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Abstract: We investigate the first hitting times to spheres of Brownian motions with

constant drifts. In the case when the Brownian motion starts from a point in Rd except for the

origin, an explicit formula for the density function of the hitting time has been obtained. When

the starting point is the origin, we represent the density function by means of the density of the

hitting time of the Brownian motion without the drift.
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1. Introduction. This article deals with the

first passage problem of a Brownian motion with a

constant drift. Let fBtgt=0 be a standard Brownian

motion on Rd starting from a given point x 2 Rd.

For a constant vector % 2 Rd a Brownian motion

with a drift %, denoted by fBð%Þt gt=0, is defined as

B
ð%Þ
t ¼ Bt þ %t. For % 2 Rd and r > 0 let

� ð%Þr ¼ infft > 0; jBð%Þt j ¼ rg;

which implies the first hitting time of fBð%Þt gt=0 to

the sphere Sd�1
r with radius r and centered at the

origin.

In this paper we will discuss the probability

density function of �
ð%Þ
r , for which we write p

ð%Þ
r ð�;xÞ

in the case when d = 2. Explicit forms of p
ð0Þ
r ð�;xÞ

are obtained in [1,6,7] for jxj < r and in [4] for

jxj > r, where jyj is the Euclidean distance between

y 2 Rd and the origin. In the case % 6¼ 0, formulas

for p
ð%Þ
r ð�;xÞ have been deduced for x 6¼ 0. One of the

formulas is given in [5, Theorem 1.1] and expressed

as an infinite sum of which each summand consists

of the modified Bessel functions, the Gegenbauer

polynomials and the densities p
ð0Þ
r ð�;xÞ. Other form

is represented in [11] by an integral involving the

Bessel functions. We should remark that a general

framework for discussing the distribution of the

hitting time is provided in [10].

One of our purposes of this paper is to give an

explicit form of p
ð%Þ
r ð�; 0Þ when % 6¼ 0. For simplicity

we use the notation p
ð%Þ
r ð�Þ instead of p

ð%Þ
r ð�; 0Þ. We

obtain that p
ð%Þ
r is represented by the density p

ð0Þ
r

and the modified Bessel function I� of the first kind

of order �. For convenience we put � ¼ d=2� 1.

Theorem 1.1. Let d = 2 and % 6¼ 0. We have

that

pð%Þr ðtÞ ¼
2��ð� þ 1ÞI�ðrj%jÞ

ðrj%jÞ� e�j%j
2t=2pð0Þr ðtÞ

for any t > 0.

The idea of the proof is to represent the

Laplace transform of �
ð%Þ
r as an integral with respect

to the distribution of ð�; B� Þ by the Cameron-

Martin formula, which is similar to the calculation

used in [5]. Here the notation � has been used

instead of �
ð0Þ
r for simplicity. A proof of Theorem 1.1

will be given in the next section. We should mention

that the formula for p
ð%Þ
r ðt; 0Þ can not be simply

deduced by taking a limit of p
ð%Þ
r ðt;xÞ, given in

[5, Theorem 1.1], as x tends to 0 since the formula

for p
ð%Þ
r ðt;xÞ has terms which contain h%; xi=

ðj%j � jxjÞ, where h%; xi is the standard inner product

of % and x. In addition, we remark that the explicit

form of p
ð0Þ
r is provided in the following way:

pð0Þr ðtÞ ¼
1

2��ð� þ 1Þr2
ð1:1Þ

�
X1
n¼1

j�þ1
�;n

J�þ1ðj�;nÞ
e�j

2
�;nt=2r2

;

where J� is the Bessel function of the first kind of

order � and fj�;ng1n¼1 is the increasing sequence of

positive zeros of J� (cf. [1, Theorem 2]).
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Another purpose of this paper is to give the

asymptotic behavior of the tail probability of �
ð%Þ
r

for % 6¼ 0. The following theorem can be deduced

from (1.1) and Theorem 1.1.

Theorem 1.2. Let d = 2 and % 6¼ 0. We have

that

P ð� ð%Þr > tÞ ¼
2I�ðrj%jÞ
ðrj%jÞ�

j�þ1
�;1

J�þ1ðj�;1Þ
1

j2
�;1 þ r2j%j2

� e�ðj2
�;1þr2j%j2Þt=2r2ð1þ o½1�Þ

as t!1.
We will prove the theorem in Section 3.

2. The density function. In this section we

give a proof of Theorem 1.1 with the help of the

Laplace transform of �
ð%Þ
r . When x 6¼ 0, the Laplace

transform of �
ð%Þ
r is represented in [5, p. 5391]. In the

same way we can deduce that

E½e���
ð%Þ
r � ¼ E½e�ð�þj%j

2=2Þ�þh%;B� i; � <1�
for x ¼ 0 and the right-hand side is equal toZ 1

0

Z
Rd
e�ð�þj%j

2=2Þtþh%;yiP ð� 2 dt; B� 2 dyÞ:ð2:1Þ

We omit the detailed calculation. It is known that

P ð� 5 t; B� 2 AÞ ¼ P ð� 5 tÞ�rðAÞ

for t = 0 and a Borel set A in Sd�1
r , where the

notation �r has been used to denote the uniform

distribution on Sd�1
r (cf. [8, p. 27]). This implies that

(2.1) can be represented byZ 1
0

e�ð�þj%j
2=2Þtpð0Þr ðtÞdt

Z
Sd�1
r

eh%;yid�rðyÞ:ð2:2Þ

Hence it is sufficient to calculate the integral on y in

(2.2). We have thatZ
Sd�1
r

eh%;yid�rðyÞ ¼
Z
Sd�1

1

erh%;yid�1ðyÞ:ð2:3Þ

Let w ¼ ð1; 0; . . . ; 0Þ 2 Rd. We take an orthogonal

matrix T of order d such that T% ¼ j%jw. Since �1 is

preserved under orthogonal linear transformations

on Rd, the right-hand side of (2.3) is equal toZ
Sd�1

1

erh%;
tTyid�1ðyÞð2:4Þ

¼
Z
Sd�1

1

erj%jhw;yid�1ðyÞ:

It is easy to see that, if d = 3, the right-hand side of

(2.4) coincides with the product of the following two

integrals:

Z �

0

erj%j cos 	1 sind�2 	1d	1;ð2:5Þ

1

Sd�1

Z �

0

d	2 � � �
Z �

0

d	d�2ð2:6Þ

�
Z 2�

0

d	d�1 sind�3 	2 � � � sin 	d�2;

where Sd�1 is used for the surface area of Sd�1
1 . We

can find that (2.5) coincides with

ffiffiffi
�
p 2

rj%j

� ��
� � þ

1

2

� �
I�ðrj%jÞ

in [3, p. 491] and it is obvious that the integral in

(2.6) is equal to Sd�2. By the well-known formula

Sm�1 ¼ 2�m=2=�ðm=2Þ for each m = 2, we obtain

that the right-hand side of (2.4) and also (2.3) are

equal to

2��ð� þ 1Þ
I�ðrj%jÞ
ðrj%jÞ� :

This yields that (2.2), which is the Laplace trans-

form of �
ð%Þ
r , can be expressed byZ 1

0

e��t
�

2��ð� þ 1Þ
I�ðrj%jÞ
ðrj%jÞ�

ð2:7Þ

� e�j%j
2t=2pð0Þr ðtÞ

�
dt

in the case d = 3.

Note that � ¼ 0 if d ¼ 2. The calculation in the

two dimensional case is easy. Indeed, we have that

the right-hand side of (2.4) is

1

2�

Z 2�

0

erj%j cos 	d	 ¼ 1

�

Z �

0

erj%j cos 	d	 ¼ I0ðrj%jÞ

(cf. [3, p. 491]). This implies that (2.2) has the same

form as (2.7) for � ¼ 0.

We complete the proof of Theorem 1.1.

3. Asymptotics of the tail probability.

This section is devoted to showing Theorem 1.2.

Theorem 1.1 gives thatZ 1
0

pð%Þr ðtÞdt ¼ 2��ð� þ 1Þ
I�ðrj%jÞ
ðrj%jÞ�

ð3:1Þ

�
Z 1

0

e�j%j
2t=2pð0Þr ðtÞdt:

In addition, it is known thatZ 1
0

e��tpð0Þr ðtÞdt ¼
ðr

ffiffiffiffiffiffi
2�
p
Þ�

2��ð� þ 1ÞI�ðr
ffiffiffiffiffiffi
2�
p
Þ
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for � > 0 (cf. [2,6]). Thus we immediately conclude

that the right-hand side of (3.1) is equal to 1, which

implies that P ð� ð%Þr <1Þ ¼ 1. By Theorem 1.1 and

(1.1) we have that P ð� ð%Þr > tÞ is equal to

I�ðrj%jÞ
r�þ2j%j�

Z 1
t

X1
n¼1

j�þ1
�;n

J�þ1ðj�;nÞ
ð3:2Þ

� e�ðr2j%j2þj2
�;nÞs=2r2

ds:

In order to prove Theorem 1.2, we should justify

changing the order of summation and integration

in (3.2).

It is well-known that

j�;n ¼ �nþO½1�ð3:3Þ

for large n (cf. [9, p. 506]). Moreover, combining

(3.3) and the asymptotic behavior of the Bessel

function of the first kind (cf. [9, p. 199]), we can

obtain that

J�þ1ðj�;nÞ ¼
ð�1Þnþ1�ffiffiffi

2
p

ffiffiffi
n
p

1þO
1

n

� �� �
ð3:4Þ

as n!1 (cf. [7, p. 318]). It is easy to show by (3.3)

and (3.4) that

j�þ1
�;n

J�þ1ðj�;nÞ
¼

ffiffiffi
2
p
ð�nÞ�þ1ð1þO½1=n�Þ�þ1

ð�1Þnþ1�
ffiffiffi
n
p ð1þO½1=n�Þ

¼ ð�1Þnþ1
ffiffiffi
2
p

��n�þ
1
2 1þO

1

n

� �� �
;

which implies that there exists a constant C such

that

j�þ1
�;n

J�þ1ðj�;nÞ

					
					 5 Cn�þ1=2ð3:5Þ

for each n = 1. Hence we deduce from (3.3) and

(3.5) that

X1
n¼1

Z 1
t

j�þ1
�;n

J�þ1ðj�;nÞ

					
					e�ðr

2j%j2þj2
�;nÞs=2r2

ds

converges for each t > 0. We can change the order

of the summation and the integral in (3.2) and thus

it follows that P ð� ð%Þr > tÞ is equal to

I�ðrj%jÞ
r�þ2j%j�

X1
n¼1

Z 1
t

j�þ1
�;n

J�þ1ðj�;nÞ
e�ðr

2j%j2þj2
�;nÞs=2r2

ds

¼
2I�ðrj%jÞ
r�j%j�

X1
n¼1

j�þ1
�;n

J�þ1ðj�;nÞðj2
�;n þ r2j%j2Þ

� e�ðr2j%j2þj2
�;nÞt=2r2

:

Using (3.5) again, we obtain the claim of Theo-

rem 1.2.
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