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EIGENVALUE COMPARISONS IN GRAPH THEORY

GREGORY T. QUENELL

Let Γ be a finite graph with degree bounded below by k.
Let λi, λ2,..., AJV denote the eigenvalues of the adjacency oper-
ator on Γ, arranged in non-increasing order. We derive lower
bounds for the first several A; in terms of k and the diameter
of Γ.

Our bounds arise from a study of the roots of spherical
eigenfunctions of the adjacency operator on a fc-tree. We
transplant these eigenfunctions onto Γ to construct test func-
tions whose Rayleigh quotients are easy to estimate.

1. Introduction.

A standard technique for estimating the eigenvalues of the Laplacian on a
compact Riemannian manifold M with bounded curvature is to pack the
manifold with disjoint geodesic balls. The smallest Dirichlet eigenvalues of
the Laplacian on the balls (which may be easier to estimate) can then be
used as lower bounds for certain eigenvalues of the Laplacian on M. In this
paper, we explore what happens when the same techniques are applied to
the problem of estimating eigenvalues of the adjacency operator on finite
graphs of bounded degree.

In Theorem 6.1, we show how eigenvalues of the adjacency operator on
a finite graph Γ may be bounded in terms of the biggest eigenvalues of the
adjacency operator on "geodesic balls" in Γ. We find explicit bounds for the
eigenvalues on the balls (Theorem 5.2), and in Theorem 6.2, we turn these
into explicit estimates on certain eigenvalues of the adjacency operator on
Γ.

2. The setting: Linear algebra on Graphs.

We begin by introducing the principal notions in the spectral theory of
graphs and recalling a few results we will need from linear algebra.

Let Γ be a connected, undirected graph with a finite number n of vertices.
We will denote the vertices x1?x2> >χn- A function on Γ is a map from
the vertex set of Γ to the real numbers. The set of functions on Γ forms an
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n-dimensional vector space over R. A canonical basis for this space is made

up of the functions ί l3 δ2,. •, ίn> where

xf x J l if ί = j

[0 otherwise.

There is also a canonical inner product on this function space. If / and g
are functions on Γ, define

and note that the canonical basis is orthonormal with respect to this inner
product. We will denote the space of functions on Γ (now a Hubert space)
as L2(Γ).

There is a natural self-adjoint linear operator on L2(Γ), called the adja-
cency operator, and denoted A. It is defined by

where y ~ x means the vertex y is joined to the vertex x by an edge. The
easy way to see that A is indeed self-adjoint is to observe that its matrix
with respect to the canonical basis is simply the adjacency matrix of Γ which,
since Γ is undirected, must be symmetric.

The sequence of eigenvalues of A forms the spectrum of Γ. The study of
spectral graph theory involves looking for relations between the spectrum
of a graph and its geometric properties. This is analogous to the field of
spectral geometry on manifolds, where the spectrum of another self-adjoint
operator, the Laplacian, is related to geometric features of a manifold. The
analogy is very close, because any reasonable definition of a "Laplacian" on
a graph (some operator that looks like heat diffusion) involves the adjacency
operator in an important way. Consider, for example, a graph Γ which is k-
regular, meaning that every vertex in Γ has degree k. A Laplacian operator
Δ on such a graph, trying to look like minus the divergence of the gradient,
might be defined as

(1)

(2) = ((kl - A)f)(x),

where / denotes the identity operator on L2(Γ).
A basic result in spectral geometry is a theorem of Cheng [4], giving up-

per bounds on the eigenvalues of the Laplacian on a compact Riemannian
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manifold M in terms of the diameter of M and curvature bounds on M.
Intuitively, this result says that big manifolds have low fundamental fre-
quencies. Our purpose here is to formulate the graph-theory analogue to
Cheng's theorem, and derive lower bounds on the eigenvalues of the adja-
cency operator on a finite graph Γ in terms of the diameter of Γ and bounds
on the degrees of its vertices. Our sample Laplacian in line (2) shows that
the adjacency operator has the opposite sign from the usual Laplacian, so
that lower bounds on eigenvalues of A are the correct analogue to upper
bounds on eigenvalues of Δ.

If a graph Γ is finite and λ -regular, then the number k is in the spectrum of
Γ; the constant function is an eigenfunction for the value k. Furthermore, if
Γ is bipartite (meaning it contains no cycles of odd length) then the number
—k is also in the spectrum of Γ, corresponding to an eigenfunction with value
1 on half the vertices and —1 on the other half. A finite, A -regular graph is
called Ramanujan if every eigenvalue λ in its spectrum satisfies either |λ| = k
or |λ| < 2Λ/£Γ=T

Among other things, our results will explain the significance of the number
2y/k — 1 in this context, and clarify the assertion ([5]) that the second-
greatest eigenvalue of a finite, A -regular graph Γ cannot be much smaller
than 2y/k — 1 if Γ is large.

We conclude this section by recalling two results from linear algebra: the
variational characterization of eigenvalues and the Perron-Frobenius theo-
rem.

Let A be a self-adjoint linear operator on an n-dimensional Hubert space
V, so that A has n real eigenvalues λx > λ2 > > λn with corresponding
eigenvectors ^1,^2, > vn. Let υ be a non-zero vector in V. The Rayleigh
quotient for v is the quotient (Av,v) / (v,υ). Clearly, if v happens to be
an eigenvector Vi of A, then the Rayleigh quotient for υ is equal to Â . In
fact, each eigenvalue of A is an extreme value of the Rayleigh quotient over
an appropriate subspace of V. We will use this version of the variational
characterization of eigenvalues:

Theorem (Rayleigh's Principle). With notation as above, for each index
l<i<n,

(Aυ,v)
v±τi-1 (υ,v)

where T^χ is the subspace of V spanned by the eigenvectors Vi,v2,... ,Vi-i

For a proof, see [9] or [6].
The Perron-Frobenius theorem is stated in terms of matrices rather than

operators.
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A real matrix M = (ra^ ) is called non-negative if each of its entries is
non-negative. A non-negative, square matrix M is called irreducible if for
each pair (z,j), there is a non-negative integer p such that the (z,j) t h entry
of Mp is strictly positive. Since the ( i , j ) t h entry of the pth power of the
adjacency matrix of a graph Γ is equal to the number of edge sequences of
length p connecting vertex z to vertex j , it is clear that the adjacency matrix
of a connected graph is irreducible.

For each z, the row sum rt of a matrix M — (ra^ ) is given by

\ό) ri — / ,mij'

Theorem (Perron-Frobenius). Let M be a non-negative, square matrix,
and suppose M is irreducible. Let r m i n and r m a x be the minimum and max-
imum row sums of M, respectively. There is a unique eigenvector v of M
all of whose entries are positive. The eigenvalue λ corresponding to v is the
largest eigenvalue of M and satisfies r m i n < λ < r m a x .

For a proof, see [8].

3. Trees and spherical functions.

For each integer k > 3, let Γk denote the A -tree, that is, the simply-
connected infinite graph each of whose vertices has degree k. The A -tree is the

Figure 1. Part of the 3-tree.
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graph-theoretic analogue of a symmetric space. The number k plays the role
of negative curvature, in that the number of vertices in a ball of fixed radius
in a fc-tree (formal definitions to follow) increases with &, just as the volume
of a unit ball in a symmetric space of negative curvature increases as the
curvature gets "more negative."

Our reference point in spectral graph theory is the family of spherical
eigenfunctions of the adjacency operator on Tk. These are analogous to the
spherical eigenfunctions of the Laplacian on a symmetric space which one
constructs using Bessel or Legendre functions (see [3]).

Given λ E (0,2\/fc — 1) and x0 G Γk, the spherical eigenfunction S\ on Γ
centered at x0 is the function satisfying
(1)

(2)

(3) Sχ(x) depends only on the distance from x to x0.

We claim that there is a unique such function for each choice of λ, x0, and
k > 3, and will demonstrate this by constructing the function.

Since the value of Sχ(x) depends only on the distance from α; to xθ5 we can
consider S\ as a function on the non-negative integers, and construct it as
follows. Conditions (1) and (2) above imply that S\ satisfies the difference
equation

(4) Sx(r - 1) + (k - l)Sx(r + 1) = XSx(r)

for r > 1, with initial conditions given by

(5) 5λ(0) = 1

(6) ΛSA(I) = λ.

If we write

(7) Sλ{r) = c1x
r

1+c2x
r

2,

where C\ and c2 are coefficients to be determined later, then the difference
equation (4) implies that xγ and x2 must satisfy the quadratic equation
1 + (k — l)x2 — Xx. Thus we have

Since we have assumed 0 < λ < 2y/k — 1, equation (8) implies that X\
and x2 are complex numbers with modulus \j\Jk — 1. This suggests writing

(9) xll2 =
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Let

(10) θ =

so that 0 < θ < π/2. Then

r (c3 cosr# + c4 sinrθ).

Using the initial conditions Sχ(0) — 1 and Sχ(l) = λ/fc, we can determine

that c3 = 1 and c4 = ((& — 2)/k) cot #. Thus our spherical eigenfunction on

the A -tree is represented by the function

(14) Sx(r) = 1

 Γ fcosr<9 + — ^ - cot (9sinrθ) .
fc 1 k J

Reading S\ as a function of a continuous variable r, we observe that it

has the form of a sine wave with period 2π/θ and exponentially decaying

amplitude. If we rewrite S\ as

(15) 5 λ(r)

equate this with our other expression for S\, and use the addition formula

for sine, we can determine that the phase shift a is given by

k
(16) t a n α = - — - t a n #

K — Δ

with 0 < a < π/2, and that c5 = cscα.

Figure 2 shows some curves y — Sχ(x) for A; = 3. The values of λ, given

in the order in which the curves cross the rc-axis, are 0.5, 1, 1.5, 2, and 2.5.

We summarize our investigation of spherical eigenfunctions in the follow-

ing theorem.

T h e o r e m 3.1. Let k>3 be an integer and let λ G (0,2\/fe — 1). Let
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Then the function

(17)
CSC Oί

Sx(r) = -r sin{rθ + α),

where a = arctan ((k/(k — 2)) tan0), is α spherical X-eigenfunction of A on
Fk, in the sense that a function φ on Γk given by φ(x) = 5λ(dist(2;,α;o)), for
some fixed x0, satisfies Aψ — \φ and S\(x0) — 1.

- 0 . 2

- 0 . 4

Figure 2. Graphs of some Sλ functions.

We remark that the restriction λ G (0, 2y/k — 1) is artificial. An eigen-
function S\ can be constructed for any λ G M b y making only minor changes
to the development outlined above. See [2] or [7] for the details. In this
paper, we will need only the functions Sx with λ e (0, 2y/k — 1) and unless
otherwise specified, any λ we discuss will lie in this interval.

4. Zeroes of spherical functions.

Regarding S\ once again as a function of a continuous variable r, we now
investigate where the first zero of S\ occurs. That is, we wish to identify the
least positive r such that Sχ(r) — 0. Figure 2 suggests that the first positive
root of S\ increases with λ. We establish this in the following theorem.
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Lemma 4.1. Let S\ denote the spherical eigenfunction with eigenvalue λ
on the k-tree. For each r0 > 1, there is a real number λ G (0, 2\Jk — 1) such
that Sχ(r) >0for0<r<r0 and Sx(r0) = 0.

Proof. We use the form of S\ given in Theorem 3.1, that is, S\ is equal to
some positive exponential times the function sin(r# + a). By the construc-
tion, we know 5λ(0) = 1, so sin(0 + α) is strictly positive. Since θ and a are
both positive, the first zero of sin(r# + α) occurs when rθ + a = π. Solving
for r, we find that the first zero of S\ occurs when

(18) r Ϊ ϋ

From the definition of θ (Equation (10)), we get

(19) λ

which shows that θ is a continuous, monotone decreasing function of λ for
0 < λ < 2y/k — 1. As we noted earlier, the range of θ is the interval (0, τr/2).
The relation

k
(20) tan a = - — - tan θ

fa Δ

(Equation (16)) shows that a is a continuous, monotone increasing function
of θ for 0 < θ < τr/2, and thus that a is a continuous, monotone decreasing
function of λ.

Now the "first-zero" function r = (π — a)/θ is a continuous, monotone
increasing function of λ on 0 < λ < 2\/k — 1. Furthermore, as λ increases
toward 2\/k — 1, both θ and a decrease to 0, and the value of r at the
first zero increases without bound. As λ decreases toward 0, both θ and a
increase to τr/2, and the value of r at the first zero decreases toward 1. Since
the range of the "first-zero" function is (1, oo) and the function is monotone,
there is an inverse function giving, for each r E (1, oo) the unique value of λ
between 0 and 2\Jk — 1 such that r is the first zero of S\. D

We will use the notation Λ(r) for the function constructed in Lemma 4.1.
That is, for each r > 1, the number r will be the first zero of SΛ(Γ) In the
next lemma, we derive an estimate on Λ(r).

Lemma 4.2. For r > 1,

Λ(r) > 2Vk - 1 cos (—^—j .
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Proof. Let λ = Λ(r), so that the first zero of S\ occurs at r = (π — a)/θ,
where θ and a are the angles corresponding to the eigenvalue λ. Since θ and
a both lie in (0, τr/2) and tanα = (k/(k — 2)) tan#, we know tanα > tan#,
and thus that a > θ. This yields

/ Λ .v 7Γ — OL π — θ

(21) r = _ < _

Solving for θ gives

(22, « < L

Taking the cosine of both sides changes the direction of the inequality, giving

(23) cos0>cosί j .

Now cos0 = λ/ \2yjk — 1], so we have

(24) —7L= > cos

from which the result follows. D

We will need one more result concerning the functions SΆ, which we state
in the following lemma.

Lemma 4.3. Let r0 > 1 be an integer and let λ = Λ(r0). Then the function
S\ is monotone decreasing on the integers 0,1,... ,r0.

Proof. We know that S\ is positive on the integers 0,1,...,r0 — 1, that
Sχ(0) = 1, and that S\ satisfies the difference equation (4).

We proceed by induction, first noting that the difference equation for S\
implies that Sχ(l) — λ/k. Since λ < 2\/k — 1, we get

(25)

For k > 3, the expression on the right is always less than 1. Thus we have
established the base case, that Sχ(l) < Sχ(0).

Now assume that 1 < r < r0 — 1 and Sχ(r) < Sχ(r — 1). The difference
equation for S\ implies that

(26) (k - l)S-λ(r + 1) = XSx(r) - Sx(r - 1).
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Since Sχ(r - 1) > S\(r) and λ < 2^/k — 1, equation (26) gives the inequality

For A; > 3, the coefficient \2\/k — 1 — 1 j /(A; — 1) is always less than 1, and

since Sχ(r) is positive (because r < r 0 — 1), we have established that

D

5. Graph-theoretic balls.

Next we examine the graph-theoretic analogues of geodesic balls in symmet-
ric spaces and on manifolds.

Figure 3. Vξ in 3-tree.

We define the distance between two vertices x and y on a graph Γ to be
the number of edges traversed in the shortest path connecting x to y. We
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denote the distance from x to y as dist(x, y). In a connected graph, dist(:r, y)
is always defined, and it is easy to check that it is a valid distance function.

Let XQ be a vertex in a graph Γ, and let n be a non-negative integer. The
ball of radius n about x0, denoted B(xo,n), is the subgraph of Γ induced by
the set of vertices x in Γ with dist(^o?^) < n- (The subgraph induced by a
set S of the vertices of Γ is a graph whose vertices are the elements of S and
whose edges are all the edges of Γ which have both endpoints in S.)

Our reference graphs will be balls in the fc-tree. Let x0 be a vertex in ΓΛ,
and let n be a non-negative integer. Because of the symmetry of Γfc, the ball
of radius n around x0 is isomorphic to the ball of radius n around any other
vertex in Yk. The shape of the ball does of course depend on &, and so we
will use the notation V£ to denote the ball of radius n in Γk.

The quantity of interest to us is the largest eigenvalue of the adjacency
operator on \ζf, which we will denote

Theorem 5.1. For n > 1 and k>3,

Proof. Let x0 be the center of Tζf, and define a test function φ on V£ by

(27) φ(x) = Sx{dist(x,x0)),

where λ = Λ(n + 1). We claim that φ is an eigenfunction of the adjacency
operator A on V* with eigenvalue λ. To verify this, we examine Aψ(x) in
three cases.
(1) x = XQ. Then Aφ(x) is a sum of φ(y) over the k vertices y which are

joined to x0. The value of φ at each such vertex is Sχ(l), and we get
Aφ(x) = fcSλ(l) = λSλ(0) = Xφ(x).

(2) 1 < r = dist(:r,:ro) < n — 1. The neighbors of x include one vertex y
at distance r — 1 from x0 and k — 1 vertices z at distance r + 1 from
x0. Thus

Aφ{x) = φ{y) + {k - l)φ(z)

= Xφ(x).

(3) dist(:r, x0) = n. The vertex £ is joined to only one vertex y in V*, and

dist(xo,y) = n — 1. We also know that Sχ(n + 1) = 0, so we can write

Aφ(x) = φ(y)
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= Sx(n-l)

= Sλ(n-l) + (k-l)Sx(n + l)

= A5λ(n)

= \φ{x).

Since λ is an eigenvalue of the adjacency operator on V£, we must have

(28) A x ( O > λ = Λ(n ( )

D

The idea of using S\ to define a test function on a graph is called trans-
plantation. This technique is very flexible, and can be applied to graphs
other than Tk. In the next theorem, for example, we allow the graph Γ to
be multiply connected, and we even relax the fc-regularity requirement.

A graph Γ will be said to have minimal degree k if every vertex of Γ has
degree greater than or equal to k.

Theorem 5.2. Let Γ be a graph with minimal degree k > 3. Let x0 be
a vertex in F, let n be a positive integer, and let B = B(xQ,n) denote the
ball around x0 of radius n. Then the greatest eigenvalue of the adjacency
operator on B, denoted X\(B), satisfies

(29)

Proof. As in the proof of Theorem 5.1, we begin by defining a function ψ on

B by

(30) φ{x) = Sλ{dist(x,x0)),

where λ = Λ(n + 1). Since distances on Γ are well-defined, our function φ is
well-defined, and since all points in B are within n units of x0, φ is strictly
positive on B.

We claim that the Rayleigh quotient for <p, (Aφ,φ) / (φ,φ), is greater
than or equal to λ. Because the Rayleigh quotient for φ is a lower bound
for Ai(J5), and λ (by Theorem 4.2) is greater than 2y/k — lcos(π/(n + 2)),
we will be finished once we have established this claim.

The Rayleigh quotient for φ is greater than or equal to λ because Aφ is,
pointwise, greater than or equal to \φ. To see this, we examine Aφ(xY'm
three cases.

(1) x = x0. Then Aφ(x) is the sum of φ(y) over all the vertices y which
are joined to x0 by an edge. Since the degree of x0 is at least k: this is
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a sum over at least k vertices y, and the value of φ at each such vertex
is Sλ(l). Since 5 λ(l) is positive, the sum is at least as large as &5λ(l),
which is equal to \S\(0), which, in turn, is equal to λφ(x0).

(2) 1 < r = dist(α?, x0) < n — 1. Among the neighbors of #, there must be
one vertex y whose distance to a?o is r — 1. All the other neighbors z
of x must lie within r + 1 units of x0, and there must be at least k — 1
of them. Since S\ is decreasing, φ must decrease with distance from
xo, and therefore the value of φ at each z is greater than or equal to
S\(r + 1). This, along with the fact that S\ is positive in the relevant
domain, gives us the following chain of inequalities.

Aφ{x) = φ(y)

= λSx(r)

= Xφ{x).

(3) dist(rc, x0) = n. In this case, x must have at least one neighbor y whose
distance t o s 0 is n — 1. Any other neighbors z of x satisfy φ(z) > 0.
Also, Sx(n + 1) = 0, by our choice of λ. These observations justify the
following chain of inequalities.

Aφ(x) =φ{y)

>φ(y)
= Sx(n - 1) + (* - 1) 0

= XSx(n)

= λφ(x).

We have established that Aφ(x) > \φ(x) for each x E B, and we know
that ψ{x) > 0 for each x € B, so

(Aφ, ψ) = Σ Aφ(x)φ(x)

= λ (φ, ψ) ,
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showing that the Rayleigh quotient for φ is indeed greater than λ. •

We remark here that if B itself has minimal degree kλ, then the Perron-
Probenius theorem guarantees that λ\{B) > k±. However a ball B in a graph
Γ with minimum degree k can easily have vertices on its frontier with degree
less than k. The balls V^, for example, always contain vertices of degree 1.

6. Eigenvalue estimates.

We will say that two balls Bλ and B2 in a graph Γ are edge-disjoint if the
vertex set of Bλ is disjoint from that of B2 and there is no edge in Γ joining
any vertex of Bx to any vertex of B2.

Theorem 6.1. Let Γ be a finite graph. Let Bι,B2,... ,Bm be balls in
Γ which are pairwise edge-disjoint. Then the mth largest eigenvalue of the
adjacency operator on F, denoted λm(Γ), satisfies

λm(Γ)>minλ1(5 i),

where λ 1 (β i ) denotes the largest eigenvalue of the adjacency operator on the
subgraph Bit

Proof. Let <^ l 5..., </?m_χ be a set of eigenfunctions corresponding to the eigen-
values λ i , . . . , λm__i of the adjacency operator A on Γ. Because A is self-
adjoint, we know that the ψι can be chosen so that they are orthogonal,
and thus they span an (m - l)-dimensional subspace Tm_χ of L2(Γ). The
eigenvalue λm is characterized by

(31) λm = max ^ #

We will construct a test function from the eigenfunctions of the adjacency
operators on all the balls Bi. For now, let Ai denote the adjacency operator
on the ball B{. Let φi denote an eigenfunction corresponding to the first
eigenvalue Xι(Bi) of the operator Ai on each B^. Extend each function φi
to a function φi on all of Γ by setting φi(x) = 0 for x £ Bi. Because the
balls Bi are disjoint, the support of φi is disjoint from the support of φj if
i φ j^ so the functions φi are all orthogonal to one another. The subspace of
L2(Γ) spanned by the φi is therefore ra-dimensional, and so it must contain
a function which is orthogonal to Tm_χ. That is, there are coefficients
such that the function

(32) Φ
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is orthogonal to every function in Tm_x. The Rayleigh quotient of φi will
therefore be a lower bound for λm(Γ).

To estimate this Rayleigh quotient, we observe first that for each z, the
equality (AφuφΛ = (Aiφi.φi) holds, where A is the adjacency operator on
all of Γ, and Aι is the adjacency operator on just Bit This fact, from which it
follows that (Aφuφij is actually equal to λι(Bi)^ can be verified as follows.

x£Γy~x

yer

Σ Σ
y~x

B

We next make use of the fact that the Bι are edge-disjoint to show that

i, φΛ = 0 for i φ j . We have

jy~x

But Bi and Bj are edge-disjoint, so y ~ x and x G Bj imply that y ^ Bu

and thus that φi(y) = 0. Thus (Aφ^φ^ = 0.

And now we will compute the Rayleigh quotient for φ in two parts. First
the numerator:

In computing the denominator, we will use the fact that the functions
are mutually orthogonal.
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For each i, let £ = jf \ΦuΨi)<> and let Z = Σ G Then the Rayleigh

quotient for -0 is equal to

i

Since the coefficients &/Z are all positive and add up to 1, this Rayleigh
quotient must be greater than min λi (Bi), and the proof is complete. D

In the next theorem, we will bring into play our explicit estimates of
the eigenvalues λ1(jBi), assuming bounded degree, to derive explicit lower
bounds on λm(Γ) for m > 2. For the moment, however, let us examine what
Theorem 6.1 says about \χ (Γ). Since all the balls in the set {Bλ} are pairwise
edge-disjoint (there are no pairs of them), Bλ may be taken to be any ball in
Γ, and the theorem tells us that λi(Γ) > X1(B1), where Bλ is any ball in Γ. If
the degree of Γ is bounded below by k and the radius of Bγ is n, Theorem 5.2
implies that \\{B^) > 2y/k — lcos(π/(n + 2)). We may take n as large as
we like (since Bλ will never intersect another ball, no matter what), so we
can conclude that λχ(Γ) > 2y/k — 1. Unfortunately, this estimate is easily
beaten by the Perron-Frobenius theorem, which says that if the degree of Γ
is bounded below by fc, then λχ(Γ) is at least k. If, however, we can find a Bλ

which is slightly smaller than Γ and which has a minimal degree kx greater
than k, then Theorem 6.1 applied with Bx may yield a better estimate on
\ι than Perron-Frobenius theorem does when applied to Γ directly.

The diameter of a finite graph Γ is the maximum of dist(#, y) over all pairs
of vertices x and y in Γ. In the next theorem, we estimate the eigenvalues
of the adjacency operator on Γ in terms of the diameter of Γ.

Theorem 6.2. Let Γ be a finite graph with diameter d and minimal degree
k > 3. Then for 2 < m < 1 + d/4, the mth eigenvalue of the adjacency
operator on Γ satisfies

λm(Γ)
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where r is the greatest integer less than or equal to d/(2(m — 1)).

Proof. We claim there are m vertices in Γ, separated pairwise by distances of
at least 2r. If not, then the distance between any two vertices in Γ less than
(m — l)(2r) < d, contradicting the fact that the diameter of Γ is d. Choose m
such vertices #1, #2, , #m> and for each one, let 5* = B(xi, r — 1). The balls
Bι are edge-disjoint, because if x E B(xiir — 1) and y G B(xj,r — 1) (with
i φ j) and x and y are joined by an edge, then the distance between Xι and Xj
is less than or equal to 2(r—1)+1 = 2r—1, contrary to our choice of x{ and Xj.
Applying Theorem 6.1, we conclude that λm(Γ) > min; λι(Bi). Theorem 5.2
then tells us that each λi(Bi) is greater than 2y/k — 1 cos (π/(r + 1)), and
the result follows. D

One consequence of Theorem 6.2 for large (but finite) A -regular graphs
may be seen as follows. The largest eigenvalue of A on such a graph is fc,
and Theorem 6.2 gives the lower bound for λ2(Γ) as

(34)

where r is essentially d/2. As d gets large, the right side of (34) increases
toward 2y/k — 1, so if I\, Γ2,... is a sequence of fc-regular graphs such that

(35) lim diam(Γn) = oo,
n->oo

we can conclude that

(36) liminf λ2(Γn) >

egular graphs, Theorem 6.2 does not allow λ2

\-2y/k - 1,2y/k - l ] . The A -regular graphs
Even for moderately large A -reg

to be very far inside the interval
which, in spite of this crowding effect, have λ2 and all other eigenvalues
except ±k in the given interval are honored with the name Ramanujan.

7. Boundary case: radius zero.

We can get an interesting application of Theorem 6.1 using balls of radius 0.
Mostly for notational convenience, all our previous theorems excluded this
boundary case, but it is easy to state what happens when balls of radius
zero are considered. Briefly, we will need to define Λ(l) (it turns out to be
0), and so we will need to look at the function S\ when λ = 0. Here are the
boundary cases of our previous theorems, given in the order in which the
theorems originally appeared.
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Theorem 7.1. (Compare with Theorem 3.1.) Let k > 3 be an integer.
Then the function

is a spherical 0-eigenfunction of A on Γk.

Proof. This is just a matter of plugging λ = 0 into the development of Sχ in
Section 3. The value of θ turns out to be π/2, as does the value of a. D

Lemma 7.2. (Compare with Lemma 4.1.) S0(r) is the unique spherical
eigenfunction on the k-tree which takes on the value 0 at r = 1.

Proof. The difference equation defining S\ requires XSχ(0) = kS\(l). Since
Sx(l) = 0 and S\(0) = 1, we conclude that λ = 0. D

Lemma 7.3. (Compare with Lemma 4.2.) Λ(l) = 0.

Proof Immediate. D

A ball of radius 0 is a single vertex x. Since no other vertices are connected
to x, the adjacency operator on a ball of radius 0 is the zero operator, and
its only (and therefore largest) eigenvalue is 0. Thus the boundary case of
Theorem 5.1 is

Theorem 7.4. λi(Vo

fc) = 0.

Packing balls of radius 0 into a finite graph yields the following boundary
case of Theorem 6.2.

Theorem 7.5. Let Γ be a finite graph with minimum degree k > 3 and
diameter d. Let n be the greatest integer less than or equal to l+d/2. Then at
least n eigenvalues of the adjacency operator on Γ are non-negative. Let p be
the greatest integer less than or equal to 1 + d/4. Then at least p eigenvalues
of the adjacency operator on Γ are positive.

Proof Γ must contain n vertices separated from one another by distance at
least 2. If not, then the diameter of Γ is less than 2(n — 1), and therefore
less than d, contrary to hypothesis. We consider these n vertices as n balls
of radius 0, and apply Theorems 6.1 and 7.4 to conclude that λn(Γ) > 0.
The second assertion is immediate from Theorem 6.2. D
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