the cone X of C, i.e., X — (C x I)/{C x {0}) is obtained from

C x I by shrinking C x {0} to a point. Then X is called a Cantor fan.

Define a homeomorphism / : X —> X by f{[x,t]) = σ(x),\/t for each

x G C and t G /. Then / is strongly sensitive, but it is not continuum-wise

expansive. Note that there is no point x of X such that dim(Cl{fn(x)\ n =

0,zbl,±2,. . . })>0. Hence / is not one-sided topologically transitive on any

closed subset Y of X with dimF > 0. This implies that in the statement of

(4.4), we can not replace the condition that G is a graph by the condition

that G is a one-dimensional continuum.

Example 6.4. Let G = [0,2] and let / : G -> G be the map defined by

2-x

- 2

4 x

- 4

- 4 ,

a; -f- 8,

if

if

if

if

o<
1/2

1 <

3/2

X

<

X

<

<

X

<

X

1/2,

< i ,

3/2,

< 2 .
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Then / is sensitive and (G, /) is an indecomposable continuum, but / is not
one-sided topologically transitive. Hence / is not topologically mixing (see
(5.5)).

The author wishes to thank the referee for his helpful comments.
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