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STABLE CONSTANT MEAN CURVATURE SURFACES
MINIMIZE AREA

KARSTEN GROSSE-BRAUCKMANN

Let M be an embedded strictly stable constant mean cur-
vature surface, and S a surface with the same boundary that
encloses the same volume. If S is sufficiently close to M we
show area(5) > area(M) unless S = M, i.e. M is a local mini-
mum of area.

R. Finn [F] has pointed out that for a general variational functional a
positive second variation does not imply that an extremal is actually a local
minimum, no matter if 'local' is taken in the C°, C 1, or C°° sense.

For minimal surfaces, however, it is known the above statement is true,
see e.g. [N, §109]. One way to prove this is to foliate a neighbourhood of
a strictly stable extremal with minimal surfaces. The field of normals to
the leaves is divergence-free, or a calibration, and the statement follows by
integration.

There are two equivalent variational characterizations for a surface to
have constant mean curvature H: (i) it is an extremum of area under a
volume constraint (H is the Lagrange parameter); or (ii) an extremum of
area plus H times the enclosed volume. If H φ 0 they lead to different second
variations (see [BdC]). Positivity of the second variation for (i) is called strict
volume preserving stability; for example this holds for any proper subset
of the sphere. A stronger condition is that the second variation of (ii) is
positive or strict stability; any proper subset of a hemisphere is strictly stable.
We remark that spherical disks with the same boundary but varying mean
curvature show that a strictly stable surface of constant mean curvature
H φ 0 is not a local minimum of area alone.

In [Wh] it is shown that the functional (ii) is locally minimized by a
strictly stable surface. As this proof uses regularity theorems from geometric
measure theory we feel it is worth giving another proof that generalizes the
idea for minimal surfaces mentioned before. This also gives for (i) that a
strictly stable surface locally minimizes area among surfaces enclosing the
same volume.

Under the weaker and physically more appropriate assumption of strict _
volume preserving stability it seems that local minimality for the functional
(i) has not yet been addressed. Using an idea suggested by B. White we
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give a proof that shows local minimality for C1-close graphs. The statement
for arbitrary, merely C°-close, surfaces then follows from the arguments of
[Wh].

Stability.

We let H = trace A where A is the second fundamental form of a hypersur-
face M of R n + 1 . Then Sn has mean curvature H = n with respect to the
inner normal. A hypersurface M C R n + 1 of constant mean curvature H is
critical for the functional area +H vol. One way to define the volume vol is
to take a cone, vol(M) = (/M v(x) #)/(n + l), with v the unit normal to M.
Integration is always with respect to the volume element of M. We assume
M is compact and C 2 , with C2-boundary dM, and orientable if H = 0.

The second variation of the functional (ii) on a surface of constant mean
curvature H depends only on the normal component u of a variation field X,

(1) <%(area(M) + tfvol(M)) = - / uAu+\A\2u2= f \Du\2-\A\2u\
JM JM

see e.g. [BdC, L.2.8]. Here we assumed X (and u) to have compact support
on M; Δ is the Laplace-Beltrami operator of M. An immersed constant
mean curvature surface M is called stable iff

(2) / -uAu - \A\2u2 > 0 for all u e CC°°(M),
JM

that is the lowest eigenvalue of Δ + \A\2 is nonnegative. If the lowest eigen-
value is positive we say the surface is strictly stable. Equivalently there is a
λ > 0 with

(3) / -uAu - \A\2u2 > λ ί u2.
JM JM

If H φ 0 then positivity of the second variation for (i) is equivalent to
requiring (2) (resp. (3)) only for all u with JM u = 0, i.e. for those u that do
not change the volume; this is called (strict) volume preserving stability.

Local minimality for strictly stable surfaces.

For a strictly stable immersion i0 : M ->• R n of constant mean curvature Ho

we find a neighbourhood that is foliated by surfaces of the same constant
mean curvature. Requiring that i0 = id \M we do not distinguish between
M and io(M).

Theorem 1. Let i0 : M —> R n be an immersed strictly stable hypersurface of
constant mean curvature Ho with C 2 > α boundary dM. There exists a foliation
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t y-> Mt of immersed surfaces with constant mean curvature Ho, that is an
immersion i : M x [ - l , l ] - ) R n with i(M, 0) = io and Mt = i(M, t). IfiQ is
an embedding then i is a diffeomorphism onto its image.

Proof (See [MY, Thm. 3], [N, §414] for the proof for minimal surfaces.)
We consider normal perturbations of M of the form io(x) + u{x)v(x), where
v is the normal to M and u is in the Banach space C2>a(M). Then i0 +
uv is a C2'α-immersion if u has sufficiently small C2>α-norm, in particular
the mean curvature function H(i0 + uv) is defined. We now want to use
the implicit function theorem for the map σ from C2)C*(M) to C°'a(M) X
C2>«(dM) defined by u ^ (H(i0 + uv) - Ho, u\dM).

The linearization of σ at u = 0 is given by

dσ(υ) = (Av + \A\2v,v\dM)

(see [K, App.C], note that H is the first variation of area, and / dH(υ)υ is
the second variation of area). By strict stability the only solution v to the
equation dσ(υ) = (0,0) is v = 0. The Fredholm alternative for weak solu-
tions [GT, Thm. 8.6] therefore gives a unique solution υ G Wly2(M) to the
equation dσ(v) = h with υ\dM = ψ for each h G L2 and φ G C2'a(dM). More-
over if h G C°>a{M) then by [GT, Thm. 8.29] υ G C° ' α (M). The Schauder

estimates yield ||υ||ca.«(jff) < C(lhl|co>«(M) + ||Λ||co,-(A?) + IMIca.«(dM)) f o Γ

h = (Δ + \A\2)v with a constant C depending on the coefficients, see
[GT, Thm. 6.6]. This shows that for h G C°'α the weak solution υ is
in fact in C2 > Q ί(M). We conclude that dσ is a diffeomorphism between the
Holder spaces.

The inverse function theorem for Banach spaces then gives a neighbour-
hood of (0, 0) G C°>a(M) X C2>a{dM) such that σ is invertible. In particular
there are preimages ut G C2>a(M) of the constants (0,£) for t sufficiently
small. After scaling in t as necessary we let z(M, t) be the map iQ + utv.

It remains to show i(M, t) is an immersion. Choosing t smaller if necessary
(resp. scaling in t) it is sufficient to prove that υ := dut/dt is positive. Now
υ is a solution to the linearized equation Lv = Aυ + \A\2υ — 0 on M with
boundary values (d/dt)t = 1. By assumption the first eigenvalue of L on Af
is positive. The statement follows from the next lemma. D

Usually, for the maximum principle it is required that the coefficient of
the term linear in the function be negative (see, e.g. [GT, Cor. 3.2]). This
condition can be relaxed up to a positive number less than the first eigen-
value, see [H, Problem on p. 92]. We include a proof as we are not aware
of a reference.

L e m m a 2 Let Lv = α' 7DijV + b*DiV + cv be a linear elliptic equation with
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smooth coefficients. Suppose that its first eigenvalue on a bounded C 2 > α-

domain Ω C Kn is positive. If Lv < 0 and inf^π v > 0 then infΩ v > 0.

Proof. The minimum of v cannot be 0 since then υ = 0 by the Hopf maximum
principle, see the remark following Thm. 3.5 of [GT].

We now suppose that v takes a negative minimum. Since Ω has C2>a

boundary we can extend the coefficients smoothly to a neighbourhood of Ω.
We let Ω be a neighbourhood of Ω so that the extended operator still has
a positive first eigenvalue. Let ξ be the first eigenfunction on Ω, that is
Lξ + λ£ = 0 with λ > 0 and £ | Ω > 0. Writing υ = ξw on Ω we find that w
also takes a negative minimum at some point y. Since v\da > 0 the point is
in the interior, y £ Ω, and Dw(y) = 0, atjDijw(y) > 0. Hence at y

0>Lυ = L(ξw)

= aijDijξw + VDiξw + cξw + ξaij D{jw + ξVDiW + 2aij

== (Lξ)w + ξaij DijW

We conclude w(y) > 0 and v(y) > 0 in contradiction to our assump-

tion. D

Using the foliation we prove the local minimality for the functional (i)
assuming its second variation is positive. We let i : M X [— 1,1] -> Kn be a
foliated embedding by surfaces with constant mean curvature i/, and let JV
be its image.

T h e o r e m 3. Let M be a strictly stable embedded surface of constant mean
curvature H and S any C1-surface with dS = dM that is contained in the
foliation N = i(M X (—1,1)) defined in Theorem 1. Then either area(S) +
i ί v o l ^ ) > area(M) + ίfvol(M) or S = M. In particular, if S and M
enclose the same volume then either S = M or area(5) > area(M).

Proof We consider the unit vector field v on N normal to each leaf Mt so
that ^ | M _ ! is the interior normal to N. The divergence of v on a leaf Mt is
given by άivMi v — J2{ e, DGtv — —H, where et is an orthonormal basis to
the tangent space of Mt. From v v = 1 we get v Όvv — 0 and hence the
divergence with respect to N is also given by div v = —H.

Now — H vol(S) = fVq div v and by the divergence theorem this is equal
t° Is v ' £ ~~ ΪM v - v, where ξ is the unit normal to 5 that agrees with
the exterior normal to Vs. A similar formula holds for M and we obtain
-H vol(S) + H vol(M) = Isv'-ξ- IMv< -v < area(S) - area(M) with strict
inequality unless S is tangential to the foliation in all points. Thus either
area(M) + H vol(M) < area(S) + H vol(5) or S = M. Ώ
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We thank Rob Kusner for the communication of a similar idea of proof;
it is used by Rossman [R] to simplify the proof of the following result of
Meeks [M, Sect. 4]: If there is a foliation with leaves Ms of constant mean
curvature Hs then leaves that are critical for the mean curvature are stable.
Wente used a similar calibration argument for capillary surfaces [W].

Clearly our statements generalize to embedded constant mean curvature
hypersurfaces in orientable n-manifolds.

Local minimality for volume preserving stable surfaces.

We now address the problem of minimality of area with a volume constraint
under the (weaker) assumption of volume preserving stability. The main
difficulty is that the constraint vol(i0 + uv) = 0 is non-linear, that is it does
not imply vol(i0 + tuv) = 0. Following an idea of Brian White, for given M
we replace area with a volume constraint by the functional

C
Tc = a r e a + i ϊ v o H - - [ v o l - vol(M)]2.

The first variation of [vol — vol(M)]2 vanishes evaluated at M. Therefore

critical points of the functionals area +H vol and Tc agree:

Lemma 4. Let C G R . Then M has constant mean curvature H iff M is

critical for Tc -

For a volume preserving stable surface the second variation of Tc is pos-
itive for all test functions, not just for the volume preserving ones provided
we choose C big enough.

Lemma 5. Let λ be a positive number such that ^ ( a r e a + f f vol) > λ fu2

holds for all u G C™(M) satisfying the volume constraint f u = 0. Then
there is a C > 0 such that δ2

uvTc > λ fu2 holds for all u G Q ° ( M ) .

Proof The second variation of Tc is δ2Tc = δ2(area +H vol) + C(δvol)2.

Hence by (1)

(4) 6l?c = f \Du\> - IΛ| V + C ( ί u) ' .
JM \JM J

Suppose the statement does not hold. Then for each n G N in place of'G^

there is a function un with δ^nl/Tn < λ/ M v?n, or

(5) / \ ? \?\ (
JM \JM J JM
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In particular J \Dun\
2 < f(\A\2 + λ)tfc2 < const H^Hia- Further assuming

un is normalized with H^nlU2 = 1 we obtain that the W/Γl'2-norm of the un

is bounded. Hence un converges weakly in W1}2, and by Rellich's theorem
strongly in L2, to a function u. For the left hand side of (5) to be finite,
u must satisfy the volume constraint fu = 0 and so (5) gives J \Du\2 -
|A|2^2 < λ / u 2 , in contradiction to our assumption. D

We can now prove the main statement for graphs.

Theorem 6. Let i0 : M —»• K3 be an immersed volume preserving stable
surface of constant mean curvature H. Then there is a constant c as follows:
If a graph over M is of the form iQ + uu, with \\u\\co,i < c and u\dM = 0, and
it encloses the same volume, then it has bigger area than M unless u = 0.

Proof For u with sufficiently small C0>1-norm we aim at an estimate

(6) Tc{i* + uu) = Tc{iz) + ̂ Tc{iQ) + o (\\u\\2

L2 + | |Z^ | | 2

2 ) .

A computation leading to (3.23) of [BT] gives

(7)
area(z0 + uu) + Hvol(i0 + uu)

= area(io) + Hvol(i0) + ί {\Du\2 - \A\2u2) + o (||tι||£a + | |Du| |£,).
JM

A similar formula for the volume (same page of [BT]) states

vol(ϊ0 + uu) - vol(io) = / u - / — u2 + / — u3,
JM JM * JM O

where K is Gauβ curvature of M. By the assumption on the enclosed vol-
ume the left hand side vanishes and fu < sup M ( |2 ϊ | /2+ |ZA| |^C|/3) ||^||^2 <
const 11̂ 11̂ 2, using that the C°-norm of u is bounded. Squaring the last
equation gives

(8) (£«)' = * (Hi,).
Now the estimate (6) follows from (7) and (4).

On the other hand, by the preceding lemma we have strict stability for
Tc with sufficiently large C, namely / \Όu\2 - \A\2u2 + C{fu)2>j Xu2 for
all u. Multiplying with (1 — ε) we get

/ (1 - ε)|DU |2 - |A|V + (1 - e)C ( ί u)'
JM \JM J

> ί [(l-ε)λ-ε|A|2]ω

2>ε/ u\
JM JM
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where έ is a lower estimate for [...]; we choose ε > 0 small enough so that
έ is positive. Adding ε f \Du\2 to both sides we obtain with a new constant
μ = min(ε,έ)

(9) %Sc{ia)>μ(\\u\\h + \\Du\\la).

We now combine (6) and (9) to obtain

Tc{io + uv) > Tc(io) + I (IMI1, + \\Du\\la)

for all u with sufficiently small C0>1-norm. In particular if Tc{io + uv) <
Tc{io) then u = 0. D

The theorem generalizes to hypersurfaces of Rn since (8) clearly extends
to this case. The graph hypothesis in the preceding theorem can be removed
with some regularity results. Indeed using Lemma 5 this follows from The-
orem 3 of [Wh].

Added in proof: F. Tomi kindly pointed out the following reference to
us. H. Ruchert: Ein Eindeutigkeitssatz ΐτ Flachen konstanter mittlerer
Krίimmung (Arch. Math., 33 (1979), 91-104). Therein our Theorem 1 and
3 are proven on the assumption that M is a disk-type immersed C2-surface
contained in an open ball of radius 2/H with dM real analytic.
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