SHARING VALUES AND A PROBLEM DUE TO C.C. YANG

Xin-hou Hua

In this paper, we proved a unicity theorem for meromorphic functions with one sharing pair and a condition on deficiency. An example shows that the condition on deficiency is best possible. This result gives a general answer to the problem due to C.C.Yang (1977).

1. Introduction.

In this paper, by meromorphic function we always mean a function which meromorphic in the plane. Let $f(z)$ be meromorphic. We shall use the following standard notations in Nevanlinna theory:

$$
T(r, f), \quad m(r, f), \quad N(r, f), \ldots
$$

(see Gross [5]). We denote by $S(r, f)$ any function satisfying

$$
S(r, f)=\circ\{T(r, f)\}
$$

as $r \rightarrow+\infty$, possibly outside a set of finite Lebesgue measure. A meromorphic function $a(z)$ is said to be a small function of f if

$$
T(r, a)=S(r, f)
$$

In this case, we define

$$
\delta(a, f)=1-\varlimsup_{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)}
$$

and $a(z)$ is said to be a deficient function of f if $\delta(a, f)>0$.
Let $g(z), a_{1}(z)$ and $a_{2}(z)$ be meromorphic functions. If the two functions $f(z)-a_{1}(z)$ and $g(z)-a_{2}(z)$ assume the same zeros with the same multiplicities, then we call that f and g share the pair $\left(a_{1}, a_{2}\right)$ CM. In particular, if $a_{1}=a_{2}=a$, then the word "the pair" is replaced by "the value" or "the function" provided that a is a constant or a is a function respectively (cf. Frank-Ohlenroth [4], Gundersen [6], etc.). In addition, if

$$
N\left(r,\left(f=a_{1}\right) \Delta\left(g=a_{2}\right)\right)=\min \{S(r, f), \quad S(r, g)\}
$$

then we say that f and g almost share the pair $\left(a_{1}, a_{2}\right)$ CM. Here, $N(r,(f=$ $\left.\left.a_{1}\right) \Delta\left(g=a_{2}\right)\right)$ is the counting function of those points which satisfy one of the following three cases: (i) $f=a_{1}$ but $g \neq a_{2}$; (ii) $f \neq a_{1}$ but $g=a_{2}$; (iii) $f=a_{1}$ and $g=a_{2}$ but the multiplicities are not the same.

In 1977, Yang [9] proved the following result.
Theorem A. Suppose that F is a family of the functions which are of the form $\alpha_{1}(z) e^{\mu(z)}+\alpha_{2}(z)$, where $\mu(z)$ is an entire functions with finite order, $\alpha_{j}(z)(j=1,2)$ are meromorphic functions of finite order, $\alpha_{1} \not \equiv 0$, $\alpha_{2} \not \equiv$ const., the order of $\alpha_{j}(j=1,2)$ is less than the order of μ. Let c_{1} and c_{2} be two distinct constants, and let $f \in F, g \in F$. If f and g share the two values c_{1} and $c_{2} C M$, then $f \equiv g$ or

$$
\left(f-\frac{c_{2}-c_{1} \lambda(z)}{1-\lambda(z)}\right)\left(g+\frac{c_{2}-c_{1} \lambda(z)}{1-\lambda(z)}\right)=-\frac{\left(c_{2}-c_{1}\right)^{2} \lambda(z)}{(1-\lambda(z))^{2}},
$$

where $\lambda(z)$ is a nonconstant meromorphic function.
Based on this result, Yang [9] proposed the following problem.
Yang's problem. Whether can we omit the restrictions on the order in the family F?

It is easy to see from the hypotheses of Theorem A that, if $f=\alpha_{1}(z) e^{\mu(z)}+$ $\alpha_{2}(z) \in F$ and $g=\alpha_{3}(z) e^{\nu(z)}+\alpha_{4}(z) \in F$, then $N\left(r, \frac{1}{f-\alpha_{2}}\right)=\circ\{T(r, f)\}$ and $N\left(r, \frac{1}{g-\alpha_{4}}\right)=\circ\{T(r, g)\}$. Thus

$$
\begin{align*}
& \delta\left(\alpha_{2}, f\right)=\delta\left(\alpha_{4}, g\right)=1 \tag{1}\\
& \delta(\infty, f)=\delta(\infty, f)=1
\end{align*}
$$

These observations lead to our main result.
Theorem 1. Let $f(z), g(z), a(z), b(z), \alpha(z)$ and $\beta(z)$ be meromorphic functions in the plane, where $a(z)$ and $\alpha(z)$ are small functions of $f, b(z)$ and $\beta(z)$ are small functions of $g(z), a(z) \not \equiv \alpha(z), b(z) \not \equiv \beta(z)$. Suppose that f and g share the pair $(a, b) C M$ and

$$
\begin{equation*}
\delta=\delta(\alpha, f)+\delta(\beta, g)+\delta(\infty, f)+\delta(\infty, g)>3 \tag{3}
\end{equation*}
$$

Then either

$$
\begin{equation*}
\frac{f-\alpha}{a-\alpha}=\frac{g-\beta}{b-\beta} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{f-\alpha}{a-\alpha} \frac{g-\beta}{b-\beta}=1 \tag{5}
\end{equation*}
$$

Remark 1. The number 3 in the inequality (3) is sharp.
For example, let P and Q be two nonzero polynomials, $f=e^{2 z}-Q e^{z}$, $g=\frac{e^{2 x}}{e^{z}+\frac{p}{Q}}$. Then one can check that f and g share the pair $(P, Q) \mathrm{CM}$ and

$$
\delta(0, f)+\delta(0, g)+\delta(\infty, f)+\delta(\infty, g)=\frac{1}{2}+1+1+\frac{1}{2}=3
$$

However, $\frac{f}{P} \not \equiv \frac{g}{Q}$ and $\frac{f}{P} \frac{g}{Q} \not \equiv 1$.
Remark 2. Note that Theorem A needs two shared values. However, in our theorem 1, we only need one shared pair.

Remark 3. The topic on unicity theorem concerning deficiency were studied by Ozawa [7], Ueda [8] etc. The case that f and g are entire functions and $a(z)=b(z)=1$ was considered by Yi [10].
Remark 4. From the proof of Theorem 1 we see that the word "share" can be replaced by "almost share".

As an application, we obtain the following
Corollary. The answer to Yang's problem is affirmative.

2. Some Symbols.

For the sake of convienence, we shall use some symbols introduced by Chuang [1] and Chuang-Hua [2].

For meromorphic function $f(z)$ and a point z, according as z is a pole of f or not, we denote by $\omega(f, z)$ the multiplicity of z or 0 and by $\bar{\omega}(f, z)$ the value 1 or 0 . For three meromorphic functions f, g and h, we divide the set of the poles of f and g on $\{|z| \leq r\}$ into five pairwise disjoint subsets as follows:

$$
\begin{aligned}
& V_{1}=: \quad\{z: \quad f(z) \neq \infty, \quad g(z)=\infty\}, \\
& V_{2}=: \quad\{z: \quad f(z)=\infty, \quad g(z) \neq \infty\}, \\
& V_{3}=: \quad\{z: \quad f(z)=\infty, \quad g(z)=\infty, \quad h(z)=\infty\}, \\
& V_{4}=: \quad\{z: \quad f(z)=\infty, \quad g(z)=\infty, \quad h(z) \neq 0, \infty\}, \\
& V_{5}=: \quad\{z: \quad f(z)=\infty, \quad g(z)=\infty, \quad h(z)=0\} .
\end{aligned}
$$

Furthermore, for each $j \in\{1, \ldots, 5\}$, we denote by $n_{j}(f)$ and $n_{j}(g)$ the number of the poles of f and g in the set V_{j} respectively, with due count of multiplicity. The corresponding counting functions are denoted by $N_{j}(f)$ and $N_{j}(g)$ respectively. Obviously,

$$
\begin{align*}
& N(r, f)=N_{2}(f)+N_{3}(f)+N_{4}(f)+N_{5}(f) \tag{6}\\
& N(r, g)=N_{1}(g)+N_{3}(g)+N_{4}(g)+N_{5}(g) \tag{7}
\end{align*}
$$

3. One Basic Lemma.

For the proof of our results, we need the following lemma which can be found in Chuang-Yang [3, p. 39] or Gross [5, pp. 70-73].

Lemma 1. Let $f_{j}(j=1, \ldots, n \geq 2)$ be n linearly independent meromorphic functions. If $f_{1}+\ldots+f_{n} \equiv 1$, then we have

$$
\begin{aligned}
T\left(r, f_{1}\right) \leq & \sum_{j=1}^{n} N\left(r, \frac{1}{f_{j}}\right)+N(r, W)-N\left(r, \frac{1}{W}\right) \\
& -\sum_{j=2}^{n} N\left(r, f_{j}\right)+S\left(r, f_{1}\right)+\ldots+S\left(r, f_{n}\right)
\end{aligned}
$$

where $W=W(z)$ is the Wronskian of f_{1}, \ldots, f_{n}.

4. Proof of Theorem 1.

Let

$$
\begin{aligned}
& F_{1}=:\{z: a(z)=\infty\} \cup\{z: b(z)=\infty\} \cup\{z: \alpha(z)=\infty\} \cup\{z: \beta(z)=\infty\} \\
& F_{2}=:\{z: a(z)=\alpha(z)\} \cup\{z: b(z)=\beta(z)\}
\end{aligned}
$$

Set

$$
F=: F_{1} \cup F_{2}
$$

the corresponding counting function is denoted by $N_{F}(r)$. Put

$$
\begin{equation*}
h(z)=: \quad \frac{f(z)-a(z)}{g(z)-b(z)} \tag{8}
\end{equation*}
$$

Since $a(z)$ and $b(z)$ are small functions of f and g respectively, we know that $h(z) \not \equiv 0, \infty$. Let z_{o} be a pole of h with $z_{o} \notin F$. Since f and g share the
pair (a, b) CM, we have $z_{o} \in V_{2} \cup V_{3}$. If $z_{o} \in V_{2}$, then $\omega\left(h, z_{o}\right)=\omega\left(f, z_{o}\right)$; If $z_{o} \in V_{3}$, then $\omega\left(h, z_{o}\right)=\omega\left(f, z_{o}\right)-\omega\left(g, z_{a}\right)$. Thus

$$
\begin{equation*}
N_{2}(f)+N_{3}(f)-N_{3}(g)-N_{F}(r) \leq N(r, h) \leq N_{2}(f)+N_{3}(f)-N_{3}(g)+N_{F}(r) \tag{9}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
N\left(r, \frac{1}{h}\right) \leq N_{1}(g)+N_{5}(g)-N_{5}(f)+N_{F}(r) \tag{10}
\end{equation*}
$$

Let

$$
f_{1}=: \frac{f-\alpha}{a-\alpha}, \quad f_{2}=:-\frac{g-\beta}{a-\alpha} h, \quad f_{3}=: \frac{b-\beta}{a-\alpha} h
$$

Then

$$
\begin{equation*}
N\left(r, \frac{1}{f_{1}}\right) \leq N\left(r, \frac{1}{f-\alpha}\right)+N_{F}(r) \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
N\left(r, \frac{1}{f_{3}}\right) \leq N\left(r, \frac{1}{h}\right)+N_{F}(r) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
N(r, h)-N_{F}(r) \leq N\left(r, f_{3}\right) \leq N(r, h)+N_{F}(r) \tag{13}
\end{equation*}
$$

From (8) it is easy to see that any zero of h which is not in the set F is not a zero of f_{2}. Thus

$$
\begin{equation*}
N\left(r, \frac{1}{f_{2}}\right) \leq N\left(r, \frac{1}{g-\beta}\right)+N_{F}(r) \tag{14}
\end{equation*}
$$

Now for any pole z_{o} of f_{2} with $z_{o} \notin F$, we know that z_{o} is a pole of g or h. If $z_{o} \in V_{1}$, then $\omega\left(g, z_{o}\right)=\omega\left(\frac{1}{h}, z_{o}\right)$, and so, $\omega\left(f_{2}, z_{o}\right)=0$; If $z_{o} \in V_{2}$, then $\omega\left(f_{2}, z_{o}\right)=\omega\left(h, z_{o}\right)=\omega\left(f, z_{o}\right)$; If $z_{o} \in V_{3}$, then $\omega\left(h, z_{o}\right)=\omega\left(f, z_{o}\right)-\omega\left(g, z_{o}\right)$, and so, $\omega\left(f_{2}, z_{o}\right)=\omega\left(g, z_{o}\right)+\omega\left(h, z_{o}\right)=\omega\left(f, z_{o}\right)$; If $z_{o} \in V_{4}$, then $h\left(z_{o}\right) \neq 0, \infty$ and $\omega\left(f_{2}, z_{o}\right)=\omega\left(g, z_{o}\right)$; If $z_{o} \in V_{5}$, then $\omega\left(\frac{1}{h}, z_{o}\right)=\omega\left(g, z_{o}\right)-\omega\left(f, z_{o}\right)$ and $\omega\left(f_{2}, z_{o}\right)=\omega\left(g, z_{o}\right)-\omega\left(\frac{1}{h}, z_{o}\right)=\omega\left(f, z_{o}\right)$. Combining all these facts we get

$$
\begin{gather*}
N_{2}(f)+N_{3}(f)+N_{4}(g)+N_{5}(f)-N_{F}(r) \leq N\left(r, f_{2}\right) \tag{15}\\
\quad \leq N_{2}(f)+N_{3}(f)+N_{4}(g)+N_{5}(f)+N_{F}(r)
\end{gather*}
$$

Next we rewrite (8) in the form

$$
\begin{equation*}
f_{1}+f_{2}+f_{3}=1 \tag{16}
\end{equation*}
$$

Without loss of generality, we suppose that there exists a set I with infinite measure such that

$$
\begin{equation*}
T(r, g) \leq T(r, f), \quad r \in I \tag{17}
\end{equation*}
$$

(Otherwise, we only need to consider $T(r, g)$ instead of $T(r, f)$ in the following discussions.) Thus $N_{F}(r)=S(r, f), r \in I$.

In the sequel, we always let $r \in I$. Now we prove the following lemma.
Lemma 2. f_{1}, f_{2} and f_{3} are linearly dependent.
Proof. Suppose on the contrary that the f 's are linearly independent. By lemma 1,

$$
\begin{aligned}
T\left(r, f_{1}\right) \leq & \sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right)+N(r, W)-N\left(r, \frac{1}{W}\right)-N\left(r, f_{2}\right)-N\left(r, f_{3}\right) \\
& +S\left(r, f_{1}\right)+S\left(r, f_{2}\right)+S\left(r, f_{3}\right)
\end{aligned}
$$

where W is the Wronskian of f_{1}, f_{2}, f_{3}, i.e.,

$$
W=\left|\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right|=-\left|\begin{array}{ll}
f_{1}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right|
$$

by (16). Now by (10), (11), (12) and (14),

$$
\begin{aligned}
\sum_{j=1}^{3} N\left(r, \frac{1}{f_{j}}\right) \leq & N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{g-\beta}\right) \\
& +N_{1}(g)+N_{5}(g)-N_{5}(f)+4 N_{F}(r)
\end{aligned}
$$

In addition, by the inequalities on the left hand sides of (9), (13) and (15),

$$
N\left(r, f_{2}\right)+N\left(r, f_{3}\right) \geq 2 N_{2}(f)+2 N_{3}(f)+N_{4}(f)+N_{5}(f)-N_{3}(g)-3 N_{F}(r)
$$

Combining the three inequalities above we get

$$
\begin{aligned}
T\left(r, f_{1}\right) \leq & N(r, W)-N\left(r, \frac{1}{W}\right)+N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{g-\beta}\right) \\
& +N_{1}(g)+N_{3}(g)+N_{5}(g) \\
& -2 N_{2}(f)-2 N_{3}(f)-N_{4}(f)-2 N_{5}(f) \\
& +7 N_{F}(r)+S\left(r, f_{1}\right)+S\left(r, f_{2}\right)+S\left(r, f_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & N(r, W)-N\left(r, \frac{1}{W}\right)+N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{g-\beta}\right) \\
& +N_{1}(g)+N_{3}(g)+N_{4}(g)+N_{5}(g) \\
& -2 N_{2}(f)-2 N_{3}(f)-2 N_{4}(f)-2 N_{5}(f) \\
& -N_{4}(g)+N_{4}(f) \\
& +7 N_{F}(r)+S\left(r, f_{1}\right)+S\left(r, f_{2}\right)+S\left(r, f_{3}\right) .
\end{aligned}
$$

Substituting (6) and (7) into the above inequality and using the facts that

$$
\begin{gathered}
N_{4}(f)=N_{4}(g), \quad T(r, f)=T\left(r, f_{1}\right)+S(r, f), \\
T(r, a), \quad T(r, b), \quad T(r, \alpha), \quad T(r, \beta)=S(r, f), \\
N_{F}(r), \quad S\left(r, f_{j}\right)=S(r, f), \quad(j=1, \ldots, 3)
\end{gathered}
$$

we obtain

$$
\begin{gathered}
T(r, f) \leq N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{g-\beta}\right)+N(r, W)-N\left(r, \frac{1}{W}\right) \\
+N(r, g)-2 N(r, f)+S(r, f)
\end{gathered}
$$

Next we estimate the term $N(r, W)-N\left(r, \frac{1}{W}\right)$. Since

$$
\begin{equation*}
W=-\left(f_{1}^{\prime} f_{3}^{\prime \prime}-f_{1}^{\prime \prime} f_{3}^{\prime}\right) \tag{19}
\end{equation*}
$$

from the expressions of f_{1} and f_{3} we see that the poles of W only occur at the poles of f and the points in F. Let z_{0} be a pole of f with $z_{0} \notin F$.

If $z_{o} \in V_{2}$, then near $z=z_{0}$,
$f_{1}=\frac{1}{\left(z-z_{0}\right)^{\omega\left(f, z_{0}\right)}}\left\{x+\bigcirc\left(z-z_{0}\right)\right\}, \quad f_{3}=\frac{1}{\left(z-z_{0}\right)^{\omega\left(f, z_{0}\right)}}\left\{y+\bigcirc\left(z-z_{0}\right)\right\}$,
where x and y are nonzero constants. If $\omega\left(f, z_{0}\right) \geq 2$, then

$$
\begin{aligned}
& f_{1}^{\prime} f_{3}^{\prime \prime}=\frac{1}{\left(z-z_{0}\right)^{2 \omega\left(f, z_{0}\right)+3}}\left\{-\omega\left(f, z_{0}\right)^{2}\left(\omega\left(f, z_{0}\right)+1\right) x y+\bigcirc\left(z-z_{0}\right)\right\} \\
& f_{1}^{\prime \prime} f_{3}^{\prime}=\frac{1}{\left(z-z_{0}\right)^{2 \omega\left(f, z_{0}\right)+3}}\left\{-\omega\left(f, z_{0}\right)^{2}\left(\omega\left(f, z_{0}\right)+1\right) x y+\bigcirc\left(z-z_{0}\right)\right\}
\end{aligned}
$$

and so,

$$
f_{1}^{\prime} f_{3}^{\prime \prime}-f_{1}^{\prime \prime} f_{3}^{\prime}=\bigcirc\left\{\frac{1}{\left(z-z_{0}\right)^{2 \omega\left(f, z_{0}\right)+2}}\right\}
$$

If $\omega\left(f, z_{0}\right)=1$, then

$$
\begin{aligned}
& f_{1}^{\prime} f_{3}^{\prime \prime}=\frac{-2 x y}{\left(z-z_{0}\right)^{5}}+\frac{\bigcirc(1)}{\left(z-z_{0}\right)^{3}}+\ldots \\
& f_{1}^{\prime \prime} f_{3}^{\prime}=\frac{-2 x y}{\left(z-z_{0}\right)^{5}}+\frac{\bigcirc(1)}{\left(z-z_{0}\right)^{3}}+\ldots
\end{aligned}
$$

and so,

$$
f_{1}^{\prime} f_{3}^{\prime \prime}-f_{1}^{\prime \prime} f_{3}^{\prime}=\bigcirc\left\{\frac{1}{\left(z-z_{0}\right)^{3}}\right\}
$$

Thus

$$
\begin{gathered}
\omega\left(W, z_{0}\right) \leq \begin{cases}2 \omega\left(f, z_{0}\right)+2, & \text { if } \omega\left(f, z_{0}\right) \geq 2 \\
3, & \text { if } \omega\left(f, z_{0}\right)=1\end{cases} \\
\leq 3 \omega\left(f, z_{0}\right)
\end{gathered}
$$

If $z_{0} \in V_{3}$, then $\omega\left(g, z_{0}\right) \geq 1$ and $\omega\left(f, z_{0}\right) \geq 2$. Thus, by (19),

$$
\begin{gathered}
\omega\left(W, z_{0}\right) \leq 2 \omega\left(f, z_{0}\right)+3-\omega\left(g, z_{0}\right) \\
\leq 2 \omega\left(f, z_{0}\right)+2 \leq 3 \omega\left(f, z_{0}\right)
\end{gathered}
$$

If $z_{0} \in V_{4}$, then $\omega\left(f, z_{0}\right)=\omega\left(g, z_{0}\right)$, and so, $\omega\left(f_{3}, z_{0}\right)=0$. By (19), we get

$$
\omega\left(W, z_{0}\right) \leq \omega\left(f, z_{0}\right)+2 \leq 3 \omega\left(f, z_{0}\right)
$$

If $z_{0} \in V_{5}$, and if z_{0} is a pole of W, then by (19),

$$
\begin{gathered}
\omega\left(W, z_{0}\right) \leq \omega\left(f, z_{0}\right)+2 \\
\leq 3 \omega\left(f, z_{0}\right)
\end{gathered}
$$

Combining all the cases above and noting (6), we deduce that

$$
N(r, W) \leq 3 N(r, f)+N_{F}(r)
$$

This and (18) give
(20) $T(r, f) \leq N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{g-\beta}\right)+N(r, f)+N(r, g)+S(r, f)$.

Now by the definition of deficiency, for $\epsilon=\frac{\delta-3}{8}>0$, where δ is the sum in (3), there exists $r_{o}>0$ such that

$$
N\left(r, \frac{1}{f-\alpha}\right) \leq(1-\delta(\alpha, f)+\epsilon) T(r, f)
$$

$$
\begin{gathered}
N\left(r, \frac{1}{g-\beta}\right) \leq(1-\delta(\beta, g)+\epsilon) T(r, g) \\
N(r, f) \leq(1-\delta(\infty, f)+\epsilon) T(r, f)
\end{gathered}
$$

and

$$
N(r, g) \leq(1-\delta(\infty, g)+\epsilon) T(r, g)
$$

hold for $r \in I$ and $r>r_{o}$. Substituting all these inequality into (20) and noting (17), we get $\delta \leq 3$, which contradicts our hypothesis. This completes the proof of the lemma.

Now by Lemma 2, there exist three constants c_{1}, c_{2} and c_{3} with

$$
\begin{equation*}
\left|c_{1}\right|+\left|c_{2}\right|+\left|c_{3}\right| \neq 0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}=0 \tag{22}
\end{equation*}
$$

If $c_{1}=0$, then $c_{2} c_{3} \neq 0$ and $f_{2}=-\frac{c_{3}}{c_{2}} f_{3}$. This leads to $g=\frac{c_{3}}{c_{2}} b(z)+$ $\left(1-\frac{c_{3}}{c_{2}}\right) \beta(z)$, which contradicts the assumptions that $b(z)$ and $\beta(z)$ are small functions of g. Thus, $c_{1} \neq 0$. We may suppose $c_{1}=-1$, and (22) reads $f_{1}=c_{2} f_{2}+c_{3} f_{3}$. Combining this and (16) we obtain

$$
\begin{equation*}
\left(1+c_{2}\right) f_{2}+\left(1+c_{3}\right) f_{3}=1 \tag{23}
\end{equation*}
$$

Next we consider two cases.
(i) $1+c_{2}=0$. Then $1+c_{3} \neq 0$ and $\left(1+c_{3}\right) f_{3}=1$. It follows from (8) and the definition of f_{3} between (10) and (11) that

$$
\begin{align*}
f-\frac{c_{3} a+\alpha}{1+c_{3}} & =f-a+a-\frac{c_{3} a+\alpha}{1+c_{3}} \\
& =\left(\frac{1}{1+c_{3}}\right) \frac{a-\alpha}{b-\beta}(g-b)+a-\frac{c_{3} a+\alpha}{1+c_{3}} \tag{24}\\
& =\left(\frac{1}{1+c_{3}}\right) \frac{a-\alpha}{b-\beta}(g-\beta) .
\end{align*}
$$

If $c_{3} \neq 0$, then $\frac{c_{3} a+\alpha}{1+c_{3}} \neq \alpha$. By the Nevanlinna "three-functions theorem" we deduce that

$$
\begin{aligned}
T(r, f) & \leq N(r, f)+N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{f-\frac{c_{3} a+\alpha}{1+c_{3}}}\right)+S(r, f) \\
& =N(r, f)+N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{g-\beta}\right)+S(r, f)
\end{aligned}
$$

This is impossible by the same reasoning as in the proof of Lemma 2. Therefore $c_{3}=0$ and (24) reads

$$
\frac{f-\alpha}{g-\beta}=\frac{a-\alpha}{b-\beta}
$$

This is what we need.
(ii) $1+c_{2} \neq 0$. It follows from (8), (23) and the definitions of f_{2} and f_{3} between (10) and (11) that $-\left(1+c_{2}\right) \frac{g-\beta}{a-\alpha}+\left(1+c_{3}\right) \frac{b-\beta}{a-\alpha}=\frac{g-b}{f-a}$, which can be written as

$$
\begin{equation*}
f-\frac{c_{2} a+\alpha}{1+c_{2}}=\left(\frac{c_{2}-c_{3}}{\left(1+c_{2}\right)^{2}}\right) \frac{(a-\alpha)(b-\beta)}{g-\frac{1+c_{3}}{1+c_{2}} b-\frac{c_{2}-c_{3} \beta}{1+c_{2}} \beta} . \tag{25}
\end{equation*}
$$

If $c_{2} \neq 0$, then $\frac{c_{2} a+\alpha}{1+c_{2}} \neq \alpha$. By the "three-functions theorem", we have

$$
\begin{aligned}
T(r, f) \leq & N(r, f)+N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{f-\frac{c_{2} a+\alpha}{1+c_{2}}}\right)+S(r, f) \\
& \leq N(r, f)+N\left(r, \frac{1}{f-\alpha}\right)+N(r, g)+S(r, f)
\end{aligned}
$$

By the same reasoning as in the proof of Lemma 2, we can get a contradiction. Thus $c_{2}=0$, and (25) reads

$$
\begin{equation*}
f-\alpha=-c_{3} \frac{(a-\alpha)(b-\beta)}{g-\left(1+c_{3}\right) b+c_{3} \beta} \tag{26}
\end{equation*}
$$

If $c_{3}=-1$, then

$$
(f-\alpha)(g-\beta)=(a-\alpha)(b-\beta)
$$

as asserted. If $c_{3} \neq-1$, then $\frac{\alpha+c_{3} a}{1+c_{3}} \neq \alpha$ and (26) can be written as

$$
f-\frac{\alpha+c_{3} a}{1+c_{3}}=-\left(\frac{c_{3}}{1+c_{3}}\right) \frac{(a-\alpha)(g-\beta)}{g-\left(1+c_{3}\right) b+c_{3} \beta}
$$

Thus, the "three-functions theorem" gives

$$
\begin{aligned}
T(r, f) & \leq N(r, f)+N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{f-\frac{\alpha+c_{3} a}{1+c_{3}}}\right)+S(r, f) \\
& \leq N(r, f)+N\left(r, \frac{1}{f-\alpha}\right)+N\left(r, \frac{1}{g-\beta}\right)+S(r, f)
\end{aligned}
$$

By the same reasoning as in the proof of Lemma 2 we obtain a contradiction.
This completes the proof of the theorem.

Acknowledgement. I wish to thank Prof. Dr. G. Frank, Prof. Dr. E. Mues and Dr. M. Reinders for their valuable discussions. I also want to express my gratitude to the refree for many useful suggestions.

References

[1] C.T. Chuang, Une généralisation d'une inegatité de Nevanlinna, Sci. Sinica, 13 (1964), 887-895.
[2] C.T. Chuang and X.H. Hua, On the growth of meromorphic functions, Sci. Sinica (Sci. in China), 33 (1990), 1025-1033.
[3] C.T. Chuang and C.C. Yang, Fix-points and factorization of meromorphic functions, World Sci. Publishing, Singapore 1990.
[4] G. Frank and W. Ohlenroth, Meromorphe Funktionen, die mit einer ihrer Ableitungen Werte teilen, Complex Variables, 6 (1986), 23-27.
[5] F. Gross, Factorization of meromorphic functions, U. S. Goverment Printing Office 1972.
[6] G.G. Gundersen, Meromorphic functions that share three or four values, J. London Math. Soc., 20 (1979), 457-466.
[7] M. Ozawa, Unicity theorems for entire functions, J. Analyse Math., 30 (1976), 411-420.
[8] H. Ueda, Unicity theorems for entire functions, Kodai Math. J., 3 (1980), 212-223.
[9] C.C. Yang, On meromorphic functions taking the same values at the same points, Kodai Math Sem. Rep., 28 (1977), 300-309.
[10] H.X. Yi, Meromorphic functions with two deficient values, Acta Math. Sinica, 30 (1987), 588-597.

Received November 10, 1993 and revised October 4, 1994. Supported by DAAD/K.C.Wong Fellowship and NNSF of China.

Nanjing University
Nanjing 210093
P.R.China

E-mail address: postmath@netra.nju.edu.cn

