PACIFIC JOURNAL OF MATHEMATICS Vol. 176, No. 1, 1996

SOLVABILITY OF DIRICHLET PROBLEMS FOR SEMILINEAR ELLIPTIC EQUATIONS ON CERTAIN DOMAINS

ZHIREN JIN

We demonstrate a method to solve Dirichlet problems for semilinear elliptic equations on certain domains by a combination of change of variables, variational method and supersub- solutions method. We show that Dirichlet problems for a semilinear elliptic equation have a least one solution as long as a relationship between the growth rate of the nonlinear term and the size of the domain is satisfied. The result can be applied to semilinear elliptic equations with super-critical growth.

1. Introduction and Results.

Let Ω be a bounded domain in \mathbb{R}^n , n > 2. We consider the Dirichlet problem for a semilinear elliptic equation

$$(D_0) \qquad \begin{cases} -\Delta u = f(x, u) & \text{ in } \Omega; \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

where Δ is the standard Laplace operator, f(x, u) is a local Hölder continuous function defined on $\overline{\Omega} \times R$.

Throughout the paper, we assume that:

(†) There are positive constants $M_1, M_2, q \ge 1$, such that

$$|f(x,t)| \le M_1 + M_2 |t|^q$$
 for all $x \in \overline{\Omega}, t \in R$.

The main result of paper is

Theorem 1. There is a constant c(n,q) depending only on n and q, such that if we assume

(1) (†); (2) $|\Omega| \le c(n,q) \left(M_2 M_1^{q-1} \right)^{-\frac{n}{2q}},$ then (D_0) has at least one solution.

When $q < \frac{n+2}{n-2}$, a result similar to Theorem 1 was shown in [3]. The method used in [3] is the variational method. When $q > \frac{n+2}{n-2}$, a direct variational approach does not work. We shall use a combination of changes of variables, super- sub- solutions method and variational method to show the result.

As in [3], since the result requires the volume of the domain Ω to be dominated by something related to the nonlinear term, we need to distinguish the result from the triviality of using an implicit function theorem to get a similar result. Here are a few points. First of all, an implicit function theorem tells us that (D_0) has at least one solution when the size of the domain Ω is small, but usually one will not be able to get an explicit upper bound for the size of the domain as we do here. Secondly, in the case that M_2 is small relative to M_1 , the bound in Theorem 1 is not necessarily small at all. Lastly, the bound obtained in the result is invariant under the scaling of the domain (as explained in [3]).

When f(x,0) = 0 on Ω , (D_0) has a trivial solution u = 0. And (1) and (2) in Theorem 1 are not enough to assure the existence of a nontrivial solution as indicated by the well known Pohozaev identity [5] for the case that $f(x,t) = |t|^{q-1}t$, $q > \frac{n+2}{n-2}$ and Ω is any ball (see [6] also). To get a non-trivial solution, additional conditions are needed. Let λ_1 be the first eigenvalue of $-\Delta$ on Ω with Dirichlet boundary conditions. Then we have

Theorem 2. There is a constant c(n,q) depending only on n and q, such that if

- (1) $(\dagger);$
- (2) $|\Omega| \le c(n,q) \left(M_2 M_1^{q-1} \right)^{-\frac{n}{2q}};$
- (3) $\lim_{t \to 0^+} \frac{f(x,t)}{t} > \lambda_1$ uniformly for $x \in \overline{\Omega}$, then (D_0) has a positive solution.

Remark. Any function f(x,t) will satisfy (3) in Theorem 2 if near t = 0, t > 0, f(x,t) behaves like ct^{β} for some c > 0 and $\beta < 1$. Indeed, (3) assures that (D_0) has a family of very small positive subsolutions. And (3) can be replaced by any other conditions which assure the existence of small positive subsolutions for (D_0) .

The ideas of the proofs: since there is no restriction on q, one can not use the variational method directly to solve (D_0) . What we shall do is to combine a change of variable and the variational method to construct a pair of super- sub- solutions. For the purpose of illustration, we give a rough sketch of the proof of Theorem 1 here. Let $f^+(x,t) = \max\{f(x,t), 0\}$, $f^{-}(x,t) = \min\{f(x,t), 0\}$. We look at a pair of quasilinear elliptic equations (α is a constant to be chosen).

(1)
$$\begin{cases} -\Delta u_1 = f^+(x, u_1) + \frac{\alpha - 1}{u_1} |\nabla u_1|^2 & \text{in } \Omega; \\ u_1 > 0 & \text{in } \Omega; \\ u_1 = 0 & \text{on } \partial\Omega; \end{cases}$$

and

(2)
$$\begin{cases} -\Delta u_2 = f^-(x, u_2) + \frac{\alpha - 1}{u_2} |\nabla u_2|^2 & \text{in } \Omega; \\ u_2 < 0 & \text{in } \Omega; \\ u_2 = 0 & \text{on } \partial \Omega. \end{cases}$$

If we can solve (1) and (2) for u_1 and u_2 , then $u_2 \leq u_1$, and we have a pair of super- sub- solutions. Thus (D_0) has a solution (for example, see Theorem 6.5 in [4]).

Usually it is not a good idea to solve a semilinear equation by looking at a quasilinear one. But here a change of variable will change the whole picture. For example if $q > \frac{n+2}{n-2}$, $\alpha > \frac{(q-1)(n-2)}{4}$, let $v = \frac{1}{\alpha}|u_1|^{\alpha}$ in (1), then v satisfies

$$\begin{cases} -\Delta v = f^+ \left(x, (\alpha |v|)^{\frac{1}{\alpha}} \right) (\alpha |v|)^{\frac{(\alpha-1)}{\alpha}} & \text{ in } \Omega; \\ v > 0 & \text{ in } \Omega; \\ v = 0 & \text{ on } \partial\Omega. \end{cases}$$

Thus the change of variable has transformed the quasilinear equation into semilinear one with sub- critical growth! Now we can use the variational method and the method used in [3] to get a super- solution u_1 . A sub-solution u_2 can be obtained similarly.

Acknowlegment: The author would like to thank the referee for valuable suggestions.

2. Proofs.

2.1. Proof of Theorem 1. We may assume that f(x, 0) is not identically zero, otherwise u = 0 is a trivial solution.

Step 1: Existence of a super- solution u_1 .

We may assume $f^+(x_1,0) > 0$ for some $x_1 \in \Omega$, otherwise $u_1 = 0$ is a super-solution.

ZHIREN JIN

Let $\alpha \geq \max\left\{\frac{(q-1)(n-2)}{4},1\right\}$. The exact value of α will be determined later. Consider

(3)
$$\begin{cases} -\Delta u_1 = f^+(x, u_1) + \frac{\alpha - 1}{u_1} |\nabla u_1|^2 & \text{in } \Omega; \\ u_1 > 0 & \text{in } \Omega; \\ u_1 = 0 & \text{on } \partial\Omega. \end{cases}$$

Change variable $v = \frac{1}{\alpha} |u_1|^{\alpha}$, then v satisfies

(4)
$$\begin{cases} -\Delta v = f^+\left(x, (\alpha|v|)^{\frac{1}{\alpha}}\right)(\alpha|v|)^{\frac{(\alpha-1)}{\alpha}} & \text{in } \Omega;\\ v > 0 & \text{in } \Omega;\\ v = 0 & \text{on } \partial\Omega \end{cases}$$

It is clear that every solution of (4) corresponds to a solution of (3).

Set $f_1(x,v) = f^+\left(x, (\alpha|v|)^{\frac{1}{\alpha}}\right) |\alpha v|^{\frac{(\alpha-1)}{\alpha}}$. Then $f_1(x,v) \ge 0$ for all v and is Hölder continuous about v. (†) implies that for all v

(5)
$$0 \le f_1(x,v) \le M_1 |\alpha v|^{\frac{(\alpha-1)}{\alpha}} + M_2 |\alpha v|^{\frac{(q+\alpha-1)}{\alpha}}$$

Here we observe that $\frac{(q+\alpha-1)}{\alpha} < \frac{n+2}{n-2}$ if $\alpha > \frac{(q-1)(n-2)}{4}$. Thus $f_1(x,v)$ has subcritical growth if $\alpha > \frac{(q-1)(n-2)}{4}$.

Consider the functional

$$J_lpha(v)=rac{1}{2}\int_\Omega \left|
abla v
ight|^2dx-\int_\Omega F_1(x,v)dx,\quad v\in H^1_0(\Omega),$$

where $F_1(x, v) = \int_0^v f_1(x, s) ds$.

We shall show that $J_{\alpha}(v)$ has a nontrivial critical point for suitable choice of α (and under the assumption of Theorem 1). Then the regularity theory (see [1]) and the maximum principle imply that the non-trivial critical point is a positive solution to (4).

For any $v \in H_0^1(\Omega)$, from (5) we have

$$\int_{\Omega} F_1(x,v) dx \leq \frac{\alpha^{2-\frac{1}{\alpha}}}{2\alpha-1} M_1 \int_{\Omega} |v|^{\frac{2\alpha-1}{\alpha}} dx + \alpha^{\frac{q+2\alpha-1}{\alpha}} \frac{1}{q+2\alpha-1} M_2 \int_{\Omega} |v|^{\frac{q+2\alpha-1}{\alpha}} dx.$$

Then

$$J_{\alpha}(v) \geq \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \frac{\alpha^{2-\frac{1}{\alpha}}}{2\alpha - 1} M_1 \int_{\Omega} |v|^{\frac{2\alpha - 1}{\alpha}} dx$$
$$- \alpha^{\frac{q+2\alpha - 1}{\alpha}} \frac{1}{q + 2\alpha - 1} M_2 \int_{\Omega} |v|^{\frac{q+2\alpha - 1}{\alpha}} dx.$$

Let q_1 , q_2 be defined by $\frac{1}{q_1} = \frac{2}{n} + \frac{1}{\alpha} \frac{n-2}{2n}$ and $\frac{1}{q_2} = \frac{2}{n} - \frac{(q-1)}{\alpha} \frac{(n-2)}{2n}$. Using Hölder inequality and Sobolev embedding inequality (see [8])

$$\left(\int_{\Omega} |v|^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{2n}} \leq S(n) \left(\int_{\Omega} |\nabla v|^2 dx\right)^{\frac{1}{2}} \qquad v \in H^1_0(\Omega),$$

we have

$$J_{\alpha}(v) \geq \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \frac{\alpha^{2-\frac{1}{\alpha}}}{2\alpha - 1} S(n)^{\frac{2\alpha - 1}{\alpha}} M_1 |\Omega|^{\frac{1}{q_1}} \left(\int_{\Omega} |\nabla v|^2 dx \right)^{\frac{2\alpha - 1}{2\alpha}} - \frac{1}{q + 2\alpha - 1} \alpha^{\frac{q + 2\alpha - 1}{\alpha}} S(n)^{\frac{q + 2\alpha - 1}{\alpha}} M_2 |\Omega|^{\frac{1}{q_2}} \left(\int_{\Omega} |\nabla v|^2 dx \right)^{\frac{q + 2\alpha - 1}{2\alpha}}$$

Denote $\left(\int_{\Omega} |\nabla v|^2 dx\right)^{\frac{1}{2}} = \rho$, we get

$$\begin{split} J_{\alpha}(v) &\geq \frac{1}{2}\rho^{2} - \frac{\alpha^{2-\frac{1}{\alpha}}}{2\alpha - 1}S(n)^{\frac{2\alpha - 1}{\alpha}}M_{1}|\Omega|^{\frac{1}{q_{1}}}\rho^{\frac{2\alpha - 1}{\alpha}} \\ &- \frac{1}{q + 2\alpha - 1}\alpha^{\frac{q + 2\alpha - 1}{\alpha}}S(n)^{\frac{q + 2\alpha - 1}{\alpha}}M_{2}|\Omega|^{\frac{1}{q_{2}}}\rho^{\frac{q + 2\alpha - 1}{\alpha}} \\ &= \left(\frac{1}{2} - \frac{1}{q + 2\alpha - 1}\alpha^{\frac{q + 2\alpha - 1}{\alpha}}S(n)^{\frac{q + 2\alpha - 1}{\alpha}}M_{2}|\Omega|^{\frac{1}{q_{2}}}\rho^{\frac{q - 1}{\alpha}}\right)\rho^{2} \\ &- \frac{\alpha^{2-\frac{1}{\alpha}}}{2\alpha - 1}S(n)^{\frac{2\alpha - 1}{\alpha}}M_{1}|\Omega|^{\frac{1}{q_{1}}}\rho^{\frac{2\alpha - 1}{\alpha}}. \end{split}$$

Let ρ be defined by

(6)
$$\rho = \left(\frac{4}{q+2\alpha-1}\alpha^{\frac{q+2\alpha-1}{\alpha}}S(n)^{\frac{q+2\alpha-1}{\alpha}}|\Omega|^{\frac{1}{q_2}}\right)^{-\frac{\alpha}{q-1}}M_2^{-\frac{\alpha}{q-1}}.$$

Then

$$J_{\alpha}(v) \geq \frac{1}{4}\rho^2 - \frac{\alpha^{2-\frac{1}{\alpha}}}{2\alpha - 1}S(n)^{\frac{2\alpha - 1}{\alpha}}M_1|\Omega|^{\frac{1}{q_1}}\rho^{\frac{2\alpha - 1}{\alpha}}.$$

Thus if

(7)
$$\frac{1}{4}\rho^2 \ge \frac{\alpha^{2-\frac{1}{\alpha}}}{2\alpha-1}S(n)^{\frac{2\alpha-1}{\alpha}}M_1|\Omega|^{\frac{1}{q_1}}\rho^{\frac{2\alpha-1}{\alpha}},$$

.

we shall have $J_{\alpha}(v) \geq 0$ on $\left(\int_{\Omega} |\nabla u|^2 dx\right)^{\frac{1}{2}} = \rho$ with ρ determined by (6). (7) is equivalent to

$$\frac{1}{4}\rho^{\frac{1}{\alpha}} \geq \frac{\alpha^{2-\frac{1}{\alpha}}}{2\alpha-1}S(n)^{\frac{2\alpha-1}{\alpha}}M_1|\Omega|^{\frac{1}{q_1}}.$$

Combining this with (6) and definitions of q_1, q_2 , we have

(8)
$$|\Omega| \le c(n,q,\alpha) \left(M_2 M_1^{q-1} \right)^{-\frac{n}{2q}},$$

for some constant $c(n, q, \alpha)$ depending only on n, q and α . And $c(n, q, \alpha)$ is continuous for $\alpha \geq 1$. Now we choose $\alpha = \frac{(q-1)(n-2)}{4} + 1$, denote $J_{\alpha}(v)$ by J(v). Then there is a constant c(n, q) depending only on q, n, such that if

(9)
$$|\Omega| \le c(n,q) \left(M_2 M_1^{q-1}\right)^{-\frac{n}{2q}}$$

we have

 $J(v) \ge 0$ for all $v \in H_0^1(\Omega)$ with $||v|| = \rho$ given in (6).

On the other hand, since $f^+(x_1, 0) > 0$ and $\alpha > 0$, we see that $f_1(x_1, v) \approx cv^{1-\frac{1}{\alpha}}$ for v > 0 small. Hence we can choose $v_1 \in H_0^1(\Omega)$ such that $||v_1|| < \frac{1}{2}\rho$ and

$$(10) J(v_1) < 0.$$

Now a standard argument in critical point theory (see [2] or [6]) implies that J(v) has at least one nontrivial critical point v_2 (such that $J(v_2) < 0$).

Step 2: Existence of a sub- solution u_2 .

This part is almost identical to Step 1. We just sketch here.

We may assume $f^{-}(x_2, 0) < 0$ for some $x_2 \in \Omega$, otherwise $u_2 = 0$ is a subsolution.

Let $\alpha \geq \max\left\{\frac{(q-1)(n-2)}{4}, 1\right\}$. The exact value of α will be determined later. Consider

(11)
$$\begin{cases} -\Delta u_2 = f^-(x, u_2) + \frac{\alpha - 1}{u_2} |\nabla u_2|^2 & \text{in } \Omega; \\ u_2 < 0 & \text{in } \Omega; \\ u_2 = 0 & \text{on } \partial\Omega. \end{cases}$$

Change variable $v = \frac{1}{\alpha} |u_2|^{\alpha-1} u_2$ in (11), then v satisfies

(12)
$$\begin{cases} -\Delta v = f^{-}\left(x, -(\alpha|v|)^{\frac{1}{\alpha}}\right) (\alpha|v|)^{\frac{(\alpha-1)}{\alpha}} & \text{in } \Omega;\\ v < 0 & \text{in } \Omega;\\ v = 0 & \text{on } \partial\Omega. \end{cases}$$

It is clear that every solution of (12) corresponds to a solution of (11).

Let $f_2(x,v) = f^+\left(x, -(\alpha|v|)^{\frac{1}{\alpha}}\right)(\alpha|v|)^{\frac{(\alpha-1)}{\alpha}}$. Then $f_2(x,v) \leq 0$ for all v and is Hölder continuous about v. (†) implies that for all v

(13)
$$0 \ge f_2(x,v) \ge -M_1 \alpha^{\frac{(\alpha-1)}{\alpha}} |v|^{\frac{\alpha-1}{\alpha}} - M_2 \alpha^{\frac{(q-1)}{\alpha}} |v|^{\frac{(q+\alpha-1)}{\alpha}}$$

Once again we notice that $\frac{q+\alpha-1}{\alpha} < \frac{n+2}{n-2}$ when $\alpha > \frac{(q-1)(n-2)}{4}$. Thus $f_2(x,v)$ has sub- critical growth in v if $\alpha > \frac{(q-1)(n-2)}{4}$.

Consider the functional

$$I_lpha(v)=rac{1}{2}\int_\Omega |
abla v|^2 dx-\int_\Omega F_2(x,v)dx, \qquad v\in H^1_0(\Omega),$$

where $F_2(x, v) = \int_0^v f_2(x, s) ds$.

We shall show that $I_{\alpha}(v)$ has a nontrivial critical point for suitable value α (and under the assumptions of Theorem 1). Then the maximum principle implies that the non-trivial point is a negative solution of (12).

For $v \in H_0^1(\Omega)$, by (13), we have

$$\int_{\Omega} F_2(x,v) dx \leq \frac{\alpha^{2-\frac{1}{\alpha}}}{2\alpha - 1} M_1 \int_{\Omega} |v|^{\frac{2\alpha - 1}{\alpha}} dx + \frac{1}{q + 2\alpha - 1} \alpha^{\frac{q + 2\alpha - 1}{\alpha}} M_2 \int_{\Omega} |v|^{\frac{q + 2\alpha - 1}{\alpha}} dx.$$

Thus

$$egin{aligned} &I_lpha(v) \geq rac{1}{2} \int_\Omega \left|
abla v
ight|^2 dx - rac{lpha^{2-rac{1}{lpha}}}{2lpha-1} M_1 \int_\Omega \left| v
ight|^{rac{2lpha-1}{lpha}} dx \ &- rac{1}{q+2lpha-1} lpha^{rac{q+2lpha-1}{lpha}} M_2 \int_\Omega \left| v
ight|^{rac{q+2lpha-1}{lpha}} dx. \end{aligned}$$

As we did in Step 1, we choose $\alpha = \frac{(q-1)(n-2)}{4} + 1$. Then there is a constant c(n,q) depending only on q, n, such that if $|\Omega| \leq c(n,q) \left(M_2 M_1^{q-1}\right)^{-\frac{n}{2q}}$, (here $I_{\alpha}(v)$ is denoted by I(v)),

 $I(v) \ge 0$ for all $v \in H_0^1(\Omega)$ with $||v|| = \rho$ given in (6).

Since $f^{-}(x_2, 0) < 0$ and $\alpha > 0$, we see that $f_2(x_2, v) \approx c|v|^{-\frac{1}{\alpha}}v$ for v < 0 small. Hence we can choose $v_3 \in H_0^1(\Omega)$ such that $||v_3|| \leq \frac{1}{2}\rho$ and

$$I(v_3) < 0$$

Thus I(v) has at least one nontrivial critical point v_4 .

Step 3: Existence of at least one solution.

Since $u_2 \leq u_1$ is a pair of super- sub- solutions to (D_0) , (D_0) has a solution by Theorem 6.5 in [4].

Remark 1. From the proof we see that the choice of α is not unique. The choice of α will certainly have impact on the magnitude of the constant c(n,q) in (9). Naturally one interesting question is for which value of α is the constant $c(n,q,\alpha)$ in (8) maximized. It is easy to check that the constant $c(n,q,\alpha)$ defined in (8) will tend to zero as $\alpha \longrightarrow \infty$, so one might think that $c(n,q,\alpha)$ attains the maximum value when α is small. The smallest value that α can take is max $\left\{\frac{(q-1)(n-2)}{4},1\right\}$ if $q \neq \frac{n+2}{n-2}$. And if $q = \frac{n+2}{n-2}$, then α can take any value arbitrary close to 1 (but greater than 1). It is not difficult to see that in any case the constant $c(n,q,\alpha)$.

The proof of Theorem 1 can be modified to obtain a more general version. Let $F(x,t) = \int_0^t f(x,s) ds$, $\Omega_1 = \{x | F(x,t) \neq 0 \text{ for some } t > 0\}$, $\Omega_2 = \{x | F(x,t) \neq 0 \text{ for some } t < 0\}$, We now impose the growth conditions on f(x,t) and F(x,t).

 (F_+) There are positive constants $M_1, M_2, q_1 \ge 1$, such that

(14)
$$\limsup_{t \to +\infty} \frac{|f(x,t)|}{t^{q_1}} < +\infty,$$

and

(15)
$$|F(x,t)| \le M_1 |t| + M_2 |t|^{q_1+1} \quad \text{for all } x \in \overline{\Omega}, \ t \ge 0.$$

 (F_{-}) There are positive constants $m_1, m_2, q_2 \ge 1$, such that

(16)
$$\limsup_{t \to -\infty} \frac{|f(x,t)|}{|t|^{q_2}} < +\infty,$$

and

(17)
$$|F(x,t)| \le m_1 |t| + m_2 |t|^{q_2+1} \quad \text{for all } x \in \overline{\Omega}, \ t \le 0.$$

Then we have

Theorem 1*. There are constants $c_1(n,q_1)$, $c_2(n,q_2)$ depending only on q_1 , q_2 and n, such that if we assume

(1) (F_+) and $|\Omega_1| \le c_1(n, q_1) \left(M_2 M_1^{q_1-1}\right)^{-\frac{n}{2q_1}};$ (2) (F_-) and $|\Omega_2| \le c_2(n, q_2) (m_2 m_1^{q_2-1})^{-\frac{n}{2q_2}},$ then (D_0) has a solution.

Proof. The proof here is more or less the same as that for Theorem 1. We only indicate the necessary changes here.

Once again, we may assume that u = 0 is not a solution, otherwise there is nothing to prove.

Let $\phi(t)$ be a smooth function defined by $\phi(t) = 0$ if t < 1, $\phi(t) = 1$ if t > 2, and $0 \le \phi(t) \le 1$ on $1 \le t \le 2$. For any small positive constant $0 < \delta < 1$, set $f_3(x,t) = f^+(x,t) + \phi(\frac{t}{\delta})f^-(x,t)$ if t > 0 and $f_3(x,t) = f^+(x,0)$ if $t \le 0$; $f_4(x,t) = f^-(x,t) + \phi(-\frac{t}{\delta})f^+(x,t)$ if t < 0 and $f_4(x,t) = f^-(x,0)$ if $t \ge 0$. Then $f_3(x,t) = f(x,t)$ if $t \ge 2\delta$ and $f_4(x,t) = f(x,t)$ if $t \le -2\delta$. Consider

(18)
$$\begin{cases} -\Delta u_1 = f_3(x, u_1) + \frac{\alpha - 1}{u_1} |\nabla u_1|^2 & \text{in } \Omega; \\ u_1 > 0 & \text{in } \Omega; \\ u_1 = 0 & \text{on } \partial \Omega; \end{cases}$$

and

(19)
$$\begin{cases} -\Delta u_2 = f_4(x, u_2) + \frac{\alpha - 1}{u_2} |\nabla u_2|^2 & \text{in } \Omega; \\ u_2 < 0 & \text{in } \Omega; \\ u_1 = 0 & \text{on } \partial\Omega. \end{cases}$$

It is clear that any solution of (18) is a super- solution of (D_0) and any solution of (19) is a sub- solution of (D_0) . Since $u_2 < u_1$ for any solutions u_2 and u_1 of (19) and (18) respectively, we only have to show that (18) and (19) have solutions.

Here we shall sketch the proof that (18) has a solution (under the assumption that $f^+(x,0)$ is not identically zero, otherwise 0 is a super- solution). (The proof that (19) has a solution is similar.)

Change variable $v = \frac{1}{\alpha} |u_1|^{\alpha}$ in (18), then v satisfies

(20)
$$\begin{cases} -\Delta v = f_3\left(x, (\alpha|v|)^{\frac{1}{\alpha}}\right)(\alpha|v|)^{\frac{(\alpha-1)}{\alpha}} & \text{in } \Omega;\\ v > 0 & \text{in } \Omega;\\ v = 0 & \text{on } \partial\Omega. \end{cases}$$

Consider the functional

$$J_{lpha,\delta}(v)=rac{1}{2}\int_{\Omega}\left|
abla v
ight|^{2}dx-\int_{\Omega}F_{3}(x,v)dx,\qquad v\in H^{1}_{0}(\Omega),$$

where $F_3(x,v) = \int_0^v f_3\left(x, (\alpha|s|)^{\frac{1}{\alpha}}\right) (\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} ds.$

Since $f_3(x,v) \ge 0$ when $v \le \frac{\delta^{\alpha}}{\alpha}$, the maximum principle concludes that any non-trivial critical point of $J_{\alpha,\delta}(v)$ is a positive solution to (20).

ZHIREN JIN

Now let us show that $J_{\alpha,\delta}(v)$ has a non-trivial critical point for some small $\delta \text{ and } \alpha = \max\left\{\frac{(q_1-1)(n-2)}{4}, 1\right\}.$ For v > 0,

$$\begin{split} F_{3}(x,v) &= \int_{0}^{v} f_{3}(x,(\alpha|s|)^{\frac{1}{\alpha}})(\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} ds \\ &= \int_{0}^{v} \left\{ f^{+}\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right) + \phi\left(\frac{(\alpha|s|)^{\frac{1}{\alpha}}}{\delta}\right) f^{-}\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right) \right\} (\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} ds \\ &= \int_{0}^{v} f\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right) (\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} ds \\ &+ \int_{0}^{v} \left(\phi\left(\frac{(\alpha|s|)^{\frac{1}{\alpha}}}{\delta}\right) - 1\right) f^{-}\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right) (\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} ds \\ &\leq \int_{0}^{v} f\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right) (\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} ds + c(f,n,q_{1})\delta^{\alpha} \\ &= \int_{0}^{(\alpha v)^{\frac{1}{\alpha}}} f(x,z)z^{2(\alpha-1)} dz + c(f,n,q_{1})\delta^{\alpha} \\ &= F\left(x,(\alpha v)^{\frac{1}{\alpha}}\right) (\alpha v)^{\frac{2(\alpha-1)}{\alpha}} \\ &- 2(\alpha-1)\int_{0}^{(\alpha v)^{\frac{1}{\alpha}}} F(x,z)z^{2\alpha-3} dz + c(f,n,q_{1})\delta^{\alpha} \\ &\leq F\left(x,(\alpha v)^{\frac{1}{\alpha}}\right) (\alpha v)^{\frac{2(\alpha-1)}{\alpha}} \\ &+ 2(\alpha-1)\int_{0}^{(\alpha v)^{\frac{1}{\alpha}}} |F(x,z)|z^{2\alpha-3} dz + c(f,n,q_{1})\delta^{\alpha} \\ &\leq \left(M_{1}(\alpha v)^{\frac{1}{\alpha}} + M_{2}(\alpha v)^{\frac{q_{1}+1}{\alpha}}\right) (\alpha v)^{\frac{2\alpha-2}{\alpha}} \\ &+ 2(\alpha-1)\int_{0}^{(\alpha v)^{\frac{1}{\alpha}}} (M_{1}z + M_{2}z^{q_{1}+1})z^{2\alpha-3} ds + c(f,n,q_{1})\delta^{\alpha} \\ &= \frac{4\alpha-3}{2\alpha-1}M_{1}(\alpha v)^{\frac{2\alpha-1}{\alpha}} + \frac{q_{1}+4\alpha-3}{q_{1}+2\alpha-1}M_{2}(\alpha v)^{\frac{q_{1}+2\alpha-1}{\alpha}} + c(f,n,q_{1})\delta^{\alpha}. \end{split}$$

Now as we did in the proof of Theorem 1, it follows that there are constants $c(n, q_1)$ and ρ_1 depending only on n, q_1 , such that

$$\begin{aligned} \text{if} \quad |\Omega_1| &\leq c(n, q_1) \left(M_2 M_1^{q_1 - 1} \right)^{-\frac{n}{2q_1}}, \\ J(v) &\geq -c(f, n, q_1) \delta^{\alpha} \quad \text{ for all } \quad v \in H_0^1(\Omega) \quad \text{with } \|v\| = \rho_1. \end{aligned}$$

On the other hand, $f^+(x_1,0) \neq 0$ for some $x_1 \in \Omega$ implies that we can choose a v_5 independent of δ , such that $||v_5|| < \frac{1}{2}\rho_1$ and $J(v_5) < 0$. Now if we choose a $\delta > 0$ such that

$$-c(f, n, q_1)\delta^{\alpha} > J(v_5),$$

we see that J(v) has a nontrivial critical point v_6 such that $||v_6|| < \rho_1$ and $J(v_6) < J(v_5) < 0$. Thus there is a solution to (18).

The rest of the proof is clear.

Remark 2. Since conditions (F_+) and (F_-) are imposed on F(x,t), the behavior of f(x,t) can be quite different. Furthermore the q_1 in (14) and (15) and the q_2 in (16) and (17)) can be two different numbers. That is, f(x,t) and F(x,t) can have different growth rates. If this is the case, the constant $c(n,q_1)$ will be changed accordingly. Finally if $q_1 < \frac{n+2}{n-2}$, we can take $\alpha = 1$ in the proof and replace F(x,t) by $F^+(x,t) = \max\{F(x,t),0\}$ in (14). Thus we have recovered the main result in [3].

When f(x,0) = 0, (D_0) has a trivial solution u = 0. Then the main interest in this case is in non-trivial solutions. On the other hand, the conditions in Theorem 1 are not enough to assure a nontrivial solution. Indeed, if $f(x,t) = |t|^{q-1}t$ with $q > \frac{n+2}{n-2}$, the well known Pohozaev identity [5] concludes that (D_0) does not have any non-trivial solutions for any ball Ω . To get a nontrivial solution for (D_0) , we use an additional condition 3) in Theorem 2. Basically 3) in Theorem 2 assures that (D_0) has a very small positive sub- solution.

2.2. Proof of Theorem 2. Since $\lim_{t \to 0^+} \frac{f(x,t)}{t} > \lambda_1$, there is a d > 0, such that $f(x,t) > \lambda_1 t$ for 0 < t < d. Then for any $0 < \delta < d$, $u_2 = \delta \varphi(x)$ is a sub-solution for (D_0) , where $\varphi(x)$ is the positive first eigenfunction of $-\Delta$ on Ω with Dirichlet boundary conditions and $\max_{\{x \in \Omega\}} \varphi(x) = 1$.

Now define

$$f^*(x,t) = egin{cases} f(x,0) & ext{if} \quad t \leq 0; \ f(x,t) & ext{if} \quad t > 0. \end{cases}$$

Then $f^*(x,t)$ satisfies (†) with the same constants M_1 and M_2 as used by f(x,t).

Consider

$$(P^*) \qquad \begin{cases} -\Delta v = f^*(x,v) + \frac{\alpha - 1}{v} |\nabla u|^2 & \text{in } \Omega; \\ v = 0 & \text{on } \partial\Omega. \end{cases}$$

As we did in the Step 1 of the proof of Theorem 1, (P^*) has a positive solution v > 0 (under the assumptions (1) and (2) of Theorem 2, and we shall use $\lim_{t \to 0^+} \frac{f(x,t)}{t} > \lambda_1$ to find v_1 satisfying (10)). In particular v is a

ZHIREN JIN

super- solution for (D_0) . Since f(x,t) > 0 for t > 0 small, an application of maximum principle implies that $v(x) \ge \delta_1 \varphi(x)$ on Ω for some positive constant δ_1 .

Now fix a $0 < \delta < \delta_1$, then $u_2 = \delta \varphi(x) < v$, and u_2 , v is a pair of supersub-solutions. Therefore (D_0) has a positive solution.

Remark 3. If f(x,t) is C^1 near t = 0 in Theorem 2, we see that (D_0) has two solutions $u_1 > 0$ and $u_2 < 0$.

Remark 4. It is straightforward to modify the method used here to obtain similar results for Dirichlet problems for a second order elliptic equations in divergent form

$$\begin{cases} -\frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) = f(x, u) & \text{ in } \Omega; \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

but now the constant c(n,q) will depends on the dimension n, growth exponent q and the smallest eigenvalue of the positive matrix $(a_{ij}(x))$ on $\overline{\Omega}$.

References

- S. Agmon, The L^p approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 405-448.
- [2] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
- Z. Jin, A relation between the size of a domain and the solvability of the Dirichlet problems for semilinear elliptic equations on the domain, Indiana Uni. Math. J., 42 (1993), 259-282.
- [4] J. Kazdan and R. Kramer, Invariant criteria for existence of solutions to secondorder quasilinear elliptic equations, Comm. Pure Appl. Math., 31 (1978), 619-645.
- [5] S.I. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Russian Dokl. Akad. Nauk SSSR, **165** (1965), 33-36.
- [6] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Ref. Conf., Amer. Math. Soc., 65 (1986).
- [7] J. Smoller and A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Rat. Mech. Anal., 98 (1987), 229-249.
- [8] G. Talenti, Best constant in Sobolev inequality, Annali di Mat., 110 (1976), 353-372.

Received August 31, 1994 and revised January 26, 1995.

WICHITA STATE UNIVERSITY WICHITA, KS 67260-0033 *E-mail address*: zhiren@cs.twsu.edu

128