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COMMUTATORS AND INVARIANT DOMAINS FOR
SCHRODINGER PROPAGATORS

MIN-JEI HUANG

We present an operator-theoretic approach to the problem
of invariant domains for the Schrodinger evolution equation.
The results are applied to the Hamiltonian operators with
time-dependent potentials and electric fields.

1. Introduction.

This paper is concerned with the problem of invariant domains for the
Schrodinger evolution equation

(1) isolt) = Hio(d), () = o,

where H(t), t € R, is a family of self-adjoint operators acting on a Hilbert
space H.

It is known that under suitable conditions on H (t) (see e.g. Kato [4], Reed-
Simon [9] and Yajima [11]), there exists a unique unitary propagator U (¢, s)
on #H, and a dense subspace D of ‘H which is invariant under the propagator
so that for each ¢, € D, ¢(t) = U(t,s)p, is strongly differentiable and
satisfies (1).

The problem considered here has been studied by many authors; see Faris-
Lavine [1], Frohlich [2], Hunziker [3], Kuroda-Morita [5], Ozawa [6, 7],
Radin-Simon [8] and Wilcox [10]. Most of them dealt with the time-indepen-
dent case H(t) = H in which the propagator U(t, s) = exp [i(s — t)H] is given
by the usual one-parameter unitary group. In a recent paper [7], Ozawa
investigated the space-time behavior of U(t,s) for the Stark Hamiltonian
H(t) = -A+ E -z + V(z,t) on L*(R*,dr). By using perturbation tech-
niques and space-time estimates for the free propagator exp [it(—A + E - )],
Ozawa established several results on the invariance property and smoothing
effect for U(t, s) in certain weighted Sobolev spaces. For earlier related ré-
sults in the case E = 0, see Kuroda-Morita [5].

We denote the domain of an operator A by D(A), and if N is positive
and self-adjoint, we denote its form domain by Q(N). Given a positive self-
adjoint operator N, we are interested in conditions on H(t) for Q(N) or
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D(N*), k =1,2,..., to be an invariant subspace of U(t,s) for all t,s € R.
We study this problem in a general operator-theoretic setting in Section 2.
Our approach is based on the commutator theorems of Faris and Lavine [1]
and Frohlich [2]. In Section 3, we apply the abstract theorems of Section 2
to Hamiltonians of the form

H(t)=-A+E(t) -z + V(z,t)

with N = p?+ 2% or N = p? , where p is the momentum operator —iV. Our
results are related to some of those in [5, 7).

2. Abstract Theorems.

Let H(t), t € R, be a family of self-adjoint operators acting on a Hilbert
space H. Throughout this section, we will assume that (), D(H(t)) 2 D for
some dense subspace D of H , and that H(t) generates a unitary propagator
U(t,s) so that

i%U(t,s)w = H(t)U(t,s)p for all p € D.

We denote by B(H) the space of all bounded linear operators on H with the
usual operator norm || - ||. For a positive self-adjoint operator N on H and
€ > 0, we define N, = N(eN+1)~!. Note that N, € B(#) is positive and self-
adjoint. Concerning the invariance of the form domain Q(N) = D(N/2),
we prove:

Theorem 2.1. Let N be a positive self-adjoint operator so that
(i) D(N) €N, D(H(t)).
(ii) £i[H(t), N] < c(t)N for some c € L},,(R); that is,
+i {(H(t)o, No) — (N, H(t)p)} < c(t) {0, No) for all p € D(N).
Then U(t,s) [Q(N)] = Q(N) for all t,s.
Proof. Fix s and set p(t) = U(t, s)p for ¢ € H. Then we have for ¢ € D

(d/dt) (p(t), Nep(t)) = (p(t),4 [H(t), N] p(t))
= ((eN + 1)~ p(t),i [H(t), N] (eN + 1) (1)) .

The hypothesis (ii) now gives that

(d/dt) {p(t), Nep(t)) | < c(t) ((eN + 1) o(t), N(eN + 1) o(t))
< e(t) {p(t), Newp(t)) -

/s t c(u)du‘.

Integrating we obtain

(p(t), New(t)) < (o, Nep) exp
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Since D is dense in H and N, is bounded, this estimate holds for all ¢ € H.
Now let ¢ € Q(N). Taking € — 0, we find that ¢(t) € Q(N) with

t
INV(0)P <INVl exp | [ ofu)dul.
This shows that Q(N) is invariant under U(t,s). Since U(t,s)U(s,t) = I,
we conclude that U(t,s) [Q(N)] = Q(N). O

Now for any positive integer k, we define (leaving aside the domain ques-
tions)

(2) Z*(t) = N*'[H(t),N]N~* and Z¥(t) = N*'[H(t),N]N*.

In our applications, these operators are defined on certain dense subspaces
and extend to bounded operators on H. We also define

(ad N)H(t) = [N, H(t)] and (adN)"H(t) = [N, (ad N)" " H(®)] .

As a preparation for our next theorem and further applications, we prove
the following:

Lemma 2.2.

(a) ZE(t) = (eN+1)"F 520 (1) (eN) ZF3 (2). Inparticular if Z1(t),. ..,
Z*(t) € B(H), then ZX(t) € B(H) and | ZF(1)]| < 5% (51247 (@)1

(b) {(ad N)*H(t)} N+ = Sho5 (=1)+1 (1) 24 (1),

Proof. Part (a) is obvious for ¥ = 1. The general case follows by induction
on k:

ZE(t) = NZE)N
a2 (k-1 ke
= N,(eN +1) < > (eN) Z*I(t)N*
( 1) (eN)jNZk"j(t)N“l(l + €N)
= (eN+1)"" <k N 1) {(eN)' 2513 (8) + (eN) T 250 (1)}

J
) (eN)' Z¥1-3 (1)
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where we have used the identity ('C Y+ (f::) = (f) The last statement of

part (a) follows from the fact that || (e NV + l)_k(eN)fH <lfor0<j<k-1.
Part (b) can also be proven by an induction argument. O

Theorem 2.3. Let N be a positive self-adjoint operator, and define Z7(t)
as in (2). Suppose that Zi(t) € B(H) with ||Z7(-)|| € Lj,.(R) for each j =
1,2,...,k. Then U(t,s) [D(N*)] = D(N*) for all t,s.

Proof. As in the proof of Theorem 2.1, set ¢(t) = U(t, s)p for ¢ € H. Then
we have for ¢ € D

(d/dt) (NFo(t), NFo(t)) = (p(t),i [H(t), N2*] (1))
—zzw V! [H(t), N] N7 (1))
k—1
=2Im Z (NF7V[H(t), NJ Nl (t), N o(t))

where we have used

2k—1
[A4,B*] =" B[A,B]B** 7"

=0

Since Z7(t) is bounded and ||Z7(-)|| € L}, .(R) for 1 < j < k, Lemma 2.2

(a) implies that Z7(¢) is bounded for 1 < 7 < k and that 22;?:1 1ZI(t)] <

const. Zle 1Z7(t)|| = fr(t), where f € L}, (R) and is independent of €. It
follows that

(d/dt) IN* (1) 2] < 2 2 INE=37L[H (), N] N2 ()| [N*o(0)

S2ZHZ’“ TOIINEe@)I?

k( )HNfSO( .

Integrating we obtain

%/St fr(u)dul.

We can now pass to the same argument as in the proof of Theorem 2.1 to
conclude that U(t, s) [D(N*)] = D(N*). O

INFo()Il < [[NEell exp
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3. Applications.

In this section we want to give some applications of the results of Section 2
to the Schrodinger equation

(3) 2ol = HOplt),  o(s) = o

where H(t) is the time-dependent Hamiltonian acting on the Hilbert space
H = L*(R™,dxz).
We first consider Hamiltonians of the form

H(t) = -A+ E(t) -z + V(z,1).

We will restrict attention to electric fields E(t) : R — R” and potentials
V(z,t) : R* x R — R obeying :

(i)  E(t) is differentiable.
(i) |V.V(z,t)] < f(t)(Jz] +1) for some continuous function f.
(iii) the mapping ¢+ (z® +1)7'%Y(z,t) € L°(R",dz) is continuous.

As for N, we take N = p? + 22, where p = —iV. Note that the operator
N > 1 and is self-adjoint on D(N) = D(p?) N D(z?). By Theorem 4 of
Faris-Lavine [1], condition (ii) implies that H(t) is essentially self-adjoint
on S(R"), the space of C*-functions on R” rapidly decreasing at infinity,
with domain D(H (t)) 2 D(N). We remark that by the construction of the
form domain, Q(N) = D(|p|) N D(|z]). Also, one can prove that D(N*) =
D(p?*) N D(z?*) by integration by parts.

Given two Banach spaces X and )Y, we denote by B(X,)) the space
of all bounded linear operators with domain X and range in Y. For a

multi-index o = (a4, ...,a,), where each ¢; is a nonnegative integer, and
z = (Z1,...,Z,) ER*, weput o] = oy + -+ + ap, 2% = 27"+ 2% and
Ve = (&) = (5%)01 ...(52_".)“". Let B™(R") be the space of all m-

times continuously differentiable functions ¢ on R* with bounded derivatives
(£)*p for 0 < |a| < m. Our result is:

Theorem 3.1. Let H(t) = —A + E(t) - ¢ + V(z,t), where E(t) and V(z,t)
obey conditions (i)-(iii) above, and let N = p*? + z2. Then there ezists a
unique unitary propagator U(t,s), t,s € R, so that:

(a) for each ¢, € D(N), w(t) = U(t,s)p, is strongly differentiable and
satisfies (3).

(b) U(t,s) leaves Q(N) and D(N) invariant.
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If, in addition, V(-,t) € B%(R") with |(Z)*V(z,)|lee € LL.(R) for
0 < |a| < 2k, then U(t, s) leaves D(N*) invariant.

Proof. To prove the existence of the propagator, we define for ¢ € D =
D(N), llgllo = llgll + Ip?¢ll + lz2¢]l. Then (D, - |p) forms a Banach
space which is continuously and densely embedded in H. From (ii), we have
[V(z,t)] < 3f(t)z® + f(t)|z| +|V(0,t)]. It follows by the continuity of £,V
and f that on any compact interval [ — T, T], there are constants a and b so
that |E(t) -z + V(z,t)| < az®+bforallt € [—T,T]. Since

Ip*ell* + llez®el* < [I(p* + cz®)ol|* + 2enlp]* for ¢ € D,

we see that if ¢ > a, then E(t) - z + V(z,t) is (p? + cz?)-bounded with
relative bound less than one. Thus, by the Kato-Rellich theorem, H (t) + cz®
is self-adjoint on D for all t € [ — T, T]. Now, take S(t) = H(t) + cz® + i.
Then S(t) € B(D,H) is an isomorphism with S(¢)H (¢)S(¢)~! = H(t)+G(¢),
where G(t) = 2ci(p -z + z - p)S(¢t)~" € B(H). By (i) and (iii), the mapping
t — S(t) € B(D,H) is strongly differentiable. Also, a simple computation
gives that

IG(t) = G(wWhsa < NGWlsaoIH(E) — H(u)llsmmS(w) ™ o)
|H(t) — H(w)llsm,n) < |E(t) — E(u)]
+I(=* + 1) [V(z, 1) = V(z,w)] L= ®nd0)-

Thus, by (i) and (iii), the mapping t — H(t) € B(D,H) and t — G(t) €
B(H) are norm continuous. It follows from a classical result of Kato ([4],
Theorem I) that there exists a unique unitary propagator U(t, s) leaving D
invariant so that (a) holds.

Next, we show that U(t,s) leaves Q(N) invariant. We have seen that

D(H(t)) 2 D(N) for all t. So by Theorem 2.1, it suffices to show that
+i[H(t), N] < c(t)N for some locally integrable function c(t). We compute

+i[H(t), N
= +i{[p*,2°] + [E(t) - z,p*] + [V(z,1),p°]}
=+{2(p-z+z-p)—-2E()-p—(p-V.V(z,1) + V.V (z,t) - p)}
<2(p* +2°) +p* + |[E®)]® +p° + V.V (z,1)]?
<{4+[EQ)P +4f()*} N

as required, where we have used condition (ii) and the fact that N > 1.

Finally, we prove the last statement of the theorem. Let

= L. (R, dt; B(H)).

loc
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By Theorem 2.3, it suffices to show that if V(-,t) € B2(R") with
1(Z)* V(2,)lloo € Liye(R) for 0 < |a] < 2k, then

Z?=N’"'[H(:),N]JN7 €T
for 1 < j < k. We prove this inductively. Let D = p-z + z-p be the dilation
operator. Since
Z'(t)=[H(t),N]N!
Y {D _B(t)-p—V.V(z,t)p+ %A,_.V(m,t)} N,

the case k = 1 follows easily from the closed graph theorem and the hy-
potheses on F and V. Now consider the case of general & > 2. By the
induction hypothesis, we have Z/ € I" for 1 < j < k — 1. So, we need
only prove that Z* € I'. By Lemma 2.2(b), it is sufficient to prove that

{(adN)’c H()} N-F e T. We compute on S(R"):

2(p* —z%) + E(t) -z + V.V (z,t) -z + A2V (z,1) }

(adN)* H(t) = 4{ ~ S (Va2l(@,t)) - pp; + V. (A, V(z,1)) - p

where we have used the following basic identities:

[N, D] = 4i(z® — p?), [N,E(t)-p] =2E(t) -z, [N,E(t)-z]=—-2%E(t)-p,
[p®, W (z)] = —2iVW - p— AW, [2?, VW (z) -p] = 2iVW -z,

[p*, VW (z) - p] = —2 i (Vgxﬁ) -pp; — V (AW) - p.

=1 i
By repeated application of these formulas, we find that (ad NV Y H(t) is a
linear combination of operators of the form:

p? — 2%(or D), E(t)-z (or E(t)-p) and [(%)aV(x,t)]zﬁp'y

where 0 < |a| < 2k, |B] < k/2 and |y| < k. Since z°p”N~* is bounded on
‘H so long as |B| < k and |y| < k, the hypotheses of E and V now imply that

{(ad N)*¥ H(-)} N~* € T. This completes the proof. a

Corollary 3.2. In Theorem 3.1, if V(-,t) is a C*™-function on R* with
bounded derivatives and ||(Z)*V (2, )l € Li,.(R) for alla # 0, then U (t, s)
leaves S(R™) invariant.

Proof. The corollary follows immediately from the fact that
S(R™) = NX, D(N*).
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O

In the remainder of this section, we want to give an application to Hamil-
tonians of the form

H(t) = =A+ V(z,1).
We will assume potentials V(z,t) : R* x R — R obeying:

(i) for each t,V(-,t) is A-bounded with relative bound less than one.
(ii) the mappingt— Z¥(z,t) € L>°(R",dz) is continuous.

Notice that condition (i) and the Kato-Rellich theorem imply that H(t) is
essentially self-adjoint on S(R") with domain D(H (t)) = D(A). Correspond-
ing to Theorem 3.1, we have:

Theorem 3.3. Let H(t) = —A+V(z,t), where V(z,t) obeys conditions (i)
and (ii) above. Then there is a unique unitary propagator U(t,s), t,s € R,
leaving D(A) invariant so that for each p; € D(A), (t) = U(t,s)ps is
strongly differentiable and satisfies (3). Moreover,

(a) If [V, V(z,t)| < f(t) for some continuous f, then U(t, s) leaves Q(—A)
wmuvariant.

(b) IF V(,t) € BARY) with |[(2)°V (2, )l € Lio(R) for 0 < |a] < 2k,
then U(t,s) leaves D(A¥) invariant.

Proof. The proof of the existence statement closely parallels the proof given
in Theorem 3.1 except that we choose D = D(A), S(t) = H(t)+i and define
lello = llell + llp*¢l| so that S(t)H(t)S(¢)~! = H(t). Then one proves that
the mapping t — S(t) € B(D,#) is strongly differentiable and that the
mapping t — H(t) € B(D,H) is norm continuous as before. To prove (a)
and (b), we take N = —A + 1. In case (a), since

+i[H(t),N] = F{p- V.V(z,t) + V.V (z,t) - p}
<P+ VLV (z, b)) < {1+ f(8)*} N,

Theorem 2.1 implies that U(t,s) leaves Q(N) = Q(—A) invariant. In
case (b), the computations similar to those used in Theorem 3.1 show that
(adN)*H(t) is a linear combination of operators of the form:

[(%)QV(m,t)] p?, where 0 < |a| < 2k and |y| < k. Thus by hypothesis,

we have

{(ad N)* H()} N7 € L, (R, dt; B(H)).

Again, following the proof of Theorem 3.1, we conclude that U(t,s) leaves
D(N*) = D(AF*) invariant. O
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