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HEAT FLOW OF EQUIVARIANT HARMONIC MAPS FROM
B3 INTO OP2

Y.L. XIN

We construct equivariant maps from B3 into QP2 and prove
the global existence of heat flow of such equivariant harmonic
maps for equivariant initial-boundary data which are not a
priori required to have small range. We also show sub con-
vergence of the solution. This supplies a regular harmonic
extension of the given boundary condition.

1. Introduction.

The boundary value problem for harmonic maps has been studied by many
mathematicians. For target manifolds with nonpositive sectional curvature,
R. Hamilton [H] proved that such a boundary value problem is solvable by
the heat flow method. In the case when the target manifolds have positive
sectional curvature the situation becomes more complicated. If the bound-
ary condition lies in a geodesic convex neighbourhood of the target manifold,
S. Hildebrandt, H. Kaul and K.O. Widman [H-K-W] proved the existence
of the boundary value problem by the direct method of the calculus of vari-
ations.

Although there exist examples to show the optimality of Hildebrandt-
Kaul-Widman's theorem, one still expects the solvability for the boundary
value problem with large image range when the boundary condition is "suf-
ficiently nice". In [J-K] and [E-Ll] the authors consider the rotationally
symmetric harmonic maps from Bm into Sn whose boundary values lie just
outside of a geodesic convex neighbourhood. Recently, many works have
been written on maps from B3 into S2 ([Ha], [H-K-Ll], [H-K-L2], [H-L-
P] and [Z]). Among them D. Zhang obtained a regular axially symmetric
harmonic extension of B3 into S2 for any regular axially symmetric boundary
data which omit a neighbourhood of the south pole [Z]. As is well-known
there are only two different kinds of isoparametric hypersurfaces in Euclidean
space: umbilical ones and generalized cylinders. It is interesting to see that
they correspond to the two kinds of reductions given by Jager-Kaul and
Zhang [J-K], [Z], respectively. By putting the problem in this framework
with some essential technical improvement the result in [Z] has been im-
proved in author's previous work [X2].
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Zhang's result can also be proved by the heat flow method, as shown in
[Gl]. Coron-Ghidaglia first studied harmonic heat-flow into Sn (n > 3) for
equivariant data [C-G]. In addition, there are several works on heat flow
of equivariant harmonic maps; see [C-D], [C-D-Y], [G2] and [G3]. All of
them treated the case when the target manifold is 5 2 which can be viewed
as a complex projective line QP1.

It is natural to study the similar problem when the target manifold is
a higher dimensional complex projective space. This is the subject of the
present paper. We concentrate on the case where the domain is the 3-
dimensional unit ball, and the target manifold is QP 2.

Let B3 be the 3-dimensional unit ball. Under an S1 action the base region
D E R2 is given by

D = {(r,z) GR 2 ; r 2 + z2 < 1, r > 0}.

Then f = (r, z) : B3 —>> D is an isoparametric map of rank 2. On the other
hand the distance function from a fixed point in QP2 is an isoparametric
function φ (0 < φ < §). Let fλ : S1 -> S 1, / 2 : S1 -> OP1 be harmonic
maps of constant energy densities 4̂ - and 4f , respectively. In fact, /i and f2

are harmonic polynomial maps and \χ = A;2, λ2 = k\, where &i, k2 G Z. We
will explain in Section 2 how f\ and f2 can be used to define an equivariant
map / from B3 into QP2. We obtain the following result.

Main Theorem 1 For any equivariant initial-boundary condition with re-
spect to the isoparametric map f and the isoparametric function φ, whose
restriction to D is a regular function φ0 (0 < φ0 < | , 0(0, z) — 0) on D

and is of order O \r^Xl+λ2 j as r —>• 0, there exists a unique global solution

to the evolution equation for the boundary value problem of harmonic maps

from B3 into GP 2. Furthermore, this solution subconverges to an equivariant

harmonic map as t —> oo.

Remark. It is well-known that for complex projective space with the
Fubini-Study metric, the sectional curvature lies between 1 and 4, the radius
of the geodesic convex ball is j and its diameter is | . The boundary condition
in our theorem overpasses the convex ball and can reach any possible range.

The reminder of the paper is organized as follows:
2. The Geometry of OPn;
3. Construction of the Equivariant Maps into QP2;
4. Heat Flow;

4.1. Short Time Existence,

4.2. Barrier Functions,
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4.3. Proof of the Main Theorem;
5. Final Remarks.

Acknowledgement. Parts of this work were carried out while the author
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He is also grateful to Professor H. Urakawa for his kindness and helpful
discussions on this work.

2. The Geometry of OPn.

Let π : 5 2 n + 1 —>• QPn be the usual Riemannian submersion with totally
geodesic fibers S1. For any Z e S2n+1 there exist X e S2n~λ and Y e S1

such that

(2.1) Z = (Xsine/),Ycosφ), 0 < φ < ~,

where φ is an isoparametric function on 5 2 n + 1 which is equivariant with
respect to Riemannian submersion π. This induces an isoparametric function
on QPn . We denote it by the same letter φ. The level hypersurfaces of φ
are given by

(2.2) Mφ = SI2"'1 (sin φ) x S 1 (cos φ)/S\

o<Φ<π-

with the focal point A £ QPn and the focal variety OP*1"1. One can easily
see that Mφ is the geodesic sphere at the distance φ from A.

Every geodesic emanating from the point A lies in certain complex pro-
jective line passing through A. It follows that these projective lines are
the integral manifolds of the distribution {n = grad^, Jn}, where J is the
complex structure of QPn. We know that OP1 = 5 2 ( | ) of constant sec-
tional curvature 4, which is totally geodesic in QPn. The integral curves of
n = gτ&dφ are geodesies in QPn. Thus QP1 has the metric form in polar
coordinates

/I \

(2.3) dφ2+ (-sm2φ\

where 0 < a < 2π. It follows that Jn lies in the principal direction corre-
sponding to the principal curvature —2 cot 20.

For any Z in a level hypersurface Mφ we draw a geodesic η(φ) connecting
the points A and Z (7 is unique and perpendicularly intersects Mφ, since the
cut locus distance is | ) , then extend it to the focal variety OP71"1. This yields
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a unique intersection point A' E OP72"1. These two points A and A' uniquely
determine a complex projective line QP1 = 5 2 ( | ) which perpendicularly
intersects the geodesic sphere Mφ at 5 2 ( | sin 2φ). Therefore, in QPn there are
geodesic polar coordinates (</>, α, Z'), where a is another coordinate on QP1

from A, and Z1 is the coordinates on the focal variety OP71"1. Choosing a local
orthonormal frame field in QP71"1 near A1 then parallel translating it back to
the Z along 7(0), it can be proved that all of those lie in principal directions
corresponding to the principal curvature —cot φ (see author's previous paper
[XI]). Hence, we have

Proposition 2.1. The geodesic sphere Mφ = S2n~1(sinφ) x S1 (cosφ)/Sι

in QPn has principal curvatures — cot φ of multiplicity 2n — 2 and —2 cot 2φ.

3. Construction of Equivariant Maps into

Let (M, g) and (JV, h) be Riemannian manifolds with metric tensors g and /ι,
respectively. Harmonic maps are described as critical points of the following
energy functional

(3-1) E(f) = \f e(f)
2> JM

where e(f) stands for the energy density. The Euler-Lagrange equation of
the energy functional is

(3.2) τ(/) = 0,

where τ(f) is the tension field. In local coordinates

(3.3) τ(/) =

where Γ^7 denotes the Christoffel symbols of the target manifold N. Here and
in the sequal we use the summation convention. For more detail knowledge
of harmonic maps please consult [E-L2].

Let TΓI : M —> M, π2 : N -> N be Riemannian submersions. If / : M -* N
is a fiber-preserving map, namely for the points X\, x*ι G M, τr2(/(:£i)) —
π2(/(x2)) provided π\{x\) = ^1(̂ 2)? then / is called an equivariant map
with respect to Riemannian submersions πx and π2. Due to the structure of
the Riemannian submersion there are vertical vector fields which are tan-
gent to fiber submanifolds and horizontal vector fields which are orthogonal
complements of the vertical vector fields. A map / is called horizontal if it
maps any horizontal vector field to a horizontal one [XI].
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Now we are going to define a concrete equivariant map from B3 into QP2

and apply the reduction theorem in [XI] to obtain a reduced harmonicity
equation.

Let B3 be the open unit 3-dimensional ball in M3. For any Z G B3 there
exist X G S1 and (r, z) E D, such that

Z = (rX,z),

where

D = {(r,z) G E2, r2 + z2 < 1, r > 0} .

It can be verified that r = (r, z) : B3 -» D is an isoparametric map of rank
2 with fiber submanifold Sι(r). In D we define a usual flat metric dr2 + dz2

such that r : B3 \ {r = 0} —> D is Riemannian submersion [X2].
On the other hand, on the target manifold CP2, as described in the last

section, there is an isoparametric function φ with focal point A and the focal
variety CP1.

Let fι : S1 -* CP1 be a harmonic map with the constant energy density
^ j Λ S1 -» S1 be a harmonic map with the constant energy density
^ . Now we define a map / : B3 -> CP2 as follows. For any Z = (rX,z) G
B3 \ {r = 0} we join A and fι(X) G CP1 by the unique complex projective
line which intersects a level hypersurface Mφ(ΓiZ) at a circle S'1(| sin 20). By
then using /2 we have a point f(Z) G Mφ^z) G CP2, where the smooth
function φ(r, z) on D will be determined later by the harmonicity equation.
It is easily seen that / is an equivariant map with respect to Riemannian
submersions in both domain and target manifolds. It induces a harmonic
map between fiber submanifolds. It is also a horizontal map.

Thus, we can use the reduction theorem in ([XI], pp. 273-275) to derive
the harmonicity equation. Let B2 be the second fundamental form of the
fiber submanifold Mφ in CP2. Let {^e} be a unit vector field of S1^). By
a direct computation

n / £ α. £ A χ .^sin^cos^ λ2 sin2φcos 2φ

Therefore, the reduced harmonicity equation follows

(r,z) GD, 0 < φ < | .
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If lim 0(r, z) — 0, then / can be continuously extended to whole B3. Fur-

thermore, /(B3) does not lie in a complex projective line QP1 for λi φ 0,

since any complex projective line starting from A intersects the focal variety

QP1 at only one point. If λ2 Φ 0, then /(B3) does not lie in a real projective

plane KP2. We are interested in the general case when both λi and λ2 do

not vanish. Our construction is essentially a generalization of that in [Z].

If the boundary data are also equivariant with respect to isoparametric

map f and the isoparametric function 0, then the boundary condition is

also reduced to the boundary dD. Furthermore, suppose that the function

Ψ — Φ\dD satisfies the following conditions:

(3.6) 1) ^ = 0 when r = 0;

2) max'ώ < —.
; dD ψ ~ 2

Any solution to the equation (3.5) with boundary conditions (3.6) supplies
us a continuous map / from B3 into QP2, which is smooth harmonic on
B3 \ {r = 0}. One can prove that the map is weakly harmonic on whole
B3 by a cut-off function technique. Thus, by main regularity theorem for
harmonic maps (see [Hi] or [E-L2, p. 397]), / is a smooth harmonic map.

4. Heat Flow.

Let us consider the following evolution problem:

(4.1)

dφ d2φ d2φ Idφ λx . n l λ2 . n

dz2 r dr 2r2 2r2

φ(',0)=φo(r,z), 0 < φ0 < | ,

(4.3)

Φ(',t)\dD = Φθ\dD = Ψ, Ψ{O,Z) = 0,

where φ0 is a regular function on D and is of order O ( r v ' λ l " f λ 2 J as r -> 0.

4.1. Short Time Existence. We first prove the short time existence for
(4.1) - (4.3). As derived above (4.1) is the reduction equation of the gen-
eral harmonicity equation from B3 into QP2. In B3 we choose axially sym-
metric coordinates (r, #, z) and in QP2 we have geodesic polar coordinates
(0, α,/?, 7), where (/?, 7) are the coordinates in the focal variety QP1 of the
isoparametric function φ. We consider the initial-boundary value problem of
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the evolution equations for harmonic maps / from B3 into QP2 as follows.

(4.4) ^ = τ(/),

(4.5) /(•Ϊ0) = /o( ),/( ,*)|5»=/o( )l5».

It is known that for regular /0 there exists a unique regular soluton / :
B3 x [0,Γ) -> OP2 to the problem (4-4) - (4.5), where T e ( 0 , o o ] is the
maximal existence time (see [H, p. 122]). In our case the initial-boundary
conditions are equivariant. Besides (4.2) and (4.3) we also have the following
conditions.

α(.,0) = &20, θί( ,t)\S2 =k2θ,

(4.6) /?(-, 0) = M , β(', t)\S* = M ,

7( ,0)=0, 7(-,*)U»=0,

where λx = A:2 and λ2 = k\.
If we can prove that the solution to the equations (4.4) with the equivari-

ant conditions (4.2), (4.3) and (4.6) is also equivariant, then by uniqueness
we will complete the proof of short time existence for (4.1) - (4.3). To do
this we consider the tension field in the above coordinates. Notice that the
concrete expression of the tension field in each component does not involve
θ variable explicitly, and neither do the cofficients in equations (4.4). The
solution to the equations (4.4) is invariant under translation of the θ vari-
able. Due to the equivariant initial-boundary conditions and uniqueness of
the solution, a priori we can assume that the solution has the following form:

(4.7)

where φ(r,z,0) = &(r,*), ά(r,s,0) = 0, β{r,z,0) = 0, 7(*\*,0) = 0. Let
hij be the metric tensor in the geodesic polar coordinates on the target
manifold QP2 as described above and h^ = diag(l, sin2 φ cos2 φ, sin2 φ,
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sin2 φsin2 /?cos2 β). The equations (4.4) then become

(4.8)
A;?

2 dφ
H + il),

Λ2 2(α t - Δα) - -^-(Φrΰr + ΦzOίz) = 0,

3̂3 (A -W)-Jfr (Φrβr + ΦΛ) + ^ (^ + %2) = 0,

/>44 (7t " Δ7) " ^ (Φrϊr + Φz%) ~ ~^ (βrϊr + β,%) = 0.

Let υ = y/h^ά. From (4.8) it follows that

2 ( k\

{βl + βl + 3 )
4/ι22 a^

i a ^ 2 ^ 4 4 ( 2 2) J _ 9 V ^ 2 2

v(r,2,0) = 0 , v(r,^,ί)|a£) = 0 for 0 < t < T.

By the concrete expressions for the metric tensor /i^ we know that the
coefficient of v is bounded from above o n f l x [0, s] for 5 G (0, T). By using
the maximum principle [F] we conclude v = 0, and then a = 0. Similarly,
after proving /? = 0 we also can prove 7 = 0. Hence, we have

Lemma 4.1. The evolution problem (4.1) — (4.3) has a unique regular
solution φ(r,z,t) on D x [0,T) /or some T > 0. Furthermore, if φo Φ 0,

(4.9) 0 < 0( r , ;M) < \ for (r,z,t) eDx (0 ,T) .

Proof. It suffices to prove (4.9). We write equation (4.1) in the form

dφ d2φ d2φ Idφ

where

λi sin Ίφ + λ2 sin 2φ cos 2φ
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which is bounded from above on D x [0,5] for s E (0,T). Due to (4.2) and
(4.3) we can employ the maximum principle to obtain φ(r,z,t) > 0 unless
it is identically 0. Similarly, let η = | — φ. Then η satisfies

where

, λ λi sin 2η — λ2 sin 2η cos 2η

Since η(o, z, t) — | > 0 we may choose small ε such that η > 0 on Dε x [0,5],
where s e (0,T), and

Dε = {(r,z)eD-, r<ε}.

It is easily seen that p(r,z,t) is bounded from above on {D\Dε} x [0,5].
Due to (4.2) - (4.3) we use the maximum principle again to conclude η >
0. D

4.2. Barrier Functions. To analyze the blow-up phenomena let us con-
sider the ̂ -independent solutions of (3.5), which are solutions to the follow-
ing ODE

(4 io) S + Y ί - ^ Φ - ^ s i Ά 2 φ c o s 2 φ = ° '
0 < r < l , 0 < φ < J.

To solve equation (4.10) with the condition lim φ(r) = 0 we make the
r—>0

change of variable r = e x, —00 < x < 0. Then (4.10) becomes

(4.11) —-£ -sin2<£- -f sin2φcos2φ = 0,
αx2 2 2

(4.12) - oo < x < 0, 0 < 0 < ^ , lim </>(z) = 0.

Multiplying (4.11) by %k and integrating, we obtain

(4.13) (^) -\xsm2φ-^sm22φ = c,
\dx J 4

where c is a constant. Due to the conditions (4.12) the constant c has to be

zero and (4.13) becomes

dφ
= ± y/Xι + λ2 cos2 φ sin φ.

ax
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Noting (4.12), the minus sign of the right hand side of the above equation is
impossible. Therefore, (4.13) reduces to

(4.14) -j- — y/\ι + λ2 cos2 φsinφ.
dx

For any initial condition φ(xo) — T, ~OO < x0 < oo, there is a unique
solution φ(x) to (4.14), which can be extended to whole line (—00,00) since
the right hand side of (4.14) is bounded. Notice that the constant solutions
of (4.14) are φ — fcπ, (k — 0 ,±1, ). Let us consider the solutions φ of
(4.14) with initial condition 0 < r < π. By uniqueness the solution curve
on (x, φ) plane lies within two lines φ = 0 and φ = π. Thus lim φ(x)

X—ϊ — ΌO

exists, which implies that there exists a sequence of points {xk} —> —00
such that jfa{xk) -^ 0. Considering the equation (4.14) on those points gives

lim φ(x) — 0. Similarly, lim φ(x) = π. In summarizing, we have
X->OO

L e m m a 4.2. For any τ < π there exists a unique solution φT(x) of
(4.14) satisfying the boundary conditions </>r(0) = r and lim φ(x) = 0.

x—> — 00

Futhermore,

φτι(x) < φT2(x),

where TΊ < r2.

L e m m a 4.3. Let φ(r) be a solution to (4.10) satisfying the boundary con-

ditions

= 0 and φ{r0) = 2arctan (crf^^j < | .

Then we have the estimates

(4.15) 2 a r c t a n ( c r V Λ l + λ 2 ) < φ(r) < 2arctan

where 0 < r < r0 < 1 and c is a positive constant.

Proof. Let

Lι(φ) = — - xAΓsin^

for —00 < x < lnr 0 . It can be verified that ^ = 2 arctan (cexpλ/X^x) is a
solution to the equation

LiWO=0.

For a solution 0(x) to (4.14) with

φ(\n r 0) = 2 arctan (cr/^ 7 ) < ^
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Lι(φ) =

= V% + λ2 cos2 φsinφ+ y/Xι + λ2 cos2 φ sin <£ —

= -\/λi + λ2cos2φsinφ — y/λ^sinφ > 0.

Notice that

φ(lnr0) = ^(lnr 0), lim φ(x) — lim
x¥oo a ; > o

If there exists a point # G (—00, lnr0) such that (0 — φ)(x) > 0, then there
is a positive maximum point x0 G (—00, lnr0) of φ — φ. We have

0 < Lλ(φ - ψ)(x0) = Λ/λΓίsin^ίa o) - sin^(x0)),

but the right hand side of the above expression is negative. The contradiction
implies φ < ψ on (-oo,lnr0]. Reversing back to the original variable gives

φ(r) < 2 arctan

Let

ί 2 (Ψ) = ~τ~ax
Then any solution of (4.14) is a supersolution of L2{φ) = 0. By the similar
argument as the above will obtain another inequality of (4.15) D

Lemma 4.4. There exists a solution φ to equation (4.10) satisfying the
condition lim^(r) = 0 such that φ > φo on D, where φ0 is the given

initial-boundary data satisfying conditions (4.2) and (4.3).

Proof By the condition of φ0 near r = 0 there are constants K and δ such
that

Φo{r,z) < KrVXl+λ2 when r < δ and (r,z) G D.

On the other hand, there is δλ > 0, such that

φc = 2 arctan (cr

when c > ~ and r < δλ. For this c,

^c ^ ^o o n D Γ\ {r < $0}}

where ί0 = min(<5,δι). Furthermore, we can choose c sufficiently large such
that o n D n { ί 0 < r < l }

φc > 2 arctan fcίo^λl+λ2J > max(</>0).
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We have shown that there exists c0 such that φCo > φ0 on D.
Choose r0 such that CorQXl+X2 = 1. Denote by φ the solution to (4.10)

with the boundary conditions \im φ(r) = 0 and φ(r0) — f. By Lemma 4.3,

Φ>Φco>Φo on D Π { 0 < r < ro}.

Notice that φ is monotone increasing and

- π
0|[ro,l] ^ 2 - Φβ-

D

We need the following comparison principle, as in [Gl, Lemma 4.3]. For
completeness we also include the proof here.

Lemma 4.5. Let φ(r,z,t) be a regular solution to (4.1) — (4.3) on [0,T).
Let φ be a regular solution to equation (4.1). Moreover, let φ and φ satisfy
the initial-boundary relations:

(4.16) Φ{r,z,0) > φo{r,z) on £>,

Φ\dD > ΦoldDi φ(0,z,t) = φo(0,z) = 0.

Then φ > φ on D x [0,T).

Proof Let η = φ - φ. By (4.16) η < 0 on D x {0} and on dD x [0,T). By
equation (4.1) η satisfies

(4.17) ηt = ηrr + ηzz + — +p(r,z,t)η on D x [0,T),
r

where

λx (sin 2φ — sin 2φ) λ2 (sin 4φ — sin 4φ)
2 (φ — φ) r 2 4 ( 0 — <̂>) r 2

1 Z * 1 - 1 Z * 1

= — r / cos2[sφ+(l-s)φ] ds-— cos4[sφ+(l - s)φ] ds.
r Jo r Jo

Since φ(O,z,t) = φ(O,z,t) = 0, for each t0 € (0,T) there exists ε > 0
such that p < 0 on Dε x [0, to] Hence p(r, 2:,t) is bounded from above on
D x [0, t0] . By using the maximum principle again we conclude that η < 0
o n £ x [ 0 , T ) . D



HEAT FLOW OF HARMONIC MAPS INTO OP2 575

4.3. Proof of the Main Theorem. Now we are in a position to prove the
theorem stated in the introduction by the standard method, as shown in
[Gl].

Let φ(r,z,i) be the unique solution to (4.1) - (4.3) on D x [0,Γ), where
T is the maximum existence time. If T is finite, then φ must blow up at T,
i.e. for some (r, z) G D

lim sup |V0(r, z,t)\ = oo.

By Lemma 4.4 we have the regular solution φ to (4.1), which is independent
of t and z. By Lemma 4.5, φ > φ on D x [0,Γ). Therefore, from (4.15) it
follows that

φ(r,z,t) - φ{0,z,t) < φ(r) - φ(0)

for sufficiently small r, and \φr\ is bounded at r = 0 when t -> T.

Therefore, if blow-up first occurs on r = 0, then we have a sequence
(fί?Zij*i) -» (0,z*,T) for which \φz\ -> oo. Then for all i sufficiently large,
we have

On the other hand, since φ is C2+a{D x {£}) for t < T , there exists {αt}
such that

(4.18)

We can choose r̂  < a{ and obtain

II0(-? Wj 2+α > max \φzrViU)\ > > — > —,

which contradicts (4.18). Thus we conclude that there is no blow-up on
r = 0 and there exists ε > 0, such that

(4.19) sup HV0IU < oo.
Dεx[0,T)

The solution φ can also be viewed as a bounded solution to the linear
parabolic equation

Φt = Φrr + Φzz H Φr + P(r > z > t) OΏ. D \ Dε X [0, T),

r

where
. . λi sin 2φ + λ2 sin 2ώ cos 2<i

P(r>*>*) ^
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It is easily seen that

)\<^-^ on D\Dε.

Hence we can apply the estimates for linear parabolic equations to obtain

(4.20)

where C(ε) is a constant depending only on ε (see [L-S-U], pp. 351-355).
Inequalitties (4.19) and (4.20) mean that there is no blow-up for the solution
and φ is the global solution and

sup IIV^tJHoo <C.
t€[0,oo)

It turns out that (4.20) holds for T = oo.
We now study the convergence of φ(r, z, t) when t goes to infinity. By a

direct computation the energy functional of the defined map / is

(4.21)

We have

λ2sin2φcos2φφlih f ( λismzφφt λ2 sin2φcos 20φ t \— = / I φrφrt + φzφzt + — + — rdrdz
dt JD \ 2r2 2r2 /

= jD[l(φrφtr) + l(ΦΛr)}drdz
1 λ

r

Using Stokes' theorem and the fact that φt\dD — 0, we see that the first term
of the above expression vanishes. Prom (4.1) it follows

(4 22) Έ- JD

Since

E(φ(r,z,0)) — E(φo(r,z)) < oo,

there exists a sequence of points {tk} —> oo, such that

/ φ\(x,z,tk)rdrdz -> 0.
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Thus for any η G L2(D)

(4.23) / φt(r,z,tk)ηrdrdz -> 0.
JD

This means that φt(r,z,tk) converges to zero weakly in L2(D) as tk ap-
proaches infinity. Prom the estimate (4.20) we may choose a subsequence
of {tk} (denoted by {tk} for simplicity), such that φ(x,z,tk) converges to
Φoo = φ(r, z, oo) strongly in C2+a(D \ De). Due to (4.23), φ^ is a weak so-
lution to (3.5), and therefore a regular solution to (3.5). Prom the previous
discussion

0<φ(r,z,t)<φ(r)

for any t. It follows that φ^ -» 0 as r -» 0. Hence φ^ is a regular solution to
(3.5)-(3.6) and by our previous discussion supplies an equivariant harmonic
map from B3 into OP2. D

5. Final Remarks.

1. If the domain manifold is the unit disk B2 we consider the polar co-
ordinates instead of the axially symmetric coordinates. By the similar but
simpler discussion we have a corresponding theorem . As for target manifold
being QPn (n > 2) we can also conclude a similar result.

2. It is natural to investigate the higher-dimensional cases. Let Bn + 1 be
the open unit ball in (n + l)-dimensional Euclidean space. For any Z G B n + 1,
there exist X G S"1"1, (r,z) G D such that

where D is as defined in Section 1. One of the factors of our construction
is the harmonic maps from Sn~ι into Sι in this case. When n > 2 such
a harmonic map has to be constant, then the construction reduces to the
special case. If let the target manifolds be quaternionic projective spaces,
there appears S3 instead of S1. It seems that results could be obtained for
maps from higher-dimensional ball into quaternionic projective spaces (see
e.g. [X2]). The analogue of (4.10) will be more complicated in this case, and
in particular will not admit a first integral. It is possible that the stability
theory of ODE would provide some information.
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