SOLVABILITY OF DIRICHLET PROBLEMS FOR SEMILINEAR ELLIPTIC EQUATIONS ON CERTAIN DOMAINS

Zhiren Jin

Abstract

We demonstrate a method to solve Dirichlet problems for semilinear elliptic equations on certain domains by a combination of change of variables, variational method and super-sub- solutions method. We show that Dirichlet problems for a semilinear elliptic equation have a least one solution as long as a relationship between the growth rate of the nonlinear term and the size of the domain is satisfied. The result can be applied to semilinear elliptic equations with super-critical growth.

1. Introduction and Results.

Let Ω be a bounded domain in $R^{n}, n>2$. We consider the Dirichlet problem for a semilinear elliptic equation

$$
\begin{cases}-\Delta u=f(x, u) & \text { in } \Omega \tag{0}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Δ is the standard Laplace operator, $f(x, u)$ is a local Hölder continuous function defined on $\bar{\Omega} \times R$.

Throughout the paper, we assume that:
(\dagger) There are positive constants $M_{1}, M_{2}, q \geq 1$, such that

$$
|f(x, t)| \leq M_{1}+M_{2}|t|^{q} \quad \text { for all } x \in \bar{\Omega}, t \in R .
$$

The main result of paper is
Theorem 1. There is a constant $c(n, q)$ depending only on n and q, such that if we assume
(1) (\dagger);
(2) $|\Omega| \leq c(n, q)\left(M_{2} M_{1}^{q-1}\right)^{-\frac{n}{2 q}}$,
then $\left(D_{0}\right)$ has at least one solution.
When $q<\frac{n+2}{n-2}$, a result similar to Theorem 1 was shown in [3]. The method used in [3] is the variational method. When $q>\frac{n+2}{n-2}$, a direct variational approach does not work. We shall use a combination of changes of variables, super- sub- solutions method and variational method to show the result.

As in [3], since the result requires the volume of the domain Ω to be dominated by something related to the nonlinear term, we need to distinguish the result from the triviality of using an implicit function theorem to get a similar result. Here are a few points. First of all, an implicit function theorem tells us that $\left(D_{0}\right)$ has at least one solution when the size of the domain Ω is small, but usually one will not be able to get an explicit upper bound for the size of the domain as we do here. Secondly, in the case that M_{2} is small relative to M_{1}, the bound in Theorem 1 is not necessarily small at all. Lastly, the bound obtained in the result is invariant under the scaling of the domain (as explained in [3]).

When $f(x, 0)=0$ on $\Omega,\left(D_{0}\right)$ has a trivial solution $u=0$. And (1) and (2) in Theorem 1 are not enough to assure the existence of a nontrivial solution as indicated by the well known Pohozaev identity [5] for the case that $f(x, t)=|t|^{q-1} t, q>\frac{n+2}{n-2}$ and Ω is any ball (see [6] also). To get a non-trivial solution, additional conditions are needed. Let λ_{1} be the first eigenvalue of $-\Delta$ on Ω with Dirichlet boundary conditions. Then we have

Theorem 2. There is a constant $c(n, q)$ depending only on n and q, such that if
(1) (\dagger);
(2) $|\Omega| \leq c(n, q)\left(M_{2} M_{1}^{q-1}\right)^{-\frac{n}{2 q}}$;
(3) $\lim _{t \rightarrow 0^{+}} \frac{f(x, t)}{t}>\lambda_{1}$ uniformly for $x \in \bar{\Omega}$,
then $\left(D_{0}\right)$ has a positive solution.
Remark. Any function $f(x, t)$ will satisfy (3) in Theorem 2 if near $t=0$, $t>0, f(x, t)$ behaves like $c t^{\beta}$ for some $c>0$ and $\beta<1$. Indeed, (3) assures that $\left(D_{0}\right)$ has a family of very small positive subsolutions. And (3) can be replaced by any other conditions which assure the existence of small positive subsolutions for $\left(D_{0}\right)$.

The ideas of the proofs: since there is no restriction on q, one can not use the variational method directly to solve $\left(D_{0}\right)$. What we shall do is to combine a change of variable and the variational method to construct a pair of super- sub- solutions. For the purpose of illustration, we give a rough sketch of the proof of Theorem 1 here. Let $f^{+}(x, t)=\max \{f(x, t), 0\}$,
$f^{-}(x, t)=\min \{f(x, t), 0\}$. We look at a pair of quasilinear elliptic equations (α is a constant to be chosen).

$$
\begin{cases}-\Delta u_{1}=f^{+}\left(x, u_{1}\right)+\frac{\alpha-1}{u_{1}}\left|\nabla u_{1}\right|^{2} & \text { in } \Omega \tag{1}\\ u_{1}>0 & \text { in } \Omega \\ u_{1}=0 & \text { on } \partial \Omega\end{cases}
$$

and

$$
\begin{cases}-\Delta u_{2}=f^{-}\left(x, u_{2}\right)+\frac{\alpha-1}{u_{2}}\left|\nabla u_{2}\right|^{2} & \text { in } \Omega \tag{2}\\ u_{2}<0 & \text { in } \Omega \\ u_{2}=0 & \text { on } \partial \Omega\end{cases}
$$

If we can solve (1) and (2) for u_{1} and u_{2}, then $u_{2} \leq u_{1}$, and we have a pair of super- sub- solutions. Thus $\left(D_{0}\right)$ has a solution (for example, see Theorem 6.5 in [4]).

Usually it is not a good idea to solve a semilinear equation by looking at a quasilinear one. But here a change of variable will change the whole picture. For example if $q>\frac{n+2}{n-2}, \alpha>\frac{(q-1)(n-2)}{4}$, let $v=\frac{1}{\alpha}\left|u_{1}\right|^{\alpha}$ in (1), then v satisfies

$$
\begin{cases}-\Delta v=f^{+}\left(x,(\alpha|v|)^{\frac{1}{\alpha}}\right)(\alpha|v|)^{\frac{(\alpha-1)}{\alpha}} & \text { in } \Omega \\ v>0 & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

Thus the change of variable has transformed the quasilinear equation into semilinear one with sub- critical growth! Now we can use the variational method and the method used in [3] to get a super- solution u_{1}. A subsolution u_{2} can be obtained similarly.

Acknowlegment: The author would like to thank the referee for valuable suggestions.

2. Proofs.

2.1. Proof of Theorem 1. We may assume that $f(x, 0)$ is not identically zero, otherwise $u=0$ is a trivial solution.

Step 1: Existence of a super- solution u_{1}.
We may assume $f^{+}\left(x_{1}, 0\right)>0$ for some $x_{1} \in \Omega$, otherwise $u_{1}=0$ is a super- solution.

Let $\alpha \geq \max \left\{\frac{(q-1)(n-2)}{4}, 1\right\}$. The exact value of α will be determined later. Consider

$$
\begin{cases}-\Delta u_{1}=f^{+}\left(x, u_{1}\right)+\frac{\alpha-1}{u_{1}}\left|\nabla u_{1}\right|^{2} & \text { in } \Omega \tag{3}\\ u_{1}>0 & \text { in } \Omega \\ u_{1}=0 & \text { on } \partial \Omega\end{cases}
$$

Change variable $v=\frac{1}{\alpha}\left|u_{1}\right|^{\alpha}$, then v satisfies

$$
\begin{cases}-\Delta v=f^{+}\left(x,(\alpha|v|)^{\frac{1}{\alpha}}\right)(\alpha|v|)^{\frac{(\alpha-1)}{\alpha}} & \text { in } \Omega \tag{4}\\ v>0 & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

It is clear that every solution of (4) corresponds to a solution of (3).
Set $f_{1}(x, v)=f^{+}\left(x,(\alpha|v|)^{\frac{1}{\alpha}}\right)|\alpha v|^{\frac{(\alpha-1)}{\alpha}}$. Then $f_{1}(x, v) \geq 0$ for all v and is Hölder continuous about v. (\dagger) implies that for all v

$$
\begin{equation*}
0 \leq f_{1}(x, v) \leq M_{1}|\alpha v|^{\frac{(\alpha-1)}{\alpha}}+M_{2}|\alpha v|^{\frac{(q+\alpha-1)}{\alpha}} . \tag{5}
\end{equation*}
$$

Here we observe that $\frac{(q+\alpha-1)}{\alpha}<\frac{n+2}{n-2}$ if $\alpha>\frac{(q-1)(n-2)}{4}$. Thus $f_{1}(x, v)$ has subcritical growth if $\alpha>\frac{(q-1)(n-2)}{4}$.

Consider the functional

$$
J_{\alpha}(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} F_{1}(x, v) d x, \quad v \in H_{0}^{1}(\Omega)
$$

where $F_{1}(x, v)=\int_{0}^{v} f_{1}(x, s) d s$.
We shall show that $J_{\alpha}(v)$ has a nontrivial critical point for suitable choice of α (and under the assumption of Theorem 1). Then the regularity theory (see [1]) and the maximum principle imply that the non-trivial critical point is a positive solution to (4).

For any $v \in H_{0}^{1}(\Omega)$, from (5) we have

$$
\int_{\Omega} F_{1}(x, v) d x \leq \frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} M_{1} \int_{\Omega}|v|^{\frac{2 \alpha-1}{\alpha}} d x+\alpha^{\frac{q+2 \alpha-1}{\alpha}} \frac{1}{q+2 \alpha-1} M_{2} \int_{\Omega}|v|^{\frac{q+2 \alpha-1}{\alpha}} d x .
$$

Then

$$
\begin{aligned}
J_{\alpha}(v) \geq & \frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} M_{1} \int_{\Omega}|v|^{\frac{2 \alpha-1}{\alpha}} d x \\
& -\alpha^{\frac{q+2 \alpha-1}{\alpha}} \frac{1}{q+2 \alpha-1} M_{2} \int_{\Omega}|v|^{\frac{q+2 \alpha-1}{\alpha}} d x
\end{aligned}
$$

Let q_{1}, q_{2} be defined by $\frac{1}{q_{1}}=\frac{2}{n}+\frac{1}{\alpha} \frac{n-2}{2 n}$ and $\frac{1}{q_{2}}=\frac{2}{n}-\frac{(q-1)}{\alpha} \frac{(n-2)}{2 n}$. Using Hölder inequality and Sobolev embedding inequality (see [8])

$$
\left(\int_{\Omega}|v|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{2 n}} \leq S(n)\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{\frac{1}{2}} \quad v \in H_{0}^{1}(\Omega)
$$

we have

$$
\begin{aligned}
J_{\alpha}(v) \geq & \frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} S(n)^{\frac{2 \alpha-1}{\alpha}} M_{1}|\Omega|^{\frac{1}{q_{1}}}\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{\frac{2 \alpha-1}{2 \alpha}} \\
& -\frac{1}{q+2 \alpha-1} \alpha^{\frac{q+2 \alpha-1}{\alpha}} S(n)^{\frac{q+2 \alpha-1}{\alpha}} M_{2}|\Omega|^{\frac{1}{q_{2}}}\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{\frac{q+2 \alpha-1}{2 \alpha}}
\end{aligned}
$$

Denote $\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{\frac{1}{2}}=\rho$, we get

$$
\begin{aligned}
J_{\alpha}(v) \geq & \frac{1}{2} \rho^{2}-\frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} S(n)^{\frac{2 \alpha-1}{\alpha}} M_{1}|\Omega|^{\frac{1}{q_{1}}} \rho^{\frac{2 \alpha-1}{\alpha}} \\
& -\frac{1}{q+2 \alpha-1} \alpha^{\frac{q+2 \alpha-1}{\alpha}} S(n)^{\frac{q+2 \alpha-1}{\alpha}} M_{2}|\Omega|^{\frac{1}{q_{2}}} \rho^{\frac{q+2 \alpha-1}{\alpha}} \\
= & \left(\frac{1}{2}-\frac{1}{q+2 \alpha-1} \alpha^{\frac{q+2 \alpha-1}{\alpha}} S(n)^{\frac{q+2 \alpha-1}{\alpha}} M_{2}|\Omega|^{\frac{1}{q_{2}}} \rho^{\frac{q-1}{\alpha}}\right) \rho^{2} \\
& -\frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} S(n)^{\frac{2 \alpha-1}{\alpha}} M_{1}|\Omega|^{\frac{1}{q_{1}}} \rho^{\frac{2 \alpha-1}{\alpha}}
\end{aligned}
$$

Let ρ be defined by

$$
\begin{equation*}
\rho=\left(\frac{4}{q+2 \alpha-1} \alpha^{\frac{q+2 \alpha-1}{\alpha}} S(n)^{\frac{q+2 \alpha-1}{\alpha}}|\Omega|^{\frac{1}{q_{2}}}\right)^{-\frac{\alpha}{q-1}} M_{2}^{-\frac{\alpha}{q-1}} . \tag{6}
\end{equation*}
$$

Then

$$
J_{\alpha}(v) \geq \frac{1}{4} \rho^{2}-\frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} S(n)^{\frac{2 \alpha-1}{\alpha}} M_{1}|\Omega|^{\frac{1}{q_{1}}} \rho^{\frac{2 \alpha-1}{\alpha}}
$$

Thus if

$$
\begin{equation*}
\frac{1}{4} \rho^{2} \geq \frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} S(n)^{\frac{2 \alpha-1}{\alpha}} M_{1}|\Omega|^{\frac{1}{q_{1}}} \rho^{\frac{2 \alpha-1}{\alpha}} \tag{7}
\end{equation*}
$$

we shall have $J_{\alpha}(v) \geq 0$ on $\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{1}{2}}=\rho$ with ρ determined by (6).
(7) is equivalent to

$$
\frac{1}{4} \rho^{\frac{1}{\alpha}} \geq \frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} S(n)^{\frac{2 \alpha-1}{\alpha}} M_{1}|\Omega|^{\frac{1}{q_{1}}}
$$

Combining this with (6) and definitions of q_{1}, q_{2}, we have

$$
\begin{equation*}
|\Omega| \leq c(n, q, \alpha)\left(M_{2} M_{1}^{q-1}\right)^{-\frac{n}{2 q}} \tag{8}
\end{equation*}
$$

for some constant $c(n, q, \alpha)$ depending only on n, q and α. And $c(n, q, \alpha)$ is continuous for $\alpha \geq 1$. Now we choose $\alpha=\frac{(q-1)(n-2)}{4}+1$, denote $J_{\alpha}(v)$ by $J(v)$. Then there is a constant $c(n, q)$ depending only on q, n, such that if

$$
\begin{equation*}
|\Omega| \leq c(n, q)\left(M_{2} M_{1}^{q-1}\right)^{-\frac{n}{2 q}} \tag{9}
\end{equation*}
$$

we have

$$
J(v) \geq 0 \quad \text { for all } \quad v \in H_{0}^{1}(\Omega) \quad \text { with } \quad\|v\|=\rho \text { given in (6) }
$$

On the other hand, since $f^{+}\left(x_{1}, 0\right)>0$ and $\alpha>0$, we see that $f_{1}\left(x_{1}, v\right) \approx$ $c v^{1-\frac{1}{\alpha}}$ for $v>0$ small. Hence we can choose $v_{1} \in H_{0}^{1}(\Omega)$ such that $\left\|v_{1}\right\|<\frac{1}{2} \rho$ and

$$
\begin{equation*}
J\left(v_{1}\right)<0 \tag{10}
\end{equation*}
$$

Now a standard argument in critical point theory (see [2] or [6]) implies that $J(v)$ has at least one nontrivial critical point v_{2} (such that $J\left(v_{2}\right)<0$).
Step 2: Existence of a sub- solution u_{2}.
This part is almost identical to Step 1. We just sketch here.
We may assume $f^{-}\left(x_{2}, 0\right)<0$ for some $x_{2} \in \Omega$, otherwise $u_{2}=0$ is a subsolution.

Let $\alpha \geq \max \left\{\frac{(q-1)(n-2)}{4}, 1\right\}$. The exact value of α will be determined later. Consider

$$
\begin{cases}-\Delta u_{2}=f^{-}\left(x, u_{2}\right)+\frac{\alpha-1}{u_{2}}\left|\nabla u_{2}\right|^{2} & \text { in } \Omega \tag{11}\\ u_{2}<0 & \text { in } \Omega \\ u_{2}=0 & \text { on } \partial \Omega\end{cases}
$$

Change variable $v=\frac{1}{\alpha}\left|u_{2}\right|^{\alpha-1} u_{2}$ in (11), then v satisfies

$$
\begin{cases}-\Delta v=f^{-}\left(x,-(\alpha|v|)^{\frac{1}{\alpha}}\right)(\alpha|v|)^{\frac{(\alpha-1)}{\alpha}} & \text { in } \Omega \tag{12}\\ v<0 & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

It is clear that every solution of (12) corresponds to a solution of (11).

Let $f_{2}(x, v)=f^{+}\left(x,-(\alpha|v|)^{\frac{1}{\alpha}}\right)(\alpha|v|)^{\frac{(\alpha-1)}{\alpha}}$. Then $f_{2}(x, v) \leq 0$ for all v and is Hölder continuous about v. (\dagger) implies that for all v

$$
\begin{equation*}
0 \geq f_{2}(x, v) \geq-M_{1} \alpha^{\frac{(\alpha-1)}{\alpha}}|v|^{\frac{\alpha-1}{\alpha}}-M_{2} \alpha^{\frac{(q-1)}{\alpha}}|v|^{\frac{(q+\alpha-1)}{\alpha}} \tag{13}
\end{equation*}
$$

Once again we notice that $\frac{q+\alpha-1}{\alpha}<\frac{n+2}{n-2}$ when $\alpha>\frac{(q-1)(n-2)}{4}$. Thus $f_{2}(x, v)$ has sub- critical growth in v if $\alpha>\frac{(q-1)(n-2)}{4}$.

Consider the functional

$$
I_{\alpha}(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} F_{2}(x, v) d x, \quad v \in H_{0}^{1}(\Omega)
$$

where $F_{2}(x, v)=\int_{0}^{v} f_{2}(x, s) d s$.
We shall show that $I_{\alpha}(v)$ has a nontrivial critical point for suitable value α (and under the assumptions of Theorem 1). Then the maximum principle implies that the non-trivial point is a negative solution of (12).

For $v \in H_{0}^{1}(\Omega)$, by (13), we have

$$
\int_{\Omega} F_{2}(x, v) d x \leq \frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} M_{1} \int_{\Omega}|v|^{\frac{2 \alpha-1}{\alpha}} d x+\frac{1}{q+2 \alpha-1} \alpha^{\frac{q+2 \alpha-1}{\alpha}} M_{2} \int_{\Omega}|v|^{\frac{q+2 \alpha-1}{\alpha}} d x .
$$

Thus

$$
\begin{aligned}
I_{\alpha}(v) \geq & \frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{\alpha^{2-\frac{1}{\alpha}}}{2 \alpha-1} M_{1} \int_{\Omega}|v|^{\frac{2 \alpha-1}{\alpha}} d x \\
& -\frac{1}{q+2 \alpha-1} \alpha^{\frac{q+2 \alpha-1}{\alpha}} M_{2} \int_{\Omega}|v|^{\frac{q+2 \alpha-1}{\alpha}} d x
\end{aligned}
$$

As we did in Step 1, we choose $\alpha=\frac{(q-1)(n-2)}{4}+1$. Then there is a constant $c(n, q)$ depending only on q, n, such that if $|\Omega| \leq c(n, q)\left(M_{2} M_{1}^{q-1}\right)^{-\frac{n}{2 q}}$, (here $I_{\alpha}(v)$ is denoted by $\left.I(v)\right)$,

$$
I(v) \geq 0 \quad \text { for all } \quad v \in H_{0}^{1}(\Omega) \quad \text { with } \quad\|v\|=\rho \text { given in (6) }
$$

Since $f^{-}\left(x_{2}, 0\right)<0$ and $\alpha>0$, we see that $f_{2}\left(x_{2}, v\right) \approx c|v|^{-\frac{1}{\alpha}} v$ for $v<0$ small. Hence we can choose $v_{3} \in H_{0}^{1}(\Omega)$ such that $\left\|v_{3}\right\| \leq \frac{1}{2} \rho$ and

$$
I\left(v_{3}\right)<0 .
$$

Thus $I(v)$ has at least one nontrivial critical point v_{4}.
Step 3: Existence of at least one solution.
Since $u_{2} \leq u_{1}$ is a pair of super- sub- solutions to $\left(D_{0}\right),\left(D_{0}\right)$ has a solution by Theorem 6.5 in [4].

Remark 1. From the proof we see that the choice of α is not unique. The choice of α will certainly have impact on the magnitude of the constant $c(n, q)$ in (9). Naturally one interesting question is for which value of α is the constant $c(n, q, \alpha)$ in (8) maximized. It is easy to check that the constant $c(n, q, \alpha)$ defined in (8) will tend to zero as $\alpha \longrightarrow \infty$, so one might think that $c(n, q, \alpha)$ attains the maximum value when α is small. The smallest value that α can take is $\max \left\{\frac{(q-1)(n-2)}{4}, 1\right\}$ if $q \neq \frac{n+2}{n-2}$. And if $q=\frac{n+2}{n-2}$, then α can take any value arbitrary close to 1 (but greater than 1). It is not difficult to see that in any case the c@nstant $c(n, q)$ in Theorem 1 can be obtained by choosing $\alpha=\max \left\{\frac{(q-1)(n-2)}{4}, 1\right\}$ in $c(n, q, \alpha)$.

The proof of Theorem 1 can be modified to obtain a more general version. Let $F(x, t)=\int_{0}^{t} f(x, s) d s, \Omega_{1}=\{x \mid F(x, t) \neq 0$ for some $t>0\}, \Omega_{2}=$ $\{x \mid F(x, t) \neq 0$ for some $t<0\}$, We now impose the growth conditions on $f(x, t)$ and $F(x, t)$.
$\left(F_{+}\right) \quad$ There are positive constants $M_{1}, M_{2}, q_{1} \geq 1$, such that

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} \frac{|f(x, t)|}{t^{q_{1}}}<+\infty \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
|F(x, t)| \leq M_{1}|t|+M_{2}|t|^{q_{1}+1} \quad \text { for all } x \in \bar{\Omega}, t \geq 0 \tag{15}
\end{equation*}
$$

$\left(F_{-}\right) \quad$ There are positive constants $m_{1}, m_{2}, q_{2} \geq 1$, such that

$$
\begin{equation*}
\limsup _{t \rightarrow-\infty} \frac{|f(x, t)|}{|t|^{q_{2}}}<+\infty \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
|F(x, t)| \leq m_{1}|t|+m_{2}|t|^{q_{2}+1} \quad \text { for all } x \in \bar{\Omega}, t \leq 0 \tag{17}
\end{equation*}
$$

Then we have
Theorem 1*. There are constants $c_{1}\left(n, q_{1}\right), c_{2}\left(n, q_{2}\right)$ depending only on q_{1}, q_{2} and n, such that if we assume
(1) $\quad\left(F_{+}\right)$and $\left|\Omega_{1}\right| \leq c_{1}\left(n, q_{1}\right)\left(M_{2} M_{1}^{q_{1}-1}\right)^{-\frac{n}{2 q_{1}}}$;
(2) $\quad\left(F_{-}\right)$and $\left|\Omega_{2}\right| \leq c_{2}\left(n, q_{2}\right)\left(m_{2} m_{1}^{q_{2}-1}\right)^{-\frac{n}{2 q_{2}}}$,
then $\left(D_{0}\right)$ has a solution.
Proof. The proof here is more or less the same as that for Theorem 1. We only indicate the necessary changes here.

Once again, we may assume that $u=0$ is not a solution, otherwise there is nothing to prove.

Let $\phi(t)$ be a smooth function defined by $\phi(t)=0$ if $t<1, \phi(t)=1$ if $t>2$, and $0 \leq \phi(t) \leq 1$ on $1 \leq t \leq 2$. For any small positive constant $0<\delta<1$, set $f_{3}(x, t)=f^{+}(x, t)+\phi\left(\frac{t}{\delta}\right) f^{-}(x, t)$ if $t>0$ and $f_{3}(x, t)=f^{+}(x, 0)$ if $t \leq 0$; $f_{4}(x, t)=f^{-}(x, t)+\phi\left(-\frac{t}{\delta}\right) f^{+}(x, t)$ if $t<0$ and $f_{4}(x, t)=f^{-}(x, 0)$ if $t \geq 0$. Then $f_{3}(x, t)=f(x, t)$ if $t \geq 2 \delta$ and $f_{4}(x, t)=f(x, t)$ if $t \leq-2 \delta$. Consider

$$
\begin{cases}-\Delta u_{1}=f_{3}\left(x, u_{1}\right)+\frac{\alpha-1}{u_{1}}\left|\nabla u_{1}\right|^{2} & \text { in } \Omega ; \tag{18}\\ u_{1}>0 & \text { in } \Omega ; \\ u_{1}=0 & \text { on } \partial \Omega,\end{cases}
$$

and

$$
\begin{cases}-\Delta u_{2}=f_{4}\left(x, u_{2}\right)+\frac{\alpha-1}{u_{2}}\left|\nabla u_{2}\right|^{2} & \text { in } \Omega ; \tag{19}\\ u_{2}<0 & \text { in } \Omega ; \\ u_{1}=0 & \text { on } \partial \Omega .\end{cases}
$$

It is clear that any solution of (18) is a super- solution of $\left(D_{0}\right)$ and any solution of (19) is a sub- solution of $\left(D_{0}\right)$. Since $u_{2}<u_{1}$ for any solutions u_{2} and u_{1} of (19) and (18) respectively, we only have to show that (18) and (19) have solutions.

Here we shall sketch the proof that (18) has a solution (under the assumption that $f^{+}(x, 0)$ is not identically zero, otherwise 0 is a super- solution). (The proof that (19) has a solution is similar.)

Change variable $v=\frac{1}{\alpha}\left|u_{1}\right|^{\alpha}$ in (18), then v satisfies

$$
\begin{cases}-\Delta v=f_{3}\left(x,(\alpha|v|)^{\frac{1}{\alpha}}\right)(\alpha|v|)^{\frac{(\alpha-1)}{\alpha}} & \text { in } \Omega ; \tag{20}\\ v>0 & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

Consider the functional

$$
J_{\alpha, \delta}(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} F_{3}(x, v) d x, \quad v \in H_{0}^{1}(\Omega)
$$

where $F_{3}(x, v)=\int_{0}^{v} f_{3}\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right)(\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} d s$.
Since $f_{3}(x, v) \geq 0$ when $v \leq \frac{\delta^{\alpha}}{\alpha}$, the maximum principle concludes that any non-trivial critical point of $J_{\alpha, \delta}(v)$ is a positive solution to (20).

Now let us show that $J_{\alpha, \delta}(v)$ has a non-trivial critical point for some small δ and $\alpha=\max \left\{\frac{\left(q_{1}-1\right)(n-2)}{4}, 1\right\}$.

For $v>0$,

$$
\begin{aligned}
F_{3}(x, v)= & \int_{0}^{v} f_{3}\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right)(\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} d s \\
= & \int_{0}^{v}\left\{f^{+}\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right)+\phi\left(\frac{(\alpha|s|)^{\frac{1}{\alpha}}}{\delta}\right) f^{-}\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right)\right\}(\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} d s \\
= & \int_{0}^{v} f\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right)(\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} d s \\
& +\int_{0}^{v}\left(\phi\left(\frac{(\alpha|s|)^{\frac{1}{\alpha}}}{\delta}\right)-1\right) f^{-}\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right)(\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} d s \\
\leq & \int_{0}^{v} f\left(x,(\alpha|s|)^{\frac{1}{\alpha}}\right)(\alpha|s|)^{\frac{(\alpha-1)}{\alpha}} d s+c\left(f, n, q_{1}\right) \delta^{\alpha} \\
= & \int_{0}^{(\alpha v)^{\frac{1}{\alpha}}} f(x, z) z^{2(\alpha-1)} d z+c\left(f, n, q_{1}\right) \delta^{\alpha} \\
= & F\left(x,(\alpha v)^{\frac{1}{\alpha}}\right)(\alpha v)^{\frac{2(\alpha-1)}{\alpha}} \\
& -2(\alpha-1) \int_{0}^{(\alpha v)^{\frac{1}{\alpha}}} F(x, z) z^{2 \alpha-3} d z+c\left(f, n, q_{1}\right) \delta^{\alpha} \\
\leq & F\left(x,(\alpha v)^{\frac{1}{\alpha}}\right)(\alpha v)^{\frac{2(\alpha-1)}{\alpha}} \\
& +2(\alpha-1) \int_{0}^{(\alpha v)^{\frac{1}{\alpha}}}|F(x, z)| z^{2 \alpha-3} d z+c\left(f, n, q_{1}\right) \delta^{\alpha} \\
\leq & \left(M_{1}(\alpha v)^{\frac{1}{\alpha}}+M_{2}(\alpha v)^{\frac{q_{1}+1}{\alpha}}\right)(\alpha v)^{\frac{2 \alpha-2}{\alpha}} \\
& +2(\alpha-1) \int_{0}^{(\alpha v)^{\frac{1}{\alpha}}}\left(M_{1} z+M_{2} z^{q_{1}+1}\right) z^{2 \alpha-3} d s+c\left(f, n, q_{1}\right) \delta^{\alpha} \\
= & \frac{4 \alpha-3}{2 \alpha-1} M_{1}(\alpha v)^{\frac{2 \alpha-1}{\alpha}}+\frac{q_{1}+4 \alpha-3}{q_{1}+2 \alpha-1} M_{2}(\alpha v)^{\frac{q_{1}+2 \alpha-1}{\alpha}}+c\left(f, n, q_{1}\right) \delta^{\alpha} .
\end{aligned}
$$

Now as we did in the proof of Theorem 1, it follows that there are constants $c\left(n, q_{1}\right)$ and ρ_{1} depending only on n, q_{1}, such that

$$
\begin{aligned}
& \text { if } \quad\left|\Omega_{1}\right| \leq c\left(n, q_{1}\right)\left(M_{2} M_{1}^{q_{1}-1}\right)^{-\frac{n}{2 q_{1}}} \\
& J(v) \geq-c\left(f, n, q_{1}\right) \delta^{\alpha} \quad \text { for all } \quad v \in H_{0}^{1}(\Omega) \text { with }\|v\|=\rho_{1}
\end{aligned}
$$

On the other hand, $f^{+}\left(x_{1}, 0\right) \neq 0$ for some $x_{1} \in \Omega$ implies that we can choose a v_{5} independent of δ, such that $\left\|v_{5}\right\|<\frac{1}{2} \rho_{1}$ and $J\left(v_{5}\right)<0$. Now if
we choose a $\delta>0$ such that

$$
-c\left(f, n, q_{1}\right) \delta^{\alpha}>J\left(v_{5}\right)
$$

we see that $J(v)$ has a nontrivial critical point v_{6} such that $\left\|v_{6}\right\|<\rho_{1}$ and $J\left(v_{6}\right)<J\left(v_{5}\right)<0$. Thus there is a solution to (18).

The rest of the proof is clear.
Remark 2. Since conditions $\left(F_{+}\right)$and (F_{-}) are imposed on $F(x, t)$, the behavior of $f(x, t)$ can be quite different. Furthermore the q_{1} in (14) and (15) and the q_{2} in (16) and (17)) can be two different numbers. That is, $f(x, t)$ and $F(x, t)$ can have different growth rates. If this is the case, the constant $c\left(n, q_{1}\right)$ will be changed accordingly. Finally if $q_{1}<\frac{n+2}{n-2}$, we can take $\alpha=1$ in the proof and replace $F(x, t)$ by $F^{+}(x, t)=\max \{F(x, t), 0\}$ in (14). Thus we have recovered the main result in [3].

When $f(x, 0)=0,\left(D_{0}\right)$ has a trivial solution $u=0$. Then the main interest in this case is in non-trivial solutions. On the other hand, the conditions in Theorem 1 are not enough to assure a nontrivial solution. Indeed, if $f(x, t)=|t|^{q-1} t$ with $q>\frac{n+2}{n-2}$, the well known Pohozaev identity [5] concludes that (D_{0}) does not have any non-trivial solutions for any ball Ω. To get a nontrivial solution for $\left(D_{0}\right)$, we use an additional condition 3) in Theorem 2. Basically 3) in Theorem 2 assures that $\left(D_{0}\right)$ has a very small positive sub- solution.
2.2. Proof of Theorem 2. Since $\lim _{t \rightarrow 0^{+}} \frac{f(x, t)}{t}>\lambda_{1}$, there is a $d>0$, such that $f(x, t)>\lambda_{1} t$ for $0<t<d$. Then for any $0<\delta<d, u_{2}=\delta \varphi(x)$ is a sub- solution for $\left(D_{0}\right)$, where $\varphi(x)$ is the positive first eigenfunction of $-\Delta$ on Ω with Dirichlet boundary conditions and $\max _{\{x \in \Omega\}} \varphi(x)=1$.

Now define

$$
f^{*}(x, t)= \begin{cases}f(x, 0) & \text { if } \quad t \leq 0 \\ f(x, t) & \text { if } \quad t>0\end{cases}
$$

Then $f^{*}(x, t)$ satisfies (\dagger) with the same constants M_{1} and M_{2} as used by $f(x, t)$.

Consider

$$
\begin{cases}-\Delta v=f^{*}(x, v)+\frac{\alpha-1}{v}|\nabla u|^{2} & \text { in } \Omega \tag{*}\\ v=0 & \text { on } \partial \Omega\end{cases}
$$

As we did in the Step 1 of the proof of Theorem $1,\left(P^{*}\right)$ has a positive solution $v>0$ (under the assumptions (1) and (2) of Theorem 2, and we shall use $\lim _{t \rightarrow 0^{+}} \frac{f(x, t)}{t}>\lambda_{1}$ to find v_{1} satisfying (10)). In particular v is a
super- solution for $\left(D_{0}\right)$. Since $f(x, t)>0$ for $t>0$ small, an application of maximum principle implies that $v(x) \geq \delta_{1} \varphi(x)$ on Ω for some positive constant δ_{1}.

Now fix a $0<\delta<\delta_{1}$, then $u_{2}=\delta \varphi(x)<v$, and u_{2}, v is a pair of super-sub- solutions. Therefore $\left(D_{0}\right)$ has a positive solution.

Remark 3. If $f(x, t)$ is C^{1} near $t=0$ in Theorem 2, we see that $\left(D_{0}\right)$ has two solutions $u_{1}>0$ and $u_{2}<0$.
Remark 4. It is straightforward to modify the method used here to obtain similar results for Dirichlet problems for a second order elliptic equations in divergent form

$$
\begin{cases}-\frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)=f(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

but now the constant $c(n, q)$ will depends on the dimension n, growth exponent q and the smallest eigenvalue of the positive matrix $\left(a_{i j}(x)\right)$ on $\bar{\Omega}$.

References

[1] S. Agmon, The L^{p} approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 405-448.
[2] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
[3] Z. Jin, A relation between the size of a domain and the solvability of the Dirichlet problems for semilinear elliptic equations on the domain, Indiana Uni. Math. J., 42 (1993), 259-282.
[4] J. Kazdan and R. Kramer, Invariant criteria for existence of solutions to secondorder quasilinear elliptic equations, Comm. Pure Appl. Math., 31 (1978), 619-645.
[5] S.I. Pohozaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Russian Dokl. Akad. Nauk SSSR, 165 (1965), 33-36.
[6] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Ref. Conf., Amer. Math. Soc., 65 (1986).
[7] J. Smoller and A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Rat. Mech. Anal., 98 (1987), 229-249.
[8] G. Talenti, Best constant in Sobolev inequality, Annali di Mat., 110 (1976), 353-372.

Received August 31, 1994 and revised January 26, 1995.
Wichita State University
Wichita, KS 67260-0033
E-mail address: zhiren@cs.twsu.edu

