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PLANCHEREL FORMULAE FOR NON-SYMMETRIC
POLAR HOMOGENEOUS SPACES

JING-SONG HUANG

Let G be a semisimple Lie group and let if be a closed
reductive subgroup of G. The homogeneous space X = G/H
is called a semisimple homogeneous space. A fundamental
goal of harmonic analysis is to understand the group action
of G on the various function spaces of X. In particular, the
L2-harmonic analysis on X is to decompose L2(X) as a direct
integral of irreducibles, i.e., to find a family of irreducible
unitary representations {Vω \ ω € Ω} of G, and a measure v on
the set Ω, so that

(1.1) L2(X) Ξ / Vndv{ω) (unitary G-isomophism).
JΩ

The above decomposition is called the Plancherel formula
for the homogeneous space X. In this paper we prove the
Plancherel formulae for some non-symmetric semisimple ho-
mogenous spaces.

1. Introduction.

The equivalence classes of the representations of G on the minimal closed
invariant subspace of L2(X) is called the discrete series for X. The discrete
series may not exist for some homogeneous spaces. In the case X — G/{e} is
a semisimple Lie group, Harish-Chandra proved that G has discrete series if
and only if the real rank of G is equal to the rank of K ([HC]). In other words,
G has discrete series if and only if G has a compact Cartan subgroup. Harish-
Chandra also obtained a classification of the discrete series for semisimple
Lie groups. In the case X = G/H is a semisimple symmetric space, Flensted-
Jensen ([FJ]) proved that G/H has discrete series if

(1.2) rankofG/iϊ = rank of K/K Π H.

Later on Oshima and Matsuki ([OM]) proved if G/H has discrete series
then it must satisfy the rank condition (1.2). That is to say, the semisimple
symmetric space G/H has discrete series if and only if it has a compact
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Cartan subspace. Oshima and Matsuki also gave a description of all discrete
series for semisimple symmetric spaces. Since the group G can be regarded
as symmetric space GxG/ d(G), the results of Flensted-Jensen, Othima and
Matsuki are the generalizations of that of Harish-Chandra.

It is then a natural question to ask when a semisimple homogeneous space
G/H has discrete series? Based on the observation of the results mentioned
above, we would guess G/H has discrete series if and and if it has a com-
pact Cartan subspace. Then we face the problem how to define a Cartan
subspace for a semisimple homogeneous space. The author succeeded in
definiting Cartan subspaces for a class of semisimple homogeneous spaces in
[H]. These spaces are called polar spaces and they are natural generaliza-
tions of semisimple symmetric spaces. In this paper we prove that a polar
G/H has discrete series if and only if it has a compact Cartan subspace.
The main purpose of the paper is to describe all discrete series and prove
the Plancherel formulae for non-symmetric polar spaces.

The method we use is as follows. As we will recall in Section 2 the simple
non-symmetric noncompact polar spaces are essentially Spine(3,4)/G2(2),
G2(2) /SU(2,1) and G2(2) /SL(3,R). These non-symmetric polar homoge-
neous space are all isomorphic to some real hyperbolic symmetric spaces
G'/fP = SOe(p,g)/SOe(p,g-l). We have

Spine(3,4)/G2(2)^SOe(4,4)/SOe(4,3),

G2(2)/SU(2,l)^SOe(4,3)/SOe(4,2),

G2(2) /SL(3,R) <* SOe(3,4)/ SOe(3,3).

Moreover, these isomorphisms are induced by the embedding of G into G'', if
we denote by G'/H' the corresponding real hyperbolic spaces. It is our strat-
egy to make use of the powerful results ([R]) on real hyperbolic spaces to
obtain the decomposition (1.1) for polar spaces. The magic is that any irre-
ducible unitary representation of G' occurring in the decomposition for real
hyperbolic space remains irreducible when it is restricted to G, no matter if
it is in the continuous spectrum or in the set of discrete series. Therefore the
decomposition (1.1) for some real hyperbolic spaces induces the decomposi-
tion for polar spaces. The strategy used in this paper may be generalized
to study various harmonic analysis problems, such as discrete series, on a
larger class of semisimple homogeneous spaces by using known results on
semisimple symmetric spaces.

E. Heintze, R. Palais, C.-L. Terng and G. Thorbergsson have done an ex-
tensive study of isometric actions on polar Riemannian manifold and fc-flat
homogeneous spaces [HPPT]. T. Kobayashi and T. Uzawa [K] obtained
a description of discrete series of G2(2) /SU(2,1) and G2(2) /SL(3,R) in a
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different parameters by their beautiful method of discrete decomposition of
the restriction of Aq(λ)-modules to reductive subgroups. Kobayashi [K] also
proved the existence of discrete series for a lot of non-symmetric homoge-
neous spaces.

This paper is organized as following. In Section 2 we recall the definition of
polar spaces. In Section 3 we define the principal series for X. In Section 4 we
obtain Plancherel formula for X. In Section 5 we discuss the representations
of eigenspace spaces of G-invariant differential operators on X and obtain a
Poisson integral formula for If-finite eigenfunctions. The author would like
to thank Nolan Wallach for helpful discussions.

2. Polar spaces and real hyperbolic spaces.

Suppose G is a connected semisimple compact Lie group and H a closed
subgroup. In order for the homogeneous space G/H to have the same kind
of properties of a compact symmetric space, the first thing we expect is that
G/H has a Cartan subspace. Let g and f) denote the Lie algebras of G and
H respectively and q the orthogonal complement of f) in g with respect to
the Killing form of g. The tangent space of G/H at the identity eH can
be identified with the vector space q. We want that all maximal abelian
subalgebras contained in q are conjugated by the action of H. This action of
H is the adjoint action of G restricted to H and will be denoted by Ado(H).
Note that the representation space of Ado(H) is q, which is a vector space
over R It is very natural to require Ado{H) on q to be a polar representation
as defined below (Definition 2.2).

Let H be a compact Lie group and f) be its Lie algebra. Consider a
representation of H on a real vector space V. Let ( , ) be a if-invariant
inner product on V. For a vector v G V let av be the subspace of V defined
by

aυ = {w e V\(w,ϊ) -v) = 0 } .

In other words, av is the normal space to the iί-orbit H v at υ. A easy fact
about av is that it meets every iJ-orbit. A vector υ G V is called regular if
() υ is of maximal possible dimension.

Proposition 2.1 [D]. Fix a regular vector v0 G V. The following conditions
are equivalent:

(i) For any regular vector v G V, f) v = h (f) vQ) for some h G H.
(ii) For any regular vector v eV, av = h- aυo for some h G H.
(iii) For any w G aυo, (!) w> aVo) — 0.

Definition 2.2. A representation of H on V is called polar if it satisfies one
of the three equivalent conditions in Proposition 2.1. If υ G V is regular then
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the subspace aυ is called a Cartan subspace. Let a be a Cartan subspace. The
Weyl group W of the polar representation (π, V) is defined as NH(a)/ZH(a).

Here are a few examples of polar representations:
(a) The natural representations of the classical compact Lie groups.
(b) The nontrivial representations of the exceptional compact Lie groups

of minimal possible dimension.
(c) The adjoint representations.
(d) The action of Ado(H) on g/f) provided G/H is a symmetric space.

Definition 2.3. Let G be a semisimple compact Lie group with Lie algebra
g and H a closed subgroup of G with Lie algebra f). We say (g, ()) is a
simple polar pair if the action of AdG(H) on g/f) is an irreducible polar
representation. In general, a Lie algebra pair (g, f)) is call polar, if g =
θiflή f) — θif)* such that (fl<? fjj) is a polar pair for all i's. The corresponding
homogeneous space G/H is called a polar space.

Prom representation-theoretic point of view the polar spaces are more nat-
ural subjects to study than the symmetric spaces. The Cartan subspace α
and Weyl group W of a polar space can be defined by the corresponding
notions of polar representations. All the important results for compact sym-
metric spaces can be extended to compact polar spaces. For instance we can
show that there exists an algebra isomorphism from the set of invariant dif-
ferential operators on a polar space onto the W-invariant elements S(θc)w

of symmetric algebra S(dc) over αc This result is even true for noncompact
polar spaces since it does not depends on the various real forms. If (G, H)
is a compact polar pair with G simply connected and H connected, we can
describe the irreducible representations of G with a i/-fixed vectors in the
same way as for symmetric pairs.

It is clear that all compact simple symmetric pairs are compact simple
polar pairs. Therefore all compact symmetric spaces are compact polar
spaces. Besides symmetric pairs there are only two simple polar pairs (g, ίj)
of Lie algebras up to automorphisms of g. They are (#3,02) and (92?-̂ 2) (cf.
[H] Theorem 3.5.). Let G be a linear semisimple group and H be a closed
reductive group. The homogeneous space G/H is called a (non-compact)
polar space if its compact real form Gc/Hc is a compact polar space. Here
Gc and Hc are compact Lie groups such that their complexifications are
isomorphic to the complexifications of G and H respectively.

Theorem 2.4 ([H, Theorem 7.3]). Let U/K be a simple non-symmetric
compact polar space, with U simply connected and both G and K connected.
In other words, we assume that U/K is either G2(-i4)/SU(3) or
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Spin(7)/G2(-i4). Here 6ί2(-i4) is the simply connected compact Lie group with
Lie algebra g2. Then there are essentially three noncompact real forms G/H
of U/K {which means Gc = Uc and Kc = Hc) They are G2(2)/SU(2,1),
G2(2)/SX(3,R) and Spin(3,4)/G2(2) Here G2(2) is the noncompact real form
of the complex group G 2 .

In this paper we will prove the following theorem.

Theorem 2.5. Let U/K be a compact polar space with U connected and
simple connected and K connected. Let G/H be a noncompact real form of
U/K. Then G/H has discrete series if and only if it has a compact Cartan
subspace.

By Theorem 2.4 in order to prove the theorem it suffices to verify it for
the three non-symmetric simple polar spaces G2(2)/SU(2,1), G2(2)/SL(3,M)
and Spine(354)/G2(2) Since all of the three polar spaces have compact Car-
tan subspaces, we will show that they all have discrete series. We actually
obtain the Plancherel formulae for these homogeneous spaces in Section 4.
In particular, we obtain all discrete series for these homogeneous spaces.

The three non-symmetric polar spaces X = G/H, G2(2)/SU(2,1),
G2(2)/SL(3,IR) and Spine(3,4)/G2(2), are isomorphic to real hyperbolic spaces
in a special way. Now we describe the isomorphisms. Consider the following
three quadruplets:

1. Let G=Spine(3,4) be the subgroup of <2'=SOe(4,4). Let #'=SO e (4,3)
be the standard subgroup of G'. Then H — G Π H' is isomorphic to G2(2)

2. Let G=G2(2) be the subgroup of G ;=SO e(4,3). Let H'=SOe(4,2) be
the standard subgroup of G'. Then H — G Π H' is isomorphic to SU(2,1).

3. Let G = G 2 ( 2 ) be the subgroup of G ;=SO e(3,4). Let # '=SO e (3,3) be
the standard subgroup of G1. Then H = G Π H1 is isomorphic to SL(3,R).

List of the Three Quadruplets.

1.

2.

3.

G
Spin, (3,

G2(2)

G2(2)

4)

G'

SOe(4,

SOe(4,

SOe(3,

4)

3)

4)

H'

SOe(4,

SOe(4,

SOe(3,

3)

2)

3)

H

G2(2

SU(2,

SL(3,

)
1)
R)

In all of the three cases the inclusion of G c-> G1 induces a diffeomorphism'
of G/H onto G'/H'. In other words, the natural embedding G/H ^ G'/H'
is surjective. The very significance of these diffeomorphisms is that we can
make use the known results on real hyperbolic spaces to obtain the desired
results on polar spaces.
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For q larger than 1 the homogeneous space Gf/H' —SOe(p, #)/SOe(p, q—l)
may be realized as the hypersurfaces

v _ J τ rz WP+<1 I _ τ

2 _ . . . _ τ

2 _L_ τ

2 _J_ . . . 4- τ

2 —

under the left action of the group G' —<&Oe(p^q) of connected linear trans-
formations of W+q which leave the bilinear form (x,y) — —X\yi - ••• -

xvyv + xp+ιyv+ι H + xp+qyp+q invariant. Therefore the three polar spaces
can be identified with X for some proper integers p and q by restricting
the action of G' to G. Follow the idea in [R] we introduce the asymp-
totic cone Ξ = {ξ G W+q \ (ξ,ξ) = 0,£ / 0} of X. Denote by K and K'
the maximal compact subgroup of G and G' respectively. The manifold

{ j
may be regarded as a compact subspaces of the polar space, since Y =
K/K Π H = K'/K1 Π H'. Note that Y is contained in the asymptotic cone
Ξ, but not in X. The three cases we are interested have p and q equal either
3 or 4. So in the rest of the paper, we always have both p and q larger than
1.

3. Principal series for X.

We retain the notations in the previous section. Note that both G' and
G act transitively on Ξ, and the actions commute with the multiplicative
action of nonzero real scalars IRX. Hence the space of functions on Ξ which
transform according to a fixed character of IRX is invariant under the regular
representation of G or G'. So, for ε — 0,1 and i/EC, define

L^(Ξ) = {/ : Ξ -* C I f(aξ) = |α|-^signff(α)/(O,Vα G Rx

and J^\f(y)\2dy< 00},

where p= \(p + q — 2). The representation (πe j ί /, L
2

ει/(β)) is called a principal

series for X.

Proposition 3.1.
(i) The pairing of L2

εu{Έ) and L2_U(Ξ) defined by

_)= /
JY

is G'-invariant (and hence G-invariant).
(ii) The representation (τrε?ί/, L

2

εu(Έ)) and (πε^,L2

u(Ξ)) are contragredient
(as either representation of G or G').
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(iii) The representation (πε^,L2

 v(β)) is unitary for imaginary v.

Proof. The statement (i) is proved in Lemma 1 in [R]. The statement (ii)

and (iii) are consequences of (i).

To study the irreducibility of L2

εu{E) as a representation of G, we pass to
its jRΓ-finite part which is stable under the action of g obtained from πe?I/ by
derivation. First of all, the if'-finite functions in L2 ^(Ξ) is isomorphic to
L2

ε(Y) = {φ e L2{Y) I φ(-y) = {-l)εφ{y)}. Hence, as a representation of

~)
m+n=ε
(mod 2)

where Hm>n is the space spanned by the products of spherical harmonics of
degree m on Sp~1 with those of degree n on Sp~1. As is well known, the
if m ' n ' s are irreducible, pairwise inequivalent representations of K'. These
spherical harmonics are also irreducible representations of K when the action
of K' is restricted to K. We can prove this by using the case by case
argument.

Theorem 3.2. A subspace ofΣm+n=εmQά 2H
m'n is an irreducible (Q,K)-

module if and only if it is an irreducible {Q\K')-module.

Proof. Since ϊ acts irreducibly on g/6, a subspace of Em+n=emod 2H
m>n is

0-stable if and only if it is stable under t and a single element X in g not in
I. The element X G g is automatically contained in g1. The theorem follows
from Theorem 2 of [R] regarding L2

εv(E) as a (g^if^-module. D

Corollary 3.3.
(i) The representation (π ε ) I / ,L^(Ξ)) is an irreducible representation of G

or G1 unless —p + u is an integer.
(ii) // — ρ + v is an integer, then for any pair (u,i>),'u, v = ± 1 , satisfying

-p + u = ε+ -(u - ΐ)p + -(v - l)q (mod 2)

z z
the closure of

Σ ίHm>n I u (m + l- {p - 2)\ + v (n + ]- {q + 2)\ < v,m + n = ε (mod 2 ) 1

is a G-stable subspace of L2

εu(Ή), and any G-stable subspace is an intersec-

tion of some of these.
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4. Plancherel formula for X.

Now we introduce the polar coordinate on the polar space X = G/H:

(1, oo) x Y -> X, (α, y) κ> χ(a, y),

where

x(a,y) = - (a - a~ιy') + - (a - a^y") ,

if we decompose y = y' + y", with y' G S^"1 C Y and y" G 5 ί - 1 C F
in the obvious way. This map is analytically invertible on its image X' =

The G-invariant differential operators on X were described in [H]. They
are polynomials in Δχ ? the Laplace operator on X. In polar coordinates,
one has

d

da) V 'a-a-1 ^ ' a + crι) da
2 /•, N -2

ΔS,-i,

where Δ S P - I and Δ5,-i are the Laplacians on 5P"X and on Sq~ι (cf. (4) in
[R]).

Denote by D(X) the space of compactly supported smooth functions on
X. The dual space D'(X) of D{X) is the space of distributions on X. The
Laplacian Δχ5 considered as an operator on D'(X), can be restricted to a
self-adjoint operators on L2(X) in a natural way.

Lemma 4.1 ([R] Lemma 9).
TΛe Laplacian Ax is a self-adjoint operator on L2(X) with domain

Dom(Δx) = {/ G £>'(X) I / G L2(X) and Δ x / G L2(X)} .

As a self-adjoint operator on L2(X), Δ j has a spectral decomposition.
This decomposition can be identified with the decomposition in the sense of
(1.1). It is in this way that we obtain the Plancherel formula for X.

Theorem 4.2. The direct integral decomposition of L2(X) is as follows

(4.i) I 2 (i)-Γi

where the first sum is over ε = 0,1; c(ε,u) = 22p+1πp\Γ(v)/Γ(v + p)\ if
G =G2(2) and c{ε,u) = 22p+1πp\Γ(u)/Γ{u + p)\ x |tan(|π(p + v + ε))| if
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G = Spine(3,4); the second sum is over ε = 0,1 and v > 0 for which v + p is
a positive integer and ε == p+v—g(mod 2); Z^ ̂ (Ξ)0 z$ the unitary irreducible
quotient of L2

εv{Έ>).

The theorem follows from Theorem 3.3 and the main results of [R] (The-
orem 10, 12 and 13). The irreducible representations of G occurring in the
first sum in (4.1) are called the continuous series for X and those occurring
in the second sum are called the discrete series for X. As a consequence of
the theorem, we have following two corollaries.

For v G iR and f e D(X) we define fε,u(ξ) e L2

εu(β) by

= ί
Jx

\ \
Jx

Corollary 4.3. Every K-finite functions f G D(X) can be written as

r e s "="o I Φ ^ ) " 1 / \{χ,y)\~p~v

l Jγ

Corollary 4.5. A polar semisimple homogeneous space has discrete series
if and only if it has a compact Cartan subspace.

This corollary gives a proof of Theorem 2.5.

Remark 4.6. For the case G/H = Spine(3,4)/G2(2) if we only sum over
ε = 0 in (4.1), we get the Plancherel formula for G/H =SOe(3,4)/<22(2).
Note that the corresponding representations of Spine(3,4) factor through
SOe(3,4).

5. Eigenspace representations on X.

In this section we will discuss the two spaces of eigenfunctions of the Lapla-
cian Ax under the regular representation of G. One is a subspace of smooth
functions on X,

= {/ € C°°pO I Axf = λ/, and f(-x) = (-1)7(*)}

The other is a subspace of L2-functions on X,

L2

ε,χ(X) = {/ € L2(X) I Axf = λf and f(-x) = (-iYf(x)} .

We will also give a Poisson integral-type for if-finite eigenfunctions of Ax.
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We set

C £ ( Ξ ) = {φ € C°°(Ξ) I φ(aξ) = | α | - " + " s i g n e ( α ) ^ ) }

Restrict this space of functions to Y is a linear isomorphism C£°V(Ξ)
C?(Y) = {φe C°°(Y) I φ{-y) = (-i

We define a map

by

The integral converges for Re(p + v) < 1 and admits an interpretation by
analytic continuation in v, as long as v is not a positive integer congruence
to ε + 1 (mod 2).

Lemma 5.1 ([R] Lemma 5).
(i) The map Fε,v depends meromorphically on v with simple poles for

p + v £ N and = ε + 1 mod 2.

(ii) F£fV is a G-map: Fε%vπε,u{g)φ = R(g)FεtUφ, for any φ <E C£,{Ξ).
(iii) For any φ G Ce~ (Ξ), AxFEtUφ = (-p2 + v2)Fε,vφ.

Here R denotes the regular representation.

Proposition 5.2.
(i) Every K-finite distribution f on X satisfying

Axf = λf

for some X G C is an analytic function.
(ii) Fix a K-type τ and a complex number λ. The space of all K-finite

analytic functions f of type r satisfying

Axf = λ/

has dimension equal to d imF r , which is independent of eigenvalue X.

Proof. The statement (i) of the proposition follows from (a) of Lemma 3
in [R], The same lemma guarantee the dimension in (ii) is less than or
equal to dim VT. Applying an argument of analytic continuation such as in
Proposition 2.21 in [OS] one can get the other half inequality. D

The following theorem and Theorem 5.5 below can be regarded as a Pois-

son integral formula for X.
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Theorem 5.3 (cf. [R, Theorem 6]). If p + v is not an integer, then every

K-finite distribution f on X satisfying

= ( V + S) f

is an analytic function and can be represented in the form

f(χ) = Σ

for unique K-finite function φε G Cε

x>(Y).

Corollary 5.4.

(i) If X = —p2 + v2 (or p + v) is not an integer (note that X is an integer

if and only if p + v is an integer), then C™X(X) is irreducible under the reg-

ular representation of G. The map F£}X is an intertwining operator between

C™±U(Ξ) and C™X(X), and the K-finite part of C™±ι/(Ξ) and C™X(X) are

equivalent (g^K)-modules.

(ii) If X = λ 0 = -ρ2 4- I/Q and p + i/0 G N,= ε + q mod 2 ; i/0 > 0,

then the kernel ofτesy:=UQ {c(ε,v)~ιFε^} is the G -stable subspace ofC™UQ(E)

described by (cf Theorem 3.2)

(n + ^-(m+ i(p - 2)) + (n + ^(q + 2)) < i/0.

As representations of G, Cε

x>

UQ(Ξ) and C^Xo(X) have the same distribution

character.

Now we turn our attention to the square-integrable eigenfunctions of Δx.

The following theorem is a consequence of Theorem 12 of [R] and Theorem

3.2.

T h e o r e m 5.5. For X = —p2 + v2, the eigenspaces L2

εX(X) of Ax are

irreducible under the regular representation of G. For p + v = p + vo£N, =

ε + g(mod2), z/0 > 0, r e s ^ ^ {c(ε,u)~1F£yU} induces an intertwining operator

between an irreducible quotient L2

U(Ξ)° and L2

eX(X). The corresponding

K-finite functions in L2

εX(X) are precisely the functions f of the form

f(x) = τesu=z

where φ is a K-finite function on Y.
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