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BRIDGED EXTREMAL DISTANCE AND MAXIMAL
CAPACITY

ROBERT E. THURMAN1

We develop the concept of "bridged extremal distance"
between disjoint sets X and Z on the boundary of a finitely
connected domain G; that is, the extremal length of the fam-
ily of curves connecting X and Z which are allowed to stop at
a component of the "bridge" Y = dG \ (X U Z) and re-emerge
from any other point of that component. We connect bridged
extremal distance with the extremal problem of "minimal ex-
tremal distance", and express it in terms of the period matrix
associated with the harmonic measures of the boundary com-
ponents of G. Then, in direct analogy to Ahlfors and Beurl-
ing's extremal length interpretation of logarithmic capacity,
we use bridged extremal distance to give an extremal length
interpretation of "maximal capacity".

1. Introduction.

Early in the development of extremal length, Ahlfors and Beurling related
it to logarithmic capacity. Their survey article [3] introduced "reduced ex-
tremal distance" and connected it to capacity in the following way. Let Ω
be a planar domain containing the point at infinity whose boundary Γ con-
sists of a finite number of non-degenerate continua. Then Ω has a Green's
function g(z) with pole at infinity, and

is called Robin's constant for Ω. The logarithmic capacity of Γ is d(Γ) = e~Ί'.
To express 7 in terms of extremal length, consider the domain Ώ,R C Ω
bounded by Γ and the circle CR centered at the origin of radius R, where
R is large. Let XR denote the extremal distance between Γ and CR\ that
is, the extremal length of the family of curves in ΩR connecting Γ to CR.
Then λR increases to infinity with i?, and Ahlfors and Beurling (see also [2],

1This work forms a portion of the author's Ph.D. thesis, and was generously supported
in part by a grant from the Alfred P. Sloan Foundation.
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Ch. 4, Sec. 14) give the following asymptotic relationship between extremal
distance and capacity:

The right-hand side is called the reduced extremal distance of Γ.
In this paper we develop the concept of "bridged extremal distance", and,

in direct analogy to (1), relate it to the "maximal capacity" of a boundary
subset. We briefly describe both quantities below, so as to state the result
more precisely .

Let / be a conformal map of Ω, normalized so that f(z) ^ z near infinity.
Then by conformal invariance of Green's function, / preserves the capacity
(and hence the reduced extremal distance) of the full boundary Γ. On the
other hand, if A is a subset of Γ consisting of some number of components
of Γ, then the capacity of A is likely to change under such maps. This leads
us to consider the maximal capacity of A,

dm(A) = sup d(f (A)),
f

where the supremum ranges over all normalized conformal maps / of Ω. It
was shown in [14] that extremal functions always exist, and the maximal
capacity was expressed in terms of the capacity of the full boundary and
the harmonic measures of each of the components of Γ \ A. The results are
restated as Theorem B in Section 2 of this paper.

Bridged extremal distance is defined as follows. Fix an arbitrary finitely-
connected domain G, and partition its boundary S into subsets X, F, and
Z, each consisting of a union of components of S. Consider the family Φb of
rectifiable curves in G connecting X to Z, using Y as a "bridge" (see Figure
1). That is, in connecting X to Z, a curve in this bridging family is allowed to
stop at a point of a component of Y and re-emerge at any other point of that
same component. Define the bridged extremal distance Xb = λb

G(X,Y,Z) to
be the extremal length of Φ&, according to the precise definition of extremal
length in Section 2.

A main goal of this paper is to establish the following connection between
bridged extremal distance and maximal capacity. With Ω as before, let B
be the set Γ \ A. Again form ΩΛ C Ω, and compute the bridged extremal
distance between A and CR, using B as the bridge:
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Figure 1. A curve in Φ6.

Then with j m defined by dm(A) = exp(—7m), we prove that

^ - 7 m = lim (λb

R - — log R\ .

This is the content of Theorem 4.
The proof hinges on the relation of bridged extremal distance to the so-

lution of another extremal problem. Consider any conformal map / of the
domain (7, and define f(G) to be the domain containing f(G) which is
bounded only by f(X) and f(Z); that is, obtain f(G) from f(G) by filling
in the holes made by f(Y). Let λ/ denote the extremal distance between
f(X) and f(Z) relative to this larger domain. Then Xf depends on the con-
formal map /, so we define the minimal extremal distance between X and
Z in G to be

G ( , , ) / 5

with the infimum taken over all conformal maps of G. In Section 3 we use
a variational method to prove Theorem 1, which expresses λ in terms of the
harmonic measures of the components of S and establishes the existence of
extremal functions. In Section 4 we show that bridged extremal distance
equals minimal extremal distance: λ6 = λ. This is Theorem 2. The proof
of Theorem 4 then proceeds in Section 5, using some special properties of
minimal extremal distance.

In [6] Duren and Schiffer considered the minimal capacity of a boundary
subset,
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where the infimum is taken over all normalized conformal maps of Ω. They
showed that the minimal capacity of A equals the "Robin capacity" of A.
Duren and Pfaltzgraίf [5] then exploited an extremal length interpretation
of Robin capacity. We compare our maximal capacity results with those of
Duren and Pfaltzgraff in Section 6. In Section 7 we show how minimal and
bridged extremal distances can be interpreted for more general partitions
X U Y U Z of the boundary S.

N o t e . After this paper had been prepared for publication, the author
learned that families of bridging curves on Riemann surfaces were considered
in the 1970's by David Minda [8, 9]. He generalized earlier results on the
same subject by Marden and Rodin [7]. We briefly compare their results with
ours in the final section. We thank David Minda for calling our attention to
this earlier work.

2. Background.

We begin by reviewing the definitions and some of the key results in the
method of extremal length, and then state the main result on maximal ca-
pacity from [14]. See Ahlfors [2] (Chapter 4) or Ohtsuka [12] for a detailed
discussion of the following material.

Let Φ be a family of rectifiable curves lying in a domain U. Call a non-
negative Borel-measurable function p(x, y) defined in U an admissible metric
for Φ if

pds > 1
Jφ

for all curves φ E Φ. The left-hand side is called the p-length of φ. Define

the modulus of Φ to be

ί ff 1
M(Φ) = inf < / / p2 dxdy: p is admissible > .

[JJu )
Define the extremal length λ(Φ) to be 1/M(Φ). If there are no admissible
metrics, set M(Φ) = oo and λ(Φ) = 0. Call ρ0 an extremal metric if

M(Φ) =
J Ju

Two simple inequalities follow immediately from the definition.

Compar i son Principles . Let Φλ and Φ2 be families of curves.
(i) 7/Φχ C Φ 2 then λ(Φ2) < λ(Φχ).

(ii) // every curve in Φx has a subcurve in Φ 2 ? then λ(Φ2) < λ(Φi).
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There is a physical interpretation of extremal length. Think of the curve
family Φ as representing a system of homogeneous electric wires. Then the
extremal length λ(Φ) represents the resistance of Φ. The above lemmas
reflect the fact that systems of fewer, longer wires have greater resistance.

A confermal map / of U transforms the family Φ into a family /(Φ) lying
in the domain f(U). The map provides a one-to-one correspondence between
admissible metrics in the two domains, and conformal invariance of extremal
length follows esily:

In this paper we will primarily consider the family of curves connecting
disjoint sets Ex and E2 lying on the boundary of a domain U. The extremal
length of this family is called the extremal distance between Eλ and E2

in [/, denoted λu(E1,E2). The following theorem [2] shows that in the
case of extremal distance, extremal metrics can be expressed in terms of a
generalization of harmonic measure.

Theorem A. Let Eι and E2 be disjoint sets lying on dU, each a finite
union of arcs or closed curves. Let ω be the harmonic function satisfying the
following boundary conditions:

(i) ω — 0 on Ex.

(ii) ω = 1 on E2.

(iii) f£ = 0 ondU\(E1UE2).
Then po — I V ^1 ^s ^ e extremal metric for λu(Eι,E2). That is,

where

is the Dirichlet integral of ω in U.

By conformal invariance, we may assume dU is a union of analytic curves,
so that the boundary conditions on ω make sense. We will not give the proof
of Theorem A here, but it is easy enough (and will suit our purposes later) to
show that p0 — \ SJ ω\ is an admissible metric. For this, let φ be a rectifiable
curve in U connecting Ex to E2. Then

(2) / po ds = / Isyω\ \dz\ > ί \sjω dz\ = f dω
Jώ Jώ Jώ Jώ

= 1.

Note that the "flow-lines" of ω (the curves tangent to \/ω) have po-length
exactly equal to 1, so provide the shortest paths from Eλ to E2 in this metric.
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Theorem A provides the key to relation (1) between extremal length and
capacity. Roughly speaking, since Green's function g of Ω is identically zero
on Γ, and since g(z) ~ log R + 7 on the circle CR for large R ,

log R + 7

approximates the harmonic measure ωR of CR relative to Ω^. If we assume
the approximation is exact, then Theorem A says

An

Green's theorem then shows that the right-hand side equals 2π/{logi? + 7J.
Thus

i-7-λΛ--logi?

under our assumption about g.
We now restate the main theorem on maximal capacity from [14]. Let Ω

be a domain containing 00 whose boundary Γ consists of a finite union of
nondegenerate continua. Let Γ be partitioned into subsets A and 5, each a
union of boundary components:

Let hi(z) be the harmonic measure of B{ with respect to Ω, and set vι —
hi(oo) for i = 1,... , ra. Let pij be the period of the harmonic conjugate of
hi about Bj for i, j = 1,... , m:

1 f dhi
Pij = 2i }L aϊΓ£

where L is any positively oriented analytic closed curve looping around B3

exactly once, and not enclosing any other boundary component. Set v =
(iΊ, . . . ,i>m) and P = {pi3). For any normalized conformal map / of Ω,
denote by /(Ω) the domain containing /(Ω) which is exterior to f(A). Let
g(z) denote Green's function with pole at infinity for /(Ω). Recall that the
maximal capacity dm(A) of A is the supremum of the capacities d(f(A)) as
/ ranges over all normalized conformal maps of Ω.

Theorem B . With the above definitions,

dm(A)=d(r)exp\-jΓcivi),
i-l
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where c = (ci,. . . ,cm)

(3) cτ = ¥~ιvτ.

Extremal functions F satisfying d(F(A)) — dm(A) always exist. Extremal
domains F(Ω) are characterized by the property that each component F(Bι)
ofF(B) is a union of analytic arcs on which g is constant. That is, d(F(A)) =
dm(A) if and only if g(z) is constant on F(Bι), for each i = 1,... , ra. In
this extremal case, the constant values are uniquely determined and are given
by the vector c: g(z) = Ci on F(Bι).

Corollary. Letjm be such that dm(A) = e~Ίm. Let g(z) be Green's function
for Ω with pole at infinity, and let hι(z) be the harmonic measure of Bi with
respect to Ω. Set M(z) — g(z) + Σ i l i ^ i W j where c< is defined in (3).
Then 7m = l i m ^ ^ M ^ ) - log j*)}.

3. Minimal extremal distance.

We now give an explicit expression for minimal extremal distance and char-
acterize extremal domains in a way that parallels Theorem B. The crux of
both proofs is an application of Schiffer's method of boundary variation to
extremal domains.

Let G be a domain whose boundary S consists of a finite union of non-
degenerate continua. Let S be partitioned into subsets X, Y and Z, each a
union of boundary components:

X = X1U'-UXr,

Y = Y1U'.'UY8,

Z = Z1 U UZ*.

Let ηz{z) be the harmonic measure of Z relative to G and let ηι(z) be the
harmonic measure of Y"f, for i = 1,..., s. Let wι and wz be the periods of
the harmonic conjugate of ηι and ηz, respectively, about Z. Let q^ be the
period of the harmonic conjugate of ηι about Yj. Set w = (—w\,..., — ws)
and Q = (%). For any conformal map / of G, denote by f(G) the domain
containing f(G) which is bounded only by f(X) and f(Z). Let fjz{ζ) denote
the harmonic measure of f(Z) relative to f(G). Recall that λ/ denotes the
extremal distance between f(X) and f(Z) in /(G), and that the minimal
extremal distance λ between X and Z in G is the infimum of λ/ over all
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conformal maps / of G.

Theorem 1. With the above definitions,

(4) λ = 2π ί wz

V t = i

where b = (6 l 9 . . . , bs) and

(5) b τ - Q ^ w 7 .

Extremal functions F satisfying XF = X always exist. Extremal domains
F{G) are characterized by the property that each component F{Yι) of F(Y)
is a union of analytic arcs on which fjz is constant. That is, XF — X if and
only if ηz is constant on F(Yi), for each i = 1,... , s. In this extremal case,
the constants are uniquely determined and are given by the vector b: fjz = 6*
on F(Yi).

Proof. We begin with a compactness argument to establish the existence
of extremal maps. Let {/n} be a sequence of conformal maps of G such
that Xfn —ϊ X. Normalize the functions so that fn(zι) = 0 and f'n(zι) = 1
for each n, where zx is an arbitrary fixed point of G. The normalization
will not change the value of λ/n, but will make the sequence normal and
compact. Thus we may assume that {/n} converges locally uniformly in
G to a conformal map F. By the Caratheodory convergence theorem, the
domains fn(G) converge to their kernel, which is F(G). Thus the domains
fn(G) converge to F(G). A theorem of Navoyan [10], modified slightly to
hold in the complex plane, guarantees the convergence of the sequence {λ/n }
to the extremal distance XF. Thus XF = λ.

The next step is to apply a boundary variation to obtain information
about extremal domains. We assume from the beginning that G is extremal.
Then by Theorem A and Green's Theorem,

(6) i Dsm

where n denotes the direction of the outward pointing normal, and p is the
period of the harmonic conjugate of ηz about Z.

For each fixed point z0 in Y, there is a family of functions

^ ^ , p > 0 ,
Z — ZQ



BRIDGE EXTREMAL DISTANCE 515

analytic and univalent in the complement of some small connected subset
of Y containing z0 (see Duren [4], Section 10.3). Let G* = VP(G), and let
G* D G* be the domain bounded only by X* = VP(X) and Z* = VP(Z). As
above, the extremal distance of X* and Z* in G* is

where p* is the period of the harmonic conjugate of the harmonic measure
of Z* relative to G*. Since G is extremal for λ,

(7) p < p.

Each of the boundary variations Vp(z) of G acts also as an interior vari-
ation of the domain G. A variational formula due to Schiffer [13] allows us
to relate the two periods:

p =p + Re{-ap2H'z(z0)
2}

where Hz is the analytic completion of fjz- Thus by (7),

(8) Re{-ap2H'z(zo)
2}+O(p3)<0.

We may now invoke Schiffer's theorem for the method of boundary variation
([4], Section 10.3). Since (8) holds for each z0 G Y, and since H'z(z) is
analytic and not identically zero on Y, the theorem says that Y must be the
union of analytic arcs lying on the trajectories of the quadratic differential

H'z(z)2dz2 < 0.

Parametrizing each component Y{ of Y by z = z(t), we conclude that

jtHz{z{t))=H'z{z{t))z'{t)

is purely imaginary, or that

on Y. In other words, ήz(z) = &» on Y{ for some constants b{ with 0 < b{ < 1,
for i — 1,. . . , s.

We next compute the constants &;. Since fjz(z) = bi on Yi?

(9) »fe(2) = »7z(2)
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in G. Fix j E {1,..., s}. Since Yj is a union of analytic arcs, the normal
direction is defined almost everywhere. Therefore, we may integrate the
derivative with respect to the outer normal of both sides of (9) about the
curve Yji

I ψds= I
Jγ3 on JYj

ψ ψ ±
γ3 on JYj On ^ Jγ.

By definition,

JYj dn

And by the symmetry of the period matrix,

/

JY

ds = 2πwj.
Yj dn

Since ηz is harmonic on and around each

(11) / ψ
JYJ dn

ψds = 0.

Thus, (10) reduces to the equation

(12) -Wj =
2 = 1

Repeating this calculation for each j G { l , . . . , s } , we find that

(13) Q b τ = w τ .

But Q is invertible. To see this, recall that for the mxm period matrix R =
(rij) of an arbitrary m-connected domain Z), the (m — 1) x.(ra — 1) submatrix
R' = (^ij), for i,j — 1,... ,?τi — 1 is positive-definite, hence invertible. (See,
for instance, Nehari [11], Ch. I, Sect. 10.) The invertibility of Q follows,
since any square submatrix centered on the diagonal of a positive-definite
matrix is also positive-definite.

We now compute λ = XF. Equations (6) and (9) yield
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The last integral reduces to

2π I wz 4-

proving (4).
Finally, observe that none of the previous calculations depend on the

extremal character of the domain. The fact that ηz is constant on each
Yi completely determines the b{ and the extremal distance λF, which is
thus minimal. In other words, the extremal domains are characterized by
the fact that ηz is constant on each Yit This completes the proof of the
theorem. D

Example. Suppose X and Z are both single components of the boundary S.
Then G can be mapped conformally to an annulus with concentric circular
slits such that X and Z correspond to the inner and outer circles, respec-
tively, and each Yi corresponds to one of the slits. If the inner and outer
radii equal 1 and R, the map F is unique up to rotation. (See Ahlfors [1],
Chapter 6, Section 5.1, for example.) Then log|z|/logi? is the harmonic
measure ηz of the full annulus F(G), and is constant on each of the slits. By
Theorem 1, this is a configuration minimizing the extremal distance between
X and Y. The extremal distance is easily computed to be ~ logiί.

Any doubly-connected domain can be mapped conformally to an annulus.
The ratio of the inner and outer radii of any such annulus is a conformal
invariant, called the modulus of the doubly-connected domain. Thus for any
conformal map / of the domain G , the modulus of the doubly-connected
domain bounded only by f(X) and f(Z) is a minimum (and equal to R)
when f(G) is an annulus minus concentric circular slits.

This example provides us with a geometric interpretation of the constants
bi in this special case. Since ηz = log \z\/\ogR, Theorem 1 says that b{ =
log Γ;/log-R, where r{ is the radius of the circular slit corresponding to Y{.

Let v(z) = ηz{z) + Σ*=i btfi(z). Prom (10) and (11) we see that the period
of the harmonic conjugate of υ about Yi is 0 for i = 1,..., s. And from (6),
the period about Z equals (2πλ)~1, or (logi?)"1. Thus the conjugate of
(logR)v has period 1 about Z, periods 0 about Yi for i = l,.. .,s, and
consequently period -1 about X. Let f(z) be the (multiple-valued) analytic
function whose real part is (logi?)^(2:). Then it is known (see Ahlfors again)
that the above period values guarantee that e*^ is, up to a rotation, the
unique conformal map of G onto a slit annulus of inner radius 1.
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4. Minimal extremal distance = bridged extremal distance.

Recall that the bridged extremal distance is the extremal length of the family
Φb of curves in G bridging Y in connecting X to Z. This definition is
conformally invariant in the sense that, for any conformal map / of G, the
family of curves bridging f(Y) in connecting f(X) to f(Z) is just /(Φ&).
For a fixed such map, every curve φ in the family Φ/ of curves connecting

f(X) and f(Z) in the domain f(G) D f(G) has a subcurve in the bridging
family /(Φb). By the comparison principle, we immediately have

A6 = λ(/(Φ»)) < λ/,

whence λb < λ. Thus the equality λb = λ given by Theorem 2 below means
that there is some conformal map F of G which collapses Y in such a way
that there is no advantage in using F(Y) as a bridge in connecting F(X)
to F(Z). The map F must also minimize the extremal distance between
F(X) and F(Z). The preceding example illustrates the situation. A curve
connecting the inner and outer radii of the annulus makes progress only by
moving in a radial direction. It gains no advantage by stopping at one of
the concentric slits and continuing on from a different point of that slit.

Theorem 2. Let G, X, Y, and Z be as in Theorem 1, and let Xb and λ
denote the bridged extremal distance and minimal extremal distance, respec-
tively. Then

The extremal metric for Xb is p0 = |v^l> where

u(z) =

and ηz7 rji, and bι are also as in Theorem 1.

Proof. By the above remarks, we need only show λ6 > λ. Consider the
metric p0 = | V^l If 0 £ Φ&, then

/ Pods > I /
Jφ \Jφ

du
Φ

just as in (2). The curve φ may make jumps on components of Y. But since
u is constant on each of those components, the total change in u on φ is-just
the difference between the values of u on X and Z, or 1:

du = 1.
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Thus po is admissible for the bridging family Φ6, so

But

DG(u) = i ,
Λ

by the proof of Theorem 1, so it follows that λ6 > λ. D

With a little extra work, the proofs of Theorems 1 and 2 lead to three
different characterizations of the constants 6*.

Theorem 3. Let ηz and r\i denote the harmonic measures of Z and Yiy

respectively, relative to the domain G. For any conformal map f ofG, letηz

denote the harmonic measure of f(Z) relative to the domain f(G) D f(G)

bounded only by f(X) and f(Z). Let v(z) — ηz(z) + Σ;=i aiVi(z)> 'where

aτ E R. Then

(i) rjz is constant on each f(Yi) if and only if fjz — bι on f(Yi) for i —
1 , . . . , S .

(ii) The period of the harmonic conjugate of v about Yi is zero for i —
1,... , s if and only if α* = bi for each i.

(iii) The Dirichlet integral DQ{V) as a function of the a,i is a minimum if
and only if a{ — b{.

Proof The first assertion is contained in Theorem 1. The calculations
spanned by (10) and (13) in the proof of Theorem 1 verify assertion (ii). For
statement (iii), note that the same reasoning applied in the proof of Theorem
2 shows that p — \\/v\ is an admissible metric for Φbi simply because υ is
constant on each Y{. Thus DQ(V) > M(Φ 6), with equality for a{ — b^. To see
that this is the only possibility, expand DG(v) via Green's Theorem to see
that it is a quadratic function of the α ί5 and so can have only one absolute
minimum. Indeed, if we set the gradient of this function of the a{ equal to
zero, we are led directly to equations (12) and (13). D

5. Bridged extremal distance and maximal capacity.

We turn now to the relation between bridged extremal distance and maxi-
mal capacity, expressed in Theorem 4 below. Following the proof, we discuss
the connection between the conformally invariant constants defining bridged
extremal distance and those defining maximal capacity. The results are con-
tained in Theorem 5. We conclude the section with an example illustrating
both theorems.
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Recall that ΩR is the domain contained in Ω which is bounded by Γ and
the circle CR centered at the origin, of radius i?, where R is large enough so
that CR surrounds Γ. Define λ^ to be the bridged extremal distance between
A and CR in Ω#, using B as the bridge.

Theorem 4. Let Ω be a domain containing the point at infinity whose
boundary Γ consists of a finite number of non-degenerate continua. Let Γ be
partitioned into subsets A and B, each a union of components of Γ. Then
with the bridged extremal distance \b

R defined as above,

where the maximal capacity dm(A) equals e~Ίrn.

The proof is rather technical, so it may be helpful to begin with a sketch
of the main ideas. By Theorem 2, the bridged extremal distance Xb

R equals
the minimal extremal distance between A and CR in Ω^. It is the properties
of minimal extremal distance which will lead us to (15). We show that the
normalized conformal map of Ω maximizing the capacity of A essentially
minimizes the extremal distance between A and CR, for large R. Intuitively,
this makes some sense. To attain the maximal capacity, A must "expand" as
much as possible. But when A expands, the "distance" between A and CR

decreases. A rigorous argument follows from the characterization of extremal
domains for maximal capacity and minimal extremal distance. To highlight
the argument, assume that Ω is extremal for maximizing the capacity of A.
Then by Theorem B, Green's function g for Ω is constant on B. Moreover,
g « log it! + 7m on CR. SO as in the comments following Theorem A in
Section 2,

9

approximates the harmonic measure of CR relative to the domain bounded
only by CR and A, and is constant on B. Assume the approximation is
exact. Then by Theorem 1 the extremal distance between A and CR is a
minimum, and by Theorem 2 it equals λb

R. But Theorem A and Green's
theorem yield

2π

which gives (15). For an actual proof we must remove the assumptions
that the approximation of the harmonic measure by g is exact and that the
domain Ω is extremal.
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Proof of Theorem 4. Suppose first that Ω is chosen to maximize the capacity
of A. That is, assume that

d(A) =dm(A) = e~7 m,

where

(16) 7 r o = Urn {£(*)- log |* | } .

Then for any e > 0, there exists Ro > 0 such that when \z\ > Ro,

Thus if \z\ =R/(l + e) > i?0, then g(z) < logi? + 7 m . And if \z\ = Λ ( l + c),
then g(z) > logi? + j m . Thus by the maximum principle for harmonic
functions, the level curve LR = {z : g(z) = logi? + 7m} must lie between the
circles C#/(χ+e) and C#(i+e), as long as i?/(l + e) > Ro. Let OJR C Ω be the
domain bounded by A, B: and LR, and let O Λ be the domain bounded only
by A and LR. Since Ω is extremal, g is constant on the components of B.
Thus the function

g{z)
log R 4- 7m'

which takes the values 1 on LR and 0 on A, is the harmonic measure of LR

relative to OR and is constant on the components of B. By Theorems 1
and 2, the extremal distance between A and LR in OR equals the bridged
extremal distance between A and LR in O β , using B as the bridge:

Since L# is bounded by CΉ/(i+e) and Cκ(i+€) for i? large,

by the comparison principle for extremal length. But by Theorem A and
Green's theorem,

XSR(A,LR)

Combine these last two results to see that

(17) λ6

f i / (1+f) - i - logi? < ^ 7 m <
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whenever R is large. If we now add ^ log(l -j-e) to both sides of the left-hand
inequality in (17), we get

λ VH> - hlog ( ϊ f i ) - h{Ίm+log(1+e))'
whence

limsup (λb

R - i - logβ} < i - (7 m 4- log(l + c)).
Λ - ) OO L zπ J zπ

Since 6 > 0 is arbitrary,

limsup \λb

R- — logR\ < — ηm.

A similar manipulation of the right-hand inequality in (17) yields

This proves (15) if Ω is extremal for maximizing the capacity of A.
What if Ω is not extremal? The limit in (15) is invariant under any

normalized conformal map of Ω. The same normalized invariance for reduced
extremal distance was noted by Ahlfors and Beurling in [3]. The proof (see
[12], Ch. 2, Sec. 23) easily adapts to our case. Since by Theorem 1 there
is some normalized conformal map of Ω which maximizes the capacity of A,
our proof is complete. D

For fixed Λ, let bR = (6i(Λ),... ,δm(Λ)), w β = K ( Λ ) , . . . , wm(i2)), and
QR = (g^(i?)) be the constants from Theorem 1 defining the minimal ex-
tremal distance between A and CR in ΩR. Thus Q/?b^ = w^. In view of
Theorem 4, it is natural to expect a corresponding relation between these
constants and the constants given by P c τ = v τ from Theorem B defin-
ing maximal capacity in Ω. The following theorem, which we state without
proof, describes the connection. Assertions (i) and (ii) describe the asymp-
totic behavior of the period matrix associated with the harmonic measures
of ΩR as the circle CR is dilated to infinity. The example following the the-
orem provides a geometric interpretation of the constants bi(R) and Q, and
illustrates assertion (iii).

Theorem 5. With the above definitions,
(i) Hindoo QR = P
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(ii) Hindoo (log R) wR = v

(iii) limi?_^00(log R)bR = c

Example. Suppose that A is a single component of Γ. Then there is a
normalized conformal map F of Ω such that F{Ω) is the exterior of a disk
centered at the origin minus concentric circular slits outside the disk. The
map may be chosen so that F(A) is the boundary of the disk, and each
component of F(B) is one of the arcs. Relabel F(Ω) to be Ω. Then the
capacity of A is the radius r of the disk. Green's function g of the exterior of
A is log (I z I /r), and is constant on each component of B. Thus by Theorem
B, the capacity of A is maximum, so j m = — logr. Let T{ be the radius of
the arc Bt. Then c{ — g{Bi) = log(ri/r).

Let R be large enough so that CR encloses all of Γ. Then ΩΛ is a slit
annulus. As in the example in Section 3, λ^ = ^ log R/r, so

which confirms Theorem 4. Since ηR{z) = log(|^|/r)/log(jR/r), we have
bi{R) = ήR(Bi) = log(ri/r)/log(Λ/r). Thus

log R — log r '

which converges to log ^ = Ci as R approaches infinity. This verifies state-
ment (iii) of Theorem 5.

6. Maximal extremal distance and Robin capacity.

In Theorem 1 we considered the problem of minimizing the extremal distance
between the subsets X and Z on the boundary of the domain G. We now
discuss the opposite problem of maximal extremal distance and relate it to
Robin capacity.

For simplicity, we assume that each component of S — dG is an analytic
Jordan curve. For any conformal map / of G, we defined f(G) to be the
domain containing f(G) bounded only by f(X) and f(Z), and λf to be the
extremal distance between f{X) and f(Z) in /(G). Define now the maximal
extremal distance between X and Z to be

Λ = supλy,

where the supremum is taken over all conformal maps / of G. In analogy to
Theorems 1 and 2 for minimal extremal distance, the next theorem computes
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maximal extremal distance by a Dirichlet integral and characterizes extremal
domains . For a given map /, recall that ηz is the harmonic measure of f(Z)
relative to /((?).

Theorem 6. Let \G(X,Z) denote the extremal distance between X and Z
in G; that is, the extremal length of the family of curves in G connecting X
and Z. Then

where w(z) is the unique harmonic function in G such that w(z) — lonZ,

w(z) Ξ O on X, and | ^ = 0 on Y. Extremal functions F satisfying λF = Λ

always exist. Extremal domains F(G) are characterized by the property that

each component F(Yi) of F(Y) is a union of analytic arcs on which

7Γ=°
on

Sketch of proof. The proof of existence of extremal domains is exactly as in
Theorem 1. The proof of the characterization of extremal domains proceeds
also as in Theorem 1, through the method of boundary variation. If G max-
imizes the extremal distance between X and Z, Schiffer's theorem tells us
that Y is the union of analytic arcs lying on the trajectories of the quadratic
differential

H'z{zfdz2 > 0,
where Hz is the analytic completion of ήz in G. This leads us to conclude
that

on y, where z(t) is a parametrization of any component of Y. By the
Cauchy-Riemann equations, this implies that

on Y. To compute Λ, observe as in (6) that

dηz

Let w(z) be as in the statement of the theorem. Then w and ηz have the
same mixed boundary values on S — c?G, so must agree in G. In particular,

dη
ds= —ds.

Jz on Jz on
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But
dw f dw 1

d d D()
f dw f

Jz dn Jd

—ds = DG(w)= / v 7 , ,
dG dn \G(X,Z)

by Theorem A.
We have shown that if G is an extremal domain, maximizing the extremal

distance between X and Z in G, then η^ξ- = 0 on Y. But as in Theorem

1, if fjz has this property, the above calculations lead to the same extremal

distance, which is thus maximum. The property therefore characterizes ex-

tremal domains. D

By way of illustration, suppose X and Z are single components of S. There
is some conformal map F\ such that the extremal distance between Fλ(X)

and F1(Z) is maximum. If we follow by a map F2 of Fι(G) onto an annulus

centered at the origin, then the extremal distance between F2 o Fλ (X) and

F2 o Fι (Z) is still a maximum, and F2 o F\ (G) is an annulus with some pieces

(corresponding to F2oFχ (Y)) removed. Call the new domain D, and call the

corresponding boundary subsets X, F, and Z. Then D is an annulus, say

of inner radius 1 and outer radius P, so ηz(z) — log|z|/logP. The curves

in D on which ηte- — 0 are exactly the radial segments connecting X and Z,

so by the characterization of extremal domains, each component of Ϋ must

lie on a radial segment. We thus have an independent proof of the existence

and uniqueness of the well-known map of a multiply-connected domain onto

a radially-slit annulus. The extremal distance \G(X-> Z) equals the maximal

extremal distance λ, which is ~ log P. Thus, for any conformal map / of G,

the modulus of the doubly-connected domain bounded by f{X) and f(Z) is

bounded from above by P.

Return now to the setting for maximal capacity, where Ω is a finitely-

connected domain containing infinity. We showed in the proof of Theorem

4 that a map maximizing the capacity of the boundary subset A must es-

sentially minimize the extremal distance between A and the circles CR for

large R. This is reflected in the asymptotic relation

2π '

where we recognized the bridged extremal distance λ^ as the minimal ex-
tremal distance between A and CR.

Recall that Robin's function R(z) is the unique function harmonic in Ω\oc
such that R(z) = 0 on A, the normal derivative | ^ is zero on £?, and such
that R(z) — log \z\ is harmonic at infinity. The Robin capacity of A relative
to Ω is δ(A) — e~p(A\ where

p(A)= \im{R(z)-\og\z\}.
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Duren and Schiffer [6] showed that Robin capacity can be interpreted as
minimal capacity:

δ(A) = inίd(f(A)),

where the inίimum ranges over all normalized conformal maps of Ω preserv-
ing infinity. In [5] Duren and Pfaltzgraff exploited the following relation
between extremal length and Robin capacity:

(18)

Since we can now recognize \QR(A, CR) as the maximal extremal distance
between A and CR, equation (18) suggests that maps minimizing the capacity
of A essentially maximize the extremal distance between A and CR. As in
the proof of Theorem 4, we could make this more rigorous by exploiting the
similar characterizations for maximal extremal distance and Robin capacity.
Duren and Schiffer showed that d(f(A)) is minimum if and only if Green's
function g of the exterior of f(A) satisfies | ^ = 0 on f(B).

7. More general partitions of the boundary.

Suppose G is an annulus, and X and Y are the top and bottom halves,
respectively, of the inner circle. For any conformal map / of G, we set
f(X) = {C(f,z) : z e X}, where C(f,z) denotes the cluster set of / at the
point z. What can we say about the minimal and bridged extremal distances
between X and the outer circle Z in this case? We briefly indicate below
how the results on minimal extremal distance and bridged extremal distance
might generalize to arbitrary partitions X U Y U Z of the boundary S of G.

In [14] we found that the maximal capacity dm(A) for arbitrary partitions
A U B of the boundary Γ equals dm([A]), where [A] is the union of all com-
ponents with which A has non-empty intersection. In other words, if even a
single point of A lies on a component of Γ, the maximal capacity is the same
as if that entire component belonged to A. This basically follows from the
fact that, with the cluster point definition for /(A), we can find a conformal
map / such that f(A) = /([A]), no matter how thinly A is distributed. The
connection between maximal capacity and bridged extremal distance thus
makes the following conjecture plausible.

Conjecture . Let Z be a union of components of S, and let X UY be an
arbitrary partition of S\Z. Let (Y) =Y\ [X]. Then
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and

So, for example, the bridged extremal distance between the top half of
the inner circle of the annulus and the outer circle should be the same as the
extremal distance between the inner and outer circles.

The conjecture is easily proved if we include in the family of bridging
curves from X to Z all paths from [X] to Z. One can justify including these
curves in the following way. Suppose a component Si of S contains points
of X and Y. A path 7 from a point in Y Π Si to Z does not connect X to Z.
But let p be any point in the non-empty set X Π Y Π Si. The "path" {p} U 7
"bridges" Y in connecting X to Z, and has the same p-length as 7 for any
admissible metric p.

If we instead insist that all bridging curves contain an initial segment in G
with endpoint in X, the assertion for bridged extremal distance is still true
if the family of curves in G connecting X to Y has zero extremal length. If
it does not, the question remains open.

8. Earlier work on bridged extremal distance.

In [8] and [9] Minda extended results of Marden and Rodin [7] in comput-
ing a generalization of bridged extremal distance on Riemann surfaces. He
considered partitions X UY U Z UW of the components of 5, where the
bridge Y is further partitioned into subsets Yu i = 1,..., n, each Y{ a union
of components of S. A curve connecting X to Z in his bridging family is
allowed to stop at any Ŷ  and re-emerge from a point on any other com-
ponent of Yi. Minda computes the extremal length of this family of curves
with the Dirichlet integral of a harmonic function u, uniquely defined by
the following conditions: u Ξ 0 on I , ti Ξ 1 on 7, | ^ = 0 on Ŵ , and
u = bi on Yi, where the constants {&;} are uniquely determined by requiring
JY %%ds = 0 for i — 1, . . . n (compare with Theorems 1, 2 and Theorem
3, assertion (ii)). He does not compute the b{ explicitly. Aside from our
more restrictive definition, the point of departure in this paper has been
to connect bridged extremal distance to the extremal problems of minimal
extremal distance and maximal capacity. Minda uses bridged extremal dis-
tance to devise tests for degeneracy in the classification of Riemann surfaces
[8], and to give extremal length interpretations of reproducing differentials
on Riemann surfaces [9].
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