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GLOBAL ANALYTIC HYPOELLIPTICITY OF Ώb ON
CIRCULAR DOMAINS

So-CHIN CHEN

Let D be a smoothly bounded pseudoconvex domain in
Cn, n > 2, with real analytic boundary. In this paper we show
that D& is globally analytic hypoelliptic if D is either circular

γ

satisfying V^j-—(z) φ 0 near the boundary bD, where r(z) is
J = l J

a defining function for L>, or Reinhardt.

I. Introduction.

Let D be a smoothly bounded pseudoconvex domain in C72, n > 2, with

real analytic boundary, and let C n be equipped with the standard Euclidean

metric. We consider the real analytic regularity problem of the D6- equation

on the boundary. Namely, given any / G C%q (bD) , 0 < p < n — 1 and

1 < q < n — 1, let u — Nbf G L2 (bD) be the solution to the following

equation,

(i.i) abu = (dhdl + d*bdb) Nbf -

Then we ask: is u = Nbf G C^q (bD)? For the definitions of these notations

the reader is referred to Section II.

The existence of the solution u = Nbf is an immediate consequence of

the closedness of the range of D6 which was proved by M.C.Shaw [17] and

Boas and M.C.Shaw [1], and independently by Kohn [15]. Since u — Nbf

is the canonical solution to the equation (1.1), it is unique. It also follows

from Proposition 2.7. Next the real analyticity of the boundary bD implies

that u = Nbf is smooth, i.e., u G C™q (bD). For instance see Kohn [14][16].

Therefore, the main concern here is about the real analytic regularity of the

solution u. The only result we know so far is that the answer is affirmative

when D is of strict pseudoconvexity which is due to Tartakoff [18] [19] [20]

and Treves [21] for n > 3 and to Geller [13] for n = 2.

The purpose of this article is to prove the following main results which

presumably yield the first positive result to this problem on weakly pseudo-

convex domains.
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Theorem 1.2. Let D be a smoothly bounded pseudoconυex domain with
real analytic boundary bD in C71, n > 2. Suppose that D is circular and that

n dr
^2zj~z— (z) Φ 0 near bD, where r(z) is the defining function for D. Then
j=ι i

for any f E C^q (bD), 0 < p < n — 1 and 1 < q < n — 1, the solution

u ~ Nbf to the Ub-equation is also in C^q (bD).

Here a domain D is called circular if z E D implies

eiθ z=(eiθzu...,e
iθzn)eD

for any θ eR. D is called Reinhardt if z E D implies (eiθlzu . . . , eiθnzn) E D
for any θλ,..., θn G BL, and D is called complete Reinhardt if z € D implies
(λ\zu..., λnzn) E D for any λ̂  E C with |A*| < 1, i = 1,... ,n. Then we
also prove

Theorem 1.3. Let D be a smoothly bounded Reinhardt pseudoconυex do-
main in C1, n > 2, with real analytic boundary. Then the same assertion as
in the Theorem 1.2 holds.

Hence, in particular, D6 is globally analytically hypoelliptic on any com-
plete Reinhardt domains with real analytic boundary whuch provides a large
class of examples. Next we have the following immediate corollary.

Corollary 1.4. Let D be a smoothly bounded pseudoconvex domain with
real analytic boundary in C n , n > 2. Suppose that either D is Reinhardt

n dr
or D is circular with ΣsZJH—(z) ^ ^ near bD, where r(z) is the defining

j

function for D. Then we have
(i) The Szego projection S defined on bD preserves the real analyticity

globally, and
(ii) The canonical solution w to the d^-equation, i.e., d^in = a, is in

Cpq_λ (bD) if the given a is in C%q (bD) and satisfies dba = 0.

Here the Szego projection S is defined to be the orthogonal projection from
L2 (bD) onto the closed subspace, denoted by H2 (bD), of square-integrable
CR- functions defined on the boundary, and by canonical solution w we
mean the solution with minimum L2- norm. We remark that statement (i)
has been proved by the author before in [5] via a more direct argument,' and
a special case of (ii), i.e., n = 2, is verified by Derridj and Tartakoff in [11].

Now if we combine the above theorems and the main result, i.e., the
Theorem B, obtained by the author in Chen [6], then we can conclude the
following theorem.
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Theorem 1.5. Let D C Cn, n > 3, be a smoothly bounded pseudoconυex
domain with real analytic boundary. Then the Szego projection S associated
with D preserves the real analyticity globally whenever D is defined by

(i) D = {(zu...,zn) e e | | / ( ^ ) | 2 + H(\z2\*,...,\zn\
i) < l } , where f(Zl)

is holomorphic in zx and H(x2,... ,xn) is a polynomial with positive coeffi-

cient and i/(0,..., 0) = 0, or

(ii) D = j (Zl,... ,zn) β C"| \f(Zl)\2 + \g(z)\2 + Σhj {\Zj\
2) < 1 I, where

f(zι) and g(z2) are holomorphic in one variable Z\ or z2 respectively7 and
hj(x) is a polynomial with positive coefficients satisfying hj(O) = 0, hj(O) > 0
for 3 < j < n.

The real analytic regularity of the Bergman projection P, which is defined
to be the orthogonal projection from L2(D) onto the closed subspace H2(D)
of square- integrable holomorphic functions defined on ΰ , on the domains
(i) and (ii) defined in Theorem 1.5 has been established in Chen [6].

We should point out that in general the analytic pseudolocality of the
Szego projection S is false. Counterexamples have been discovered by Christ
and Geller [7]. However, so far there is no counterexample to the globally real
analytic regularity of S. Meanwhile, a number of positive results of the local
analytic hypoellipticity for Ώb have been established on some model pseudo-
convex hypersurface by Derridj and Tartakoff. For instance, see [8] [9] [10].

Finally the author would like to thank Professor Mei-chi Shaw for helpful
discussion during the preparation of this paper.

II. Proofs of the Theorems 1.2 and 1.3.

Let D be a smoothly bounded pseudoconvex domain with real analytic
boundary in Cn, n > 2, and let C 1 be equipped with the standard Euclidean
metric. Since we assume that the domain D is circular, we can choose a real
analytic defining function r(z) for D such that r(z) — r (eιθ z) and that
|Vr(z)| = 1 for z G bD. Let z0 G bD be a boundary point. We may assume
that gjL (Zo) φ o. Hence a local basis for T 1 } 0 (bD) near z0 can be chosen to
be

dr d dr d .
Lj = —- — — for 1 < j < n - 1.

ozn ozj σzj azn

Put X(z) = ΣJU §;£: ~ ΣU £:£-,• We see that
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and X(z) form a local basis for the complexified tangent space CT(bD), and

X(z) is perpendicular to Γ 1 ' 0 (bD) θ T°^(bD). Let wu..., wn_i be (1,0)-

form dual to Zq,. . . , £ n - i respectively. Put η — 2 (dr — dr). Then it is

not hard to see that u>i,... , u>n_i,ϊΰi,... ,ϊΰn_i and 77 form a local basis

for the complexified cotangent space CΓ* (bD), and η is dual to X(z) and

perpendicular to T* 1 0 (&£>) ® T* 0 1 (623).

Now for any ί G R , define

Aθ -D -> I)

Put ζ — eiθ - z, then we obtain by direct computation J--^(z) = e ^ ^ ( 0 5

^ ) = eiθ-^ and ΛJ (d^) = eiθdzk for 1 < fc < n. It follows that we

have

(2.1)

(2.2) Λfl. (L3(z)) = e<2βL, (C), Λfl. ( l , ( ^ ) ) = e " 4 2 9 ^ (C), for 1 < j < n - 1,

(2.3) Λ;

This implies that A*θWi is again a (l,0)-form in CΓ* (bD).
Next we recall the definition of <9& briefly here, let / G C£°q (bD), where

C^q (bD) denotes the space of tangential (p, g)-forms defined on the bound-
ary with smooth coefficients. Namely, any / in C™q (bD) can be expressed
in the form

\I\=p
\J\=q

where / = ( z l 7 . . . , ip) and J — (jι..., jq) are strictly increasing multiindices
of length p and q respectively, and Wj = wn Λ Λ wip and Wj = Wjx Λ
• Λ Wjq, and the prime indicates that the summation is carried over only
the strictly increasing multiindices. Then consider / as a (p, g)-form in some
open neighbourhood U of the boundary, and apply d to /. We get

df = F + r(z)G + drΛH,

where F is a (p, q + l)-form involving only the w^s and ^ ' s , and G is a
(p, q + l)-form, and if is a (p, g)-form. Then the tangential Cauchy-Riemann
operator db is defined to be

dtf - π M + 1 (df) = F
bD
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where π p > g + 1 maps df to the restriction of F on the boundary. For the details
the reader is referred to Folland and Kohn [12].

Now the above argument shows Λ£ maps the tangential component to
the tangential component and maps the normal component to the normal
component. Therefore, if / E C™q (bD) with 1 < ^ < n - 2 we obtain

- πPtq+1 oA*θodf

= π M + i o A? (F + r (ζ) G + ~8r A H)

= 7r M + 1 o (A*ΘF + r(z)A*θG + drΛ A*ΘH)

bD

= A*θ O τr p, g + 1 (F + r (C) G + θr Λ H

= A*θ o τr p, g + 1 o 9 /

= A; (dbή.

Hence we have proved the following lemma.

L e m m a 2 . 4 . ~8bA*θf = A*θdbf for any f e C™q (bD) with \<q<n-l.

In general, db o h* φ h* o db if h is just smooth CR- mapping. Denote by

L2

p (bD) the space of tangential (p, g)-forms with square-integrable coeffi-

cients. Then we have

L e m m a 2.5. For any u in L2

pq (bD), we have (A*θu,v) — (u,A*_θv) for any

θeR.

Proof Put ζ = eiθ z, and express u and υ in terms of the Euclidean coor-

dinates, we get

u (£) ~ Δ-J UlJ (^) dζi A cίζj a n ( i υ (^) — 2L^ vij(z)dzi Λ αzj .
|/|=p |/|=p

1^1=9 l«^l=9

Let rfσ be the surface element defined on bD. We see that dσ is invariant

under rotation, i.e., A^dσζ — dσz. For instance, see Chen [5]. Hence if we
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set z — e~θ - ζ, we obtain

(A*θu, υ) = (^2'uu (eiθ z) ei{p~q)θdzj A dzj, J2'vIJ(z)dzI A dzj^

bD

= Σ ' I u " (0 e-tlr-ti'vjj (e-M ζ)dσζ

JbD

This completes the proof of the lemma. D

Lemma 2.6. Z^ΛJα = Λ ^ α /or any a G C^ g (6Z?) with I < q < n- 1,

where db is the L2-adjoint of d^.

Proof. Let β be any tangential (p, q — l)-form, i.e., β G C^q_λ (bD). We have

= (%<*, Alθβ)

This proves the lemma. D

Now denote by Hpq = lu e L2

vq (bD) Πh u — θ | . We have the following

fact.

Proposition 2.7. (i) Hpq = 0 for 1 < q <n — 2, and

(ii) #„,„__! = {u e Lln_x (bD) \u e Dom (δ£) and d*bu - θ} .

In general, Hp^λ φ 0. Now let / <E C£q (bD), / ± HPtQ, for 1 < q < n-1
be given, and let u — Nbf G C™q (bD) be the canonical solution to the D6-
equation,

Ώbu - ΠbNbf = /,

where Nb is the so-called boundary Neumann operator. Let T be the vector
field generated by the rotation, namely, T is defined by
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where πz is the mapping defined for any z G bD by

πz :Sλ -> D

eiθ ^eiθ z={eiθzu...,e
iθzn).

By our hypotheses stated in the Theorem 1.2, T(z) is tangential and pointing
in the bad direction for any z G bD.

Prom now on, we will assume that / has real analytic coefficients, namely,
/ G C£q (bD) with 1 < q < n - 1, and that / _L # p , n -i if g = n - 1. Write
/ as

f =

Define Tf by

It is not hard to see that Tf is still a tangential (p, g)-form, i.e., Γ/ G
Cp {bD). Then we have the following key lemma.

Lemma 2.8. Tku = TfcJVJ = NbT
kf for any k G N.

Proof. Since, in general, i2"p>n_i 7̂  0, we need to check that if Ϊ/ A. ί/p>n_i, then
Λ^n ± Hpn^ι. So, let lί; G HPiΐl_ι. By Lemma 2.6 we have AQW G f/"P)n_i. It
follows that

(AJtz,w;) = (tt,Λl^) = 0 .

Hence Λ̂ w _L HPiTl-ι. This proves our assertion.
Now by combining Lemma 2.4 and 2.6, we obtain

ObA*θNbf = A; Ώb Nbf

Therefore, by Proposit ion 2.7 and our assertion we conclude t h a t

(2.9) A*θNbf = NbAlf for any θeR.

So now one can argue as we did in Chen [2] to get TNbf = NbTf. Inductively
we have TkNbf = NbT

hf. This completes t h e proof of t h e lemma. OK

L e m m a 2.8 enables us to est imate the derivatives of the solution u — Nbf
in the bad direction as follows,

| |T*u | | = | |T*W 6 / | | = \\NbT
kf\\ < Co \\f\\k < CCkk\ ,
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for some constant C > 0 and any k G N, where || \\k is the Sobolev fc-norm.
Therefore, what we need to estimate is the mixed derivatives of u, namely,

the differentiations involving L 's, L^s and T. For dealing with the d-
Neumann problem we can avail ourselves of the so-called basic estimate
to achieve this goal. However, for the 9&- Neumann problem, in general,
the energy norm Qb does not control the barred terms. But if we add the
differentiation in T-direction to the right hand side, then we do have the
following estimate,

n-l n-1

\\LJU\\+Σ IMI - c (IM
ii

for any u G C^q (bD) with support in some open neighbourhood of z0. The
estimate (2.10) is essentially proved in [12]. Since we know how to control
the T-derivatives of the solution u = Nbf, then a standard argument can
be used to obtain the estimates of all the other mixed derivatives. For the
details the reader is referred to Chen [2] [3] [4]. This completes the proof of
Theorem 1.2.

A similar argument can be applied to prove the Theorem 1.3. Let D
be a smoothly bounded Reinhardt pseudoconvex domain with real analytic
boundary in C, n > 2. Let z0 E bD be a boundary point. First one can
choose a direction, say zn, such that \zn §^Λ (̂ o) Φ 0, where r(z) is the
defining function for D. Next we simply consider the rotation in zn-direction,
namely, for each flGK, define

Aθ :D - > D

z H+ eiθ z = (zu ...,zn_ue
iθzn) .

Then by following the proof we present here for circular domains we can
show without difficulty that Ώb is globally analytically hypoelliptic on any
smoothly bounded Reinhardt pseudoconvex domain with real analytic bound-
ary . Details can be found in Chen [3]. This also completes the proof of the
Theorem 1.3.

Finaly we make a concluding remark that the method we present here
can be used to obtain the Sobolev Hs-regularity for D& on any smoothly
bounded pseudoconvex domain which is either Reinhard or circular with

~z— Φ 0 n e a r bD, where r(z) is a smooth defining function for D. For
ό z

instance, see Chen [4].
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