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ON SPECTRA OF SIMPLE RANDOM WALKS ON
ONE-RELATOR GROUPS

PIERRE-ALAIN CHERIX AND ALAIN VALETTE

WITH AN APPENDIX BY PAUL JOLISSAINT

For a one relator group Γ = (X : r), we study the spectra of
the transition operators h,χ and hs associated with the sim-
ple random walks on the directed Cayley graph and ordinary
Cayley graph of Γ respectively. We show that, generically (in
the sense of Gromov), the spectral radius of }\χ is [φX)~1/2

(which implies that the semi-group generated by X is free).
We give upper bounds on the spectral radii of h,χ and hs Fi-
nally, for Γ the fundamental group of a closed Riemann surface
of genus g > 2 in its standard presentation, we show that the
spectrum of hs is an interval [—r, r], with r < g^1{2g — I)1/2.
Techniques are operator-theoretic.

1. Introduction.

Let Γ be a finitely generated group. Fix a finite, not necessarily symmetric
generating subset X, and let S = XUX~ι be the symmetrization of X. With
X and S are classically associated the usual Cayley graph G(Γ,5), but also
the Cayley digraph (or directed graph) G(Γ, X), where the set of vertices is
Γ and, for any 7 E Γ and s G I , an oriented edge is drawn from 7 to 75.
We denote by #E the number of elements in the set E.

We consider the normalized adjacency operators, or transition operators,
hx and hs; these are operators of norm at most 1 on /2(Γ), defined by:

(* e /2(Γ),* e r).

Consider the nearest neighbour simple random walk on G(Γ,X) obtained
by assigning probability 1/(#X) to each neighbour of a given vertex 7 € Γ
(where a neighbour of 7 is the extremity of an oriented edge with origin 7);
then, for any x, y £ Γ, the probability p(n>j (x, y) of a transition in n steps from
x to y is given by (h^δ^δy) (where (δx)xer is the canonical basis of/2(Γ)); the
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analogous probabilistic interpretation of hs is classical. We denote by Sp(Γ)
and r(T) the spectrum and spectral radius of a bounded operator T on a
Hubert space. That the spectra of hx and hs capture important information
about the pairs (Γ, X) or (Γ, S) follows from the following results of Day and
Kesten (see [Day], [Kel], [Ke2]).

Theorem 1.1.
(a) The following are equivalent:

0) r(hx) = l;
(u) lGSp(^);

(iii) Γ is amenable.

(b) Assume j^X > 2; then ——^—— < r(hs), with equality if and only

ifT is isomorphic to the free group F(X) on X in this case

Sp(hs)= \- #x
In passing, we recall that, in the symmetric case, r(hs) is the inverse of

the radius of convergence of the Green kernel

n=0

The qualitative study of the spectra of hx and hs was pursued in [HRVl]
and [HRV2], where the following result was proved, with the exception
of assertions concerning a symmetric X, that were obtained by Cartwright
[Car] and Kesten [Kel] respectively.

Theorem 1.2.
(a) Let T be the group of complex numbers of modulus 1; fix z £ T. // there

exists a character χ : Γ —y T such that χ(x) — z for any x £ X, then
Sp(hχ) is invariant under multiplication by z. The converse is true if
either Γ is amenable or X is symmetric (i.e. X — X~λ).

(b) Assume # X > 2. Set σ(X) — l i m s u p ^ ^ \\hk

x W^*} where hx is now
viewed as the normalized characteristic function of X and hk

x denotes
the tfh convolution power of hx. Then

^ < σ{X) < r(hx)

with . = σ(X) if and only if X generates a free semi-group, and

σ(X) = r(hχ) if either X is symmetric or Γ is hyperbolic in the sense

of Gromov (but not in general).
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(c) Let Γ be either the free group ¥(X), with φX > 2, or the surface

group Γg £ {au bu , ag, bg : Πf=iίαή bi\) w i t h X = au bu , ag, bg

andg> 2; then Sp{hx) = [z € C : \z\ < \

In the case of Λ5, quantitative results on the spectrum were obtained
mainly for virtually abelian groups (using Fourier analysis, as in [KeS]) or,
at the other extreme, for virtually free groups or groups for which the Cayley
graph is tree-like (using methods from combinatorics on trees, see e.g. [CSl],
[CS2], [IoP], [KuS], [Mlo]). In the present paper, we deal with one-relator
groups, i.e. groups of the form Γ = {X : r) where r, the relator, is a cyclically
reduced word in F(X). This class of groups contains the fundamental groups
of all compact surfaces (even non-orientable ones), and one-relator groups
share a number of interesting properties with surface groups (e.g., it follows
from famous results of Lyndon [Lyn] and Stallings [Sta] that a torsion-free
one-relator group which is not free must have cohomological dimension 2).
To avoid degeneracies, we shall always assume #X > 2 and \r\ > 3, i.e. the
word length of r in W(X) is at least 3.

Here is a summary of our results:

(a) We propose the statistical result that "most" presentations Γ = (X : r)

give r(hx) = (which implies in particular that the semi-group

v#χv
generated by X in Γ is free). More precisely, we prove that the ratio

# {presentation r with r(hx) = (#X)~1/2 and \r\ = N}

#{presentation r with \r\ =

tends (exponentially fast) to 1 when iV tends to +oo. This is exactly
the sense of genericity introduced by Gromov ([Gro], 0.2(A)), and
studied further by Champetier [Ch2].

(b) Let Hr (resp. Hi) be the subgroup of ¥(X) generated by all quo-
tients xy"1^ with #, y £ X (resp. x~ιy, with #, y G X). Suppose

2 /~H~X —~ΐ
that r is not in the union Hr U Hi; then || hx | |= -rr^z and

mzx{r(hx),r(hs)} <

(c) If r is in the exceptional set HrUHh then r(hx) = ίΊΓ— and Sp(/iχ)

is a union of concentric circles centered at 0; this is proved using Jolis-
saint's result from the Appendix.
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(d) Without restriction on r but with ή^X > 4, we have

2

(e) For the surface group Γg with g > 2, Peter Sarnak asked for the exact
value of r(hs) in terms of the genus g. We prove that Sp(hs) is an

interval [—r, r] with the non-trivial estimate r < .
9

We thank M. Bridson, C. Champetier, T. Delzant and C. Pittet for some
useful conversations and correspondence. We are grateful to P. Jolissaint for
writing up his results as an Appendix to this paper.

2. Rotational symmetries of spectra.

As is well-known, existence of homomorphisms is the easiest thing to check
in the case of a finitely presented group. We examplify this in the case of
a one-relator group Γ = (X : r); denote by Σ the sum of all exponents in r
and fix z G T; then:

- For z a primitive d-th root of 1, there exists a character χ : Γ —> T
such that χ(x) = z for any x £ X if and only if Σ = 0(mod d)\

- for z not a root of 1, there exists a character χ : Γ -» T such that
χ(x) — z for any x 6 X if and only if Σ = 0.

From this and Theorem 1.2 above, we immediately deduce:

Proposition 2.1
(a) // Σ = O(modflί), then Sp(hx) is invariant under multiplication by

exp(2πi/d);

(b) IfΣ = 0, then Sp(hx) is a union of concentric circles, centered at 0;

(c) Sp(hs) is symmetric with respect to 0 if and only ifΣ, is even.

3. Free semi-groups and small cancellation.

Definition 3.1. A word w 6 ¥(X) is positive if it involves only gen-
erators with positive exponents. Any non-empty reduced word r € W(X)
can be written in a unique way as a product without cancellation, either
r = WiW^Ws - -w^1 or r = wϊ1w2w^1 -w^1, where the w^s are positive

words. We say that r alternates enough if n > 4, i.e. there are at least 3
changes of signs in the exponents of r.

Lemma 3.2. Each of the following statements implies the next one:

(i) '(*x) ^
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(ii) X generates a free semi-group;

(iii) the relator r alternates enough.

Proof, i) =ϊ ii) follows immediately from Theorem 1.2. To show ii) => iii), we
assume that r does not alternate enough and prove that X does not generate
a free semi-group. There are 3 cases to consider.

(a) r has no change of signs in its exponents, i.e. r or r " 1 is a positive
word; then we have a positive word that represents the identity in Γ;

(b) r has exactly one change of sign, say r = WiW^1, with Wι, w2 positive,
distinct words; then Wι and w2 represent the same element in the
semi-group generated by X in Γ;

(c) r has exactly two changes of sign, i.e. r or r"1 is of the form WιW2

1w3i

with tϋi, w2, w3 positive words; then by cyclically permuting we get
W3W1W21, i.e. we are back to the preceding case.

D

Example 3.3. We give an example showing that the converse implication
ii) => i) does not hold in general. It seems that this example was known
to Y. Guivarc'h (private communication). Consider the one-relator group
Γ = (y, z : yzy~1z~1yz~1). We claim that, for X = {y, 2}, we have r(hx) = 1
and X generates a free semi-group. To see it, set x = zy"1; in the generators
x, y, the group Γ has the famous presentation

Γ = (x,y : yxy~ιx~~2)

(Γ is the first Baumslag-Solitar group). Γ is solvable, hence amenable, thus

r(hx) = 1. Let H be the subgroup of Γ generated by x. The relation

(*) yxy-1 = x 2

exhibits Γ as an HNN-extension of H with respect to the monomorphism
Θ : H —̂  H such that xk —> x2k. Therefore, Γ acts on a tree Γ, whose
construction we now recall (see [Ser], 1.1.4, 1.5.1). The homogeneous space
Γ/H will be both the set of vertices and the set of edges of Γ: We define
the extremity of the edge 7if as the vertex 7if, and the origin of 7H as
the vertex yy~ιH; it follows from relation (*) that this is well-defined. The
resulting tree T is the homogeneous tree of degree 3 with, at each vertex,
one incoming edge and two outgoing edges. We call descendant of order n of
the vertex H any of the 2n vertices at distance n from H that can be reached
from H by a positively oriented path. To prove that y and z generate a free
semi-group in Γ, it suffices to prove the following
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Claim. Any descendant of order n of H can be written as wH, where w is
a positive word of length n in y and z.

Note that this writing is necessarily unique, since there are 2n positive
words of length n in y and z. We prove the claim by induction over n, the
case n — 0 being obvious. So, let jH be a descendant of order n + 1 of H;
then jy~ιH is a descendant of order n of if, so by the induction assumption
we have yy~ιH = w/f for some positive word w of length n in y and 2.
Thus w — yy~ιxk for some k £ Z. If A: is even, we have w == yxk/2y~λ, i.e.
7if = wyH; if ά is odd, we have w = 7χ(Λ+1)/2i/~1a;"1, i.e. jH = wzH.
Both wy and wz are positive words of length n + 1 in y and z.

Example 3.4. In Lemma 3.2, the converse implication iii) => ii) does not
hold either. To see it, let n > 1 be an integer, and consider the group Γ =
(α, 6 : a{ab~1)n+ι). The relator r alternates enough. Set r' = (αδ" 1 ) n α 2 6" 1 ,
a cyclic permutation of r; then r~1ar'a~1 — bab~1a~1, so that X does not
generate a free semi-group, since ab = ba. (Actually, this also shows that Γ
is a quotient of Z 2; since the vector (n + 2, —n - 1) is primitive in Z 2, one
checks easily that Γ is isomorphic to Z.)

This example typically displays absence of small cancellation, whose def-

inition we recall now (see e.g. [LyS] for an extensive study).

Definition 3.5. Let Γ = (X : r) be a one-relator group. Denote by R

the set of words obtained by cyclic permutations of r and r" 1 . A piece
is a prefix u which is common to two distinct elements of R (by prefix we

mean any not empty initial part of a word; a word is a prefix of itself). Fix

λ e]0,1[. We say that r satisfies the small cancellation condition C'(λ)

if, for any piece u, one has:

\u\ < λ|r|.

Definition 3.6. A one-relator group Γ = (X : r) satisfies a Dehn's
algorithm if, for any reduced word w 6 ¥(X) that represents 1 in Γ, there
exists a prefix u of some word in R such that u is a subword of w and
\u\>\\r\.

It is known that groups satisfying the small cancellation property C"(λ),
with λ < | , also satisfy a Dehn's algorithm (see [LyS], Theorem 4.4 of
Chapter V; [Str], Theorem 25). On the other hand, by a result of Gromov,
groups with a Dehn's algorithm are hyperbolic ([Gro], Theorem 2.3.D; see
also [Str], Theorem 36 for a direct proof that C/(l/6)-groups are hyperbσϋc).

After these standard definitions, here is another one of our own.
Let Γ = (X : r) be a one relator-group presentation. For any r' £ R,

express r' as a reduced product in ¥(X) either r' = WiW^w^ -w^1 or
r' = w^1w2w3

1 -w^1, with the w^s positive words.
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Definition 3.7. The presentation Γ = (X : r) is balanced if one has
\wi\ < ι-^foτi= l , , n .

Clearly, a balanced presentation alternates enough.
We are now in position to present a class of one-relator presentations for

which the three conditions of Lemma 3.2 are equivalent.

Lemma 3.8. Suppose that the presentation Γ = (X : r) is balanced and
satisfies a Όehn's algorithm (this latter assumption being verified if the pre-
sentation satisfies condition C"(l/6)). Then r(hχ) = }•— .

Proof. We first show that X generates a free semi-group in Γ. Let iV be the
normal subgroup generated by r in ¥(X) (N is the set of consequences of the
relation r). Fix w £ iV, a reduced word. Thanks to the Dehn's algorithm,
we find a subword u of w which is also a prefix of some r' £ R, with \u\ > ^ .
Because the presentation is balanced, we see that w, and a fortiori κ;, must
contain at least 2 changes of sign in their exponents. Now, let i^, υ2 be
distinct positive words. Since ViV^1 has exactly one change of sign in its
exponents, we see that ViV^1 does not belong to iV, i.e. vx is distinct from v2

in Γ. This shows that the semi- group generated by X in Γ is free *. Since
Γ is hyperbolic, Theorem 1.2 applies to give r(hx) — I— . D

v #χ

Remarks.
(1) It is stated in Theorem 3 of [New] (for a proof, see [LyS], Theorem 5.5

of Chapter IV) that a one-relator group with torsion satisfies a Dehn's
algorithm, and hence is hyperbolic.

(2) Lemma 3.8 and its proof naturally raise the question: Which one-
relator groups are hyperbolic? It is conjectured that a one-relator
group is hyperbolic if and only if every non-identity element has a
cyclic centralizer (Conjecture 2 in [Juh]).

The following definition is basically due to Gromov ([Gro], 0.2(A)) and
was made precise by Champetier ([Ch2]; this paper also contains many
impressive results on "generic" properties).

Definition 3.9. Let #X > 2 be fixed. For any integer N > 1, denote by
C(N) the number of cyclically reduced words of length N in Ψ(X). Let (P)
be a property of one-relator presentations. We say that (P) is asymptoti-
cally almost sure if the ratio

#{ presentation (X : r) with property (P) and \r\ = N}
C(N)

p. 100 of [HRV2], it was stated without proof that, in the surface group Γg (g > 2)
with the standard presentation, X generates a free semi-group. This provides a proof of
this statement.
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tends to 1 for N tending to +00.

Lemma 3.10, Fix λ E]0,1[. Condition C"(λ) is asymptotically almost sure.

Proof. See [Ch2], Lemma 4.4. Note that the proof reveals in this case
that, for N —> 00, the convergence of the above ratio to 1 is exponentially
fast. D

L e m m a 3.11. A one-relator presentation is asymptotically almost surely

balanced.

Proof. Set φX — k for simplicity. First, notice that C(N) is not smaller
than the number of reduced words of length TV in F(X) whose last letter is
not the inverse of the first one, i.e.

(1) C(N) > 2k(2k - l)N~2(2k - 2).

Now, we estimate the number B(N) of "bad" presentations, i.e those pre-
sentations (X : r) such that there exists r' £ R beginning with a positive
subword of length larger than N/4. Since there are at most 2N elements in
i?, we have

N

B(N)<2N

where C(7V, /) is the number of cyclically reduced words of length iV begin-
ning with a positive subword of length exactly /. Thus we certainly have:

N

(2) B{N)<2N ]Γ kι(2k~l)N-1.

Dividing (2) by (1), we estimate the proportion of non-balanced presenta-

tions:

B(N) N(2k-1)> "

_ N(2k - I ) 2 fc["/4]+1(2fc - I ) - ! " / 4 ] - 1 - kN+1{2k - l ) - ^ - 1

2k(k - 1) 1 - k{2k - I ) - 1

Since k > 2, this ratio tends exponentially fast to 0 for TV —>• oo. Π

From this, we deduce:
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Theorem 3.12. Let #X > 2 be fixed. A presentation Γ = (X : r) has
asymptotically almost surely r(hχ) = /

Proof. We combine Lemma 3.10 (with λ = 1/6) and Lemma 3.11, and use
the fact that the conjunction of two asymptotically almost sure proper-
ties is asymptotically almost sure. Thus, asymptotically almost surely, a
one-relator presentation is balanced and satisfies C"(l/6), so also satisfies
r{hx) = / , by Lemma 3.8. D

y#x

Remark. Fix an integer k > 1. Let Γn = (Xn : rn) be a sequence of
one-relator groups on k generators, with \rn\ tending to infinity for n —> oo.
Set Sn = Xn U X~ι . It was proved by Grigorchuk [Gri] (and recently re-
proved by Champetier [Chi]) that, if all Γn's satisfy the small cancellation
condition C(λ), with λ < 1/6, then

- 1

This corresponds to the intuitive idea that, as \rn\ becomes larger, the Cayley
graph of Γn looks more and more like a tree.

4. Estimates on norms and spectral radii.

First, we recall that, for any group Γ, the right regular representation
is the representation p of Γ on /2(Γ) defined by:

If X is a finite generating subset of Γ and S = X U X *, our transition
operators hx, hs may be expressed simply in terms of p as:

1 V^
# ^ sex

1 ,

# ^ ses

We shall need the following result of Akemann-Ostrand [AkO] (see also
[Woe]).

Lemma 4.1. Let xλ, x2, , xn be elements of Γ that generate a free sulk
group on n generators. Then

n

= 2y/n - 1;
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With this we may estimate the norm of hx.

Proposition 4.2. Let Γ = (X : r) be a one-relator group, with
|r | > 2 and r cyclically reduced. Then

> 4,

mΆχ{r(hx),r(hs)} <\\hx\\< ^ 2

Proof. The inequality r(hx) <\\hx\\ holds for any bounded operator. Now,
since \r\ > 2 and r is cyclically reduced, the intersection X Π X~ι is empty,
so

r(Λs)=|IM=
hx + h*x

<\\h>

where the first equality holds for any bounded self adjoint operator. This
proves the first inequality in the statement. To prove the second, set X =
{#!,-•• ,£/.}; without loss of generality, we may assume that xk appears in
the relator r. Then

k-l

2 = 1

+ 1

Now, by Magnus'Freiheitssatz (see [LyS], Proposition 5.1 of Chapter II),
the subgroup of Γ generated by #i, , Xk-ι is free on k — 1 generators, so
Lemma 4.1 applies. Finally, the expression is l/k(2y/k — 2 + 1) less than 1
provided k > 4. D

Remark. It was observed in Proposition 4 (iv) of [HRV2] that, for
φX = 2, one always has || hx | |= 1.

Example 4.3. For φX — 3, Proposition 4.2 just gives the obvious bound
II hx ||< 1. The following example shows that we cannot expect better in
this case. Indeed, consider the group Γ = (α, 6, c : [αc"1, δc"1]). Then,
factoring out p{c) on the right, we get:

Now, ac"1 and be'1 commute and actually they generate a subgroup H
isomorphic to Z2. Under Fourier transform C*(H) is isometrically iso-
morphic to C(T2), the C*-algebra of continous functions on the 2-torus
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T 2 = {(zuz2) e C2 : |^i | = \z2\ = 1}, the norm on C(T 2) being the
sup-norm. Thus

|| p{ac~ι) + pipe'1) + 11|= sup \zλ + z2 + 1| = 3.
(*i,*a)€T*

We are now going to improve the bound of Proposition 4.2, and drop the
assumption #X > 4. For that, we shall have to exclude some presentations
(like the one in Example 4.3). First we fix some notations. Let Γ = (X : r)
be a one-relator group; fix y G X. We define a new generating subset Xy as

-1Xy = {xy

note that #Xy — φX. Now, let ry be the word r written in the alphabet
Xy\ more precisely, if we set x' = xy~ι for x G X, x Φ y, the word ry is
obtained from r by the change of variables (Nielsen transformation)

Then we define r'y as the word obtained from ry by cyclically reducing.

Lemma 4.4. If r is a cyclically reduced word in Ψ(X), then y is the only
element that may disappear in r when Ty is applied. More precisely, if we
denote by (c*i, , at) the ordered set of elements in X U X " 1 - {y, y'1}
appearing in r (i.e. r = yUιaλy

U2a2y
U3 -y"1 ony"1*1 where v{ £ Z), then the

ordered set in ry and hence in r'y is (α^, , a[).

Proof. We view Ty as an isomorphism from ¥(X) to F(Xy). Note that T'1

is defined on the generators of ¥(Xy) by T~ι(x') — xy~ι for x' £ Xy - {y}
and Ty-

ι(y) = y. Then for r = y^ot^a^ - yUtaιy
l'l+1:

ry = Ty(r) = Ty(y

Suppose that a'{ and a'i+1 cancel out in ry. Then applying T~ι, we see that
r cannot contain α, and α, + i , a contradiction. So the ordered set of ry is
exactly (o^, — ,αj).

As r is cyclically reduced, by the same argument, we conclude that we
cannot cancel a[ and a[ by cyclic permutation of ry. So (α^, , a\) is alsb
the ordered set of ry. That concludes the proof of 4.4. D

Recall from the introduction that we defined a subgroup Hr (resp. Hi) of
¥(X) as the subgroup generated by all right quotients xy~ι, with x, y € X
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(resp. all left quotients x~ιy, with #, y £ X); in passing, notice that Hr and

Hi are free on {φX) — 1 generators.

Lemma 4.5. For r cyclically reduced in F(X), the following are equivalent:
(i) reHrUHι;

(ii) For any y 6 X, the letter y does not appear in rf

y

(iii) There exists y 6 X such that y does not appear in r'y.

Proof, (i) => (ii) Suppose that r is in Hr; write r = 1

6, G X

We can have three kinds of factors α.-i"1:

(1) a,beX- {y}: then T^αά" 1) = a'yy-^b')-1 = α'

(2)

(3)

Thus ry does not contain y and so does ry.
If r is in Hi then the element s = yry~ι belongs to Ht. So y does not

appear in sy, sy is cyclically reduced (because r is cyclically reduced and
Lemma 4.4) and sy — r'.

(ϋ) =>. (in) is obvious.
(iii) => (i) We assume that y does not appear in r'y and analyse r in several

steps. Write r — a\ αn, a word on XUX" 1 , and look at the ordered subset
(α, 1? , α2/) of all letters in r from I U X " 1 — {y, y" 1}. By Lemma 4.4, the
corresponding ordered set in ry is (α^, ,α^) We will systematically use
the following argument: Suppose that, after applying Ty to each letter of r,
we find a word ry in which y appears and there is no obvious cancellation
to remove it: Then it is really impossible to remove y, because it would be
necessary first to remove some a\ , contradicting Lemma 4.4.

First step: r has no subword of the form ab or a~ιb~ι, with α, b 6 X ~{y}.
Indeed, if this would be the case, by applying Γy, we would get either a'yb'
or (a')~1y~ι(b/)~ι and y would appear in ry.

2nd Step: r does not contains y2 or y~2. To see this, we suppose by
contradiction that r contains such a subword, and show that r'y contains y
or y~λ. There are three cases to consider.
(1) r contains a±1ynb±1 with n > 2, (α φ y φ b). If the exponents of a and

b are positive, then aynb becomes a'yn+1b' after Ty. If the exponents
of a and b are different, aynb~ι becomes a'yyny~ι{b')~ι = a'yn{b')~ι

and a~1ynb becomes (a')~ιynb'. Finally if the exponents of a and kare
negative, a~1ynb~ι becomes (α/)~1yn~1(δ/)~1. The same can be done
for n negative with \n\ > 2.

(2) r begins with ynb±ι (b £ X — {y}). First assume n > 2. Since r is
cyclically reduced, r ends with some letter a £ X\JX~1 -{y~1}. Then
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ry — Ty(r) cannot end with y"1, so there will be no cancellation when

cyclically reducing ry to get ry. On other hand, if r begins with yn6,

then ry begin with ynb', and if r begins with ynb~1, then ry begin with

yn~~1(b')~1. Since n > 2, y appears in ry. The same can be done for

n < - 2 .

(3) Similar arguments hold if r ends with b±ιyn (b £ X - {y}, \n\ > 2).

Note that cases 2 and 3 also show that r cannot begin with yb or y~1b~1,

neither end with by or b~ίy~1 (b £ X — {y})
3rd step: All exponents in r are equal to ± 1 , and exponents alternate in

sign, i.e. r — a^λa2a^1 -α^1 or r = aγa^a^ -α^ 1 . Indeed, we have to
show that r contains no subword of the form ab or α""1&~1, for α, b £ X. We
already know that this holds if either α, 6 £ X — {y} (first step) or a — b — y
(second step). It remains to show that r contains no subword of the form ay
or yb (α, b £ X — {y}), or an inverse of these. The remark at the end of the
second step already shows that r cannot begin or end with such a subword.
If ayb±ι appears then we see that after applying Ty, ayb±ι becomes either
a'yyb'y or afyyy~ι [b')~ι — a'y(b')~ι. Similar arguments holds for y&, a~1y~1,

Final step: To see that r is in HrU Hh we have to see that the exponent
of an is the opposite of the exponent of ax. By contradiction suppose that
ax and an have the same exponent +1 (resp. —1). Then r = aia^a^ an

becomes, after applying Γy, a'^a')^1 a'3 - - a'ny so y appear in ry (because
αx φ y~x). The argument for r — a^1a2a^1 - α " 1 is similar. That ends the
proof. D

Remark. The group Γ = (X : r) clearly also admits the presentation
Γ = (Xy : ry). If r £ Hr UHi, Lemma 4.5 reveals that Γ is the free product of
Z = (y) with the one-relator group Γy = (Xy — y : r1). Now Shenitzer [She]
has characterized those presentations Γ = (X : r) such that Γ is isomorphic
to the free product of Z with another group; the criterion is that at least one
generator of X must disappear from r by applying Nielsen transformations.
Our Lemma 4.5 however does not seem to be a consequence of the result in
[She] because we only consider very special Nielsen transformations, namely
the Γy 's.

Theorem 4.6. Let Γ = (X : r) be a one-relator group, with #X > 2,
\r\ > 2, r cyclically reduced and r £ Hr U Hi. Then:

mΆχ{r(hx),r(hs)} <\
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Proof. The inequality is proved as in Proposition 4.2. Fix t / G l ; then

\hx\\ = 1 + p{x')

Since r is not in Hr U Hi, it follows from Lemma 4.5 that y appears in r'y]
again by Magnus'Freiheitssatz, Xy — {y} freely generates a free group on
(#X) — 1 generators; Lemma 4.1 then applies to give the result.

Note that Example 4.3 above of a presentation with r G Hr,φX = 3
and || hx \\— 1 shows that the assumption on r in Theorem 4.6 cannot
be dropped. We now discuss somewhat the "exceptional" presentations in
Hr U Hi. We choose to work with Hr (the analogous results for Hi following
by interchanging left and right). D

Proposition 4.7. Let Γ = (X : r) be a one-relator presentation, with
r G Hr. Then X generates a free semi-group in Γ and r(hχ) — i—.

Moreover Sp(hx) is a union of concentric circles centered at 0.

Proof. Fix y G X\ as mentioned in the remark following Lemma 4.5, Γ is
the free product of Z = (y) with the one-relator group Γy = (Xy — y : ry).
We first prove that X generates a free semi-group. So, let Wι, w2 be two
distinct positive words in F(X); using the change of variables Ty together
with the normal form for elements in a free product, we see that Wι and
w2 define distinct elements of Γ. It follows from Theorem 1.2 that σ(X) =

i— < r(hχ). To prove the converse inequality r(hx) < σ(X), we appeal
V
to Jolissaint's result from the Appendix: there exists a constant C > 0 such
that, for any integer k > 0:

\hk

x

\<C(l \hk

x\

The desired inequality follows then straight from the definition oϊ σ(X). The
final assertion follows from Proposition 2.1 by noticing that the sum of all
exponents in r is 0. D

R e m a r k s .
(1) In the case of hs, it would of course be desirable to find an upper bound

on r(hs) that depends on the relator r (for example on the length of
r); but we did not succeed in achieving that. Note that such a lower
bound for r(hs) was recently obtained by Paschke [Pas]: one has

r{hs) > min (cosh(s) + {#X - 1) Q
sh(s)sh(\r\s)
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where Q(t) =
t

(2) Proposition 4.2 and Theorem 4.6 above show that one-relator group
are, in a certain sense, uniformly non-amenable: if we fix the number of
generators, then the spectral radius of hs is uniformly bounded away
from 1. Since Proposition 4.2 and Theorem 4.6 provide upper bounds
on r(hs), it is possible to deduce from them lower bounds on quantities
that are known to depend on the width of the spectral gap, i.e. the
quantity e = 1 — r(hs). One such quantity is the Kazhdan constant of
the right regular representation p with respect to 5, defined as

nip,5) = inf max llpίsjf — f II .

It is proved in Proposition 1(6) of [HRV1] that κ(ρ, Γ) > y/2e. Another
such quantity is the isoperimetric constant of the Cayley graph G(Γ, £),
defined as

ι(G(Γ, S)) = inf | ^ ^ : A finite subset of r |

here dA is the boundary of A, i.e the set of edges of G(Γ, S) with one
extremity in A and the other in Γ - A. It is well-known that

t(G(T,S))>\S\e

(see e.g. Theorem 3.3 of [Moh] for a slightly better inequality).

5. Some computations of spectra.

We recall that the reduced C*-algebra of the group Γ, denoted by C*(Γ), is
the C*-algebra generated by p(Γ). If Γ is torsion free, a tantalizing conjecture
of Kaplansky and Kadison states that C*(Γ) has no idempotent except 0
and 1 (see [Val] for a survey). We explore here some consequences of this
conjecture for one-relator groups.

Proposition 5.1. Let Γ = (X : r) be a torsion-free one-relator group
satisfying the Kaplansky-Kadison conjecture. Denote by Σ the sum of all
exponents in r. Then:
(i) IfΣ* = 0, then Sp(hχ) is either a disk or an annulus centered at 0;''

(ii) If S is even, then Sp(hs) is an interval symmetric with respect to 0.

Proof Any element in C*(Γ) has a connected spectrum (otherwise, by holo-
morphic functional calculus, we construct non- trivial idempotents in C*(Γ)).
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If Σ = 0, Proposition 2.1 says that Sp(hx) is a union of concentric circles; by
connectedness, it is either a disk or an annulus. Similarly, by connectedness
Sp(hs) must be an interval, symmetric with respect to 0 if Σ is even. •

Corol lary 5.2. Let Tg be the surface group (α 1 ? 61 ? , ag, bg : Π?=i[ α ή &**])

with X = {αi, &i, ,ag,bg} and g > 2; then Sp(hs) = [—*%**] with r <

Proof. The fact that Γy satisfies the Kaplansky-Kadison conjecture was
proved by Kasparov [Kas]. The result then follows by combining Propo-
sition 5.1 with Theorem 4.6.

Of course, in the case of Γ5, it is somewhat frustrating that we are able
to compute explicitly the spectrum of hx (see Theorem 1.2), but not the
spectrum of its real part hs. Π

Example 4.3 revisited.
We consider again the group Γ = (α, 6, c : [αc"1, bc~1]) with X = {α, 6, c}.

We claim that Sp(hx) is the disk {z £ C : \z\ < -4=}. That the spectral
radius is 4= follows from Proposition 4.7. Now, Γ is the free product Z2 * Z,
so Γ satisfies the Kaplansky-Kadison conjecture as a corollary of a result of
Rosenberg ([Ros], Proposition 2.10). By Proposition 5.1, Sp(hx) is either a
disk or an annulus centered at 0. To prove that it is a disk, we just have to
prove that hx is not invertible. But since hx — \{p{ac~ι) + p(bc~ι) + 1)p(c),
it is enough to show that p{ac~ι) + p(bc~x) + 1 is not invertible. Since ac~ι

and 6c"1 generate a subgroup isomorphic to Z2, this follows from the fact
that the function (zλ) z2) —> Z\ + z2 + 1 is not invertible on the 2-torus.

Appendix : An upper bound for the norms of powers of
normalised adjacency operators.

By Paul Jolissaint

The aim of the present note is to prove a result needed in Proposition 3
of the previous article.

Let Γ be a group, let X be a finite subset of Γ containing 1, and let G be
the free product Γ * (y) of Γ with an infinite cyclic group generated by y^

Set also Gλ = T,G2 = (y), X* = X - {1} and G) = Gj - {1} for j = f,2.
Recall that any element ω of G can be uniquely written as a product

ω = ωι...ωn with ωj £ G*., and ij φ i J +i for j < n — 1. The integer n is
called the length of u>, and we denote by Λn the set of words of length n.

The main result of this appendix is :
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Proposition 5.3. With the notation above, set

1

Then there exists a positive constant C such that for every positive integer

k, one has :

\\hk\\<C(l + k)3\\hk\\2,

where \\ \\ in the left hand side is the operator norm and hk is the kth

convolution power of h.

L e t x = TΫΊ Σ **v»so t h a t h =
It turns out that it will be more convenient to prove the inequality in

Proposition 5.3 for λ(χ) instead of Λ, where λ denotes the left regular rep-
resentation of G. (As λ and p are equivalent representations, this will prove
Proposition 5.3, as well.)

If fc is a positive integer, it is easy to check by induction on k that the
function χk (= χ * ... * χ , k times) is supported in U Λ̂  , where Λ{ is

the set of reduced words ω = ω\...ωι such that

(a) either Uj G X* or Uj = yμ> with μ̂  > 0

(b) ωι = y"

(c) E μ i < /
Hence Proposition 5.3 follows immediately from the sligthly more general:

Proposition 5.4. There exists a positive constant C such that for any
finite

then

finitely supported function φ on G whose support lies in U Λ̂  for some

The proof of Proposition 5.4 is similar to that of Theorem 2.2.2 of [Jol]
and is based on an idea due to U. Haagerup in the case of the free group
[Haa].

Using the same arguments as in the proof of Proposition 1.2.6 in [Jol],
Proposition 5.4 is a consequence of the following result:

Proposition 5.5. There exists a positive constant c such that for non-
negative integers k, I and m satisfying: \k-l\ < m < k + l, and for functions
ψ and φ on G supported in A'k and Λj respectively, one has
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Let us recall the following result which is a special case of Lemma 2.2.1

of [Jol]:

Lemma 5.6. Let k, I, m and q be non-negative integers such that m —
k + I- q.

If ω G Am, let ω = ωι...ωm be its reduced form.
Set also: Ekj(ω) — {(w, v) G Λ^ X Λ/ \uυ = ω}.
Then

(1) // q — 2p is even, set uω = ωλ...ωk_p and υω = ωk_p+ϊ...ωm; then
Ek}ι(ω) is the set of pairs (w, v) G Ak X A/ such that there exists a G Ap

with

u — uωa and v — a~1vω.

(2) If q — 2p+ 1 is odd, set uω — ωγ...ωk_?_x and υω = ωk_p+ι...ωm; then
Ekiι(ω) is the set of pairs (ϋ, v) G Λ^ X Λj such that there exists a G Λp

and 61? b2 G Λi satisfying:

bx b2 = ̂ . p , u = uωbχa and v — a~ι b2 υω.

Proof of Proposition 5.5.
Set m — k -\- I — q\ then g is an integer such that 0 < q < min(A;, I). We

divide the proof into two cases:
Case 1. Assume that q is even. Using the first part of the above lemma, one

shows more generally that if ψ is supported in Λ^ then:

\\{ψ*Φ)Xκmh<\\ψh\\Φh.

The proof is exactly the same as that of Lemma 1.3 in [Haa],

Case 2. Assume that q = 2p + 1 is odd.

For every ω G Λm, set Ef

kl(ω) = {(^, v) G Λĵ  X A/ | uv = ω}.

Let ω G Λm be such that Ekl(ω) φ 0 and let us write ω as ω —

Ui—Uk-p-iUk-pUk-p+i—Um i n its reduced form. Set uω = ω1...ωk_p_1

and υω = α;/c_p+1...α;m as in the second part of the lemma. If (u,v) G

E'kl(ω), then u = Uι...uk_ιyμk and Ϊ; = 1^...^ for some wt , t;; and

μ^ > 0.
Moreover there exists a G Λp and 61? 62 G Λi = G\ U G 2 such that
u = uωbλa, v — a'1 b2 υω and bx b2 — ωk_p.

Then two cases may occur:

(i) u>k-p ^ G\\ Thus 61? 62 ^ C* and, since w G ΛJ., we must have
bι G X*, a G Λp and α begins with y1" for some v > 0. (We will
write: c G Λj,, θ! = yUι.)
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(ii) ωk_p £ G^: Then 61? b2 G G% and a e A'p begins with some

xex*.
One has:

(1) \\(φ*Ψ)XAm\\l=

Σ •
{utv)€E'ktl(ω)

= Σ

+ Σ Σ

Denote by Σ x (resp. Σ 2) the first (resp. the second) sum in the right

handside of (1).
Let us estimate Σi first:

Σ Σ

< Σ Σ (xφ(uxa)φ(a (x

u...
V...

\φ(ua)\\φ(a ιωv)\

Σ Σ Wβ-Mi2.
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But

- l)

-p a£A'p+1

G X*

Let us finally estimate Σ 2 :
We are going to use the fact that if / is a finitely supported function on

G 2 (=Z),then | |λ(/) | |< j - | | / | | 2 | 1 , where 11/112,!= Σ*€zl/(*)l2(l +
\x\)2. (See [Jol], Example 1.2.3.)

Then:

where we set, for u G Λ^.p.x, αGΛJ, and v G Λ/_p_i:
and VVa(#) = φ(a~1xv) for a: G G 2 .

Hence

Σ Σ

u,α(^) = ψ(uxa)

But

v...
a...

υ,a | | 2

\ a...

a n d

Σ
u...
a...

12
12,1 =

D
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Added on proof:
1) It has been pointed out to us by P. de la Harpe that, by combining Kesten's results
[Kel] with the Freiheitssatz, the upper bound on r(hs) = ||Λs|| in Proposition 4.2
can be improved, to the effect that

In particular, for # X —> 00, one sees that r(hs) behaves like */ψχ

2) The first author has recently extended the genericity result, Theorem 3.12, to
all finitely presented groups; see P.-A. Cherix, Generic result for the existence of a
free semi-group, Seminaire de theorie spectrale et geometrie, 13 (1994-95), Institut
Fourier, Grenoble.

3) The Kaplansky-Kadison conjecture has now been proved for the class of torsion-

free one-relator groups (see C. Beguin, H. Bettaieb & A. Valette, The Baum-Connes

conjecture for torsion-free one-relator groups, preprint Neuchatel, 1996). So this

extra assumption can be dropped from Proposition 5.1.




