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Abstract:

In this article, for irreducible admissible infinite-dimensional representations II

and II' of GL(2,C), we show that the local L-factor L(s,II x IT') can be expressed as some local

zeta integral for GL(2, C) x GL(2,C).
Key words:

1. Introduction. Let FF=R or C. Let II
and II' be irreducible admissible infinite-dimen-
sional representations of GL(2,F). We consider
here the local zeta integral Z(s, W, W’ f) for
GL(2,F) x GL(2,F), which is defined from
Whittaker functions W for (IT, %), W’ for (IT', 1)
and a standard Schwartz function f on F? with the
standard character ¢ of F. In Theorems 17.2 (3)
(for F = R) and 18.1 (3) (for F' = C) of the lecture
note [Ja], Jacquet asserts only that the associated
local L-factor L(s,II x II') can be expressed as a
finite sum of the local zeta integrals for GL(2, F) x
GL(2, F), that is,

ZZ s, Wi, W/, f;) = L(s, T x IT)
with some W;, W/ and f;. However, in the proof of
Theorem 17.2 of [Ja], he shows a stronger result for
F = R. He gives Whittaker functions W, W[ and a
standard Schwartz function fj satisfying

(11) Z(S, WQ, Wé, fo) = L(S,H X H,)

for F = R, explicitly. (See Proposition 2.5.2 in [Zh]
for the case omitted in [Ja].) On the other hand, the
proof of Theorem 18.1 in [Ja] is written with the
modified zeta integrals defined from vector valued
functions, and it is not clear whether the stronger
assertion (1.1) for FF=C is true or not. In this
article, we give Whittaker functions Wy, W and a
standard Schwartz function fy satisfying (1.1) for
F = C, explicitly, rewriting Jacquet’s calculation
in [Ja] using Schur’s orthogonality and explicit
formulas of Whittaker functions.

2010 Mathematics Subject Classification.
Secondary 11F30, 22E46.

Primary 11F70;

doi: 10.3792/pjaa.94.1
©2018 The Japan Academy

Whittaker functions; automorphic forms; zeta integrals.

2. Whittaker functions on GL(2,C). Let
G = GL(2,C) be the complex general linear group
of degree 2, and we fix an Iwasawa decomposition

G = NAK with
o 1)]rec)
N = reCy,
0 1

A = {diag(y1y2, y2) | y1,y2 € Ry }
and the unitary group K = U(2) of degree 2. Here
R is the set of positive real numbers. We denote
by gc the complexification g ®g C of the associated
Lie algebra g of G.

For c € C*, we define a character v, of C by

wp(x) _ e?m/j(caﬁﬁ) (1‘ c C),

and let C*(N\G;1.) be the space of smooth
functions f on G satisfying

f(( o )g) — Uo)flg) (w€C,g€0),

on which G acts by the right translation. Here we
note that there is a G-isomorphism

(2.1)  EsC™(N\G;1¢1) — C*(N\G; ),

defined by Z.(f)(g) = f(diag(c, 1) g) (g € G).

Let (II, Hyy) be an irreducible admissible infin-
ite-dimensional representation of G. We denote by
Hp i the subspace of Hy consisting of all K-finite
vectors. We define the space Z1,, of homomor-
phisms ®: Hyy g — C*°(N\G;¢.), of (g¢, K)-mod-
ules such that ®(f) is of moderate growth for any
f € Hi k. Theorem 6.3 in [JL] tells that the space
Zwy, is one dimensional. We define the space
W(II, ¢.) of Whittaker functions for (II,.) by

W(Hawt‘) = {(I)(f) ‘ f € HH,K> S IH,wz:}'
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3. Irreducible representations of K. Let
A be the set {\ = (A, \2) € Z? | \; > Ao} of domi-
nant weights. Let V), be the C-vector space of degree
(A — A2) homogeneous polynomials in zj, 29, for
A= (A1, A2) € A. The group K acts on V) by
= det(k)V'p((21, 22)k)
for k€ K and p(z1,22) € V). Then the representa-
tions (7, Vi) (A€ A) of K are irreducible, and
exhaust the equivalence classes of irreducible rep-
resentations of K.

Let A = ()\17)\2) € A. We define {v/\}q o as a
basis of Vj by vy = = 2" We set

A= (=X, —\1).

\(k)p(21, 22)

Then there is a K-invariant C-bilinear pairing (-, -)
on V5 ®c V), which is determined by

<U(§, ) = (1M (Al ;)\2) -1

vy) =0 (r#q) with ¢ =X\ —

n
we denote by ( ) the binomial coefficient
i

Ay — q. Here
n!

il(n —1)!

and<§

for n,i € Z such that n > ¢ > 0.

4. Principal series representations. For
v=(vi,1n) € C* and d = (di,dz) € Z*, let H[} ;) be
the space of smooth functions f on G such that, for
t1,to € C*, z € Cand g € G,

tox i\ [t \
(05 o)) () (&)
x| [ 6 A (9)-
The group G acts on H@C‘d)

(H(V,d) (g)f)(h) = f(hg) (97 he G7 f € H(OSd))

Let (IL,,q), H(y,q)) be a Hilbert representation of G,
which is the completion of (I, g, HE d)) relative to
the L2-inner product on K with respect to the Haar
measure. We call (I, ), Hy, 4) a principal series
representation of G.

Theorem 6.2 in [JL] tells that any irreducible
admissible infinite-dimensional representation of G
is isomorphic to some irreducible principal series
representation of G as (g¢, K)-modules. Moreover,
when Il 4 is irreducible, we may assume d € A
without loss of generalities, since

(4.1)

by the right translation

Hy ), = ). (d2.d)) K

as (gc, K)-modules. Here H(, ) i is the subspace of
H, 4 consisting of all K-finite vectors. From
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Lemma 6.1 (ii) in [JL], we obtain the following
Proposition 4.1. As K-modules,

l/d K = @Vd1+m do—

holds for v = (v1,1,) € 02 and d = (dy,ds) € A.
5. Explicit formulas of Whittaker func-

tions. For s € C and i € Z>, we set
I'(s+1 ;
(s); = ( ):s(s+1)~--(s+z—1),
['(s)

To(s) = 2(2m) *T(s)

as usual, where I'(s) is the Gamma function and Zx
is the set of non-negative integers. For aj,as € C,
we define a function K(aj,a2) on R by

K(ala a2)(y1) = 8y(111+a2 K(ll —as (471’y1)

1 at+v~1oo L,
=— Ie(s+ai)lc(s+a *ds
2mv/=1 Ja—v=iso ols + ar)lels + ey,
for y1 € Ry. Here K,(z) is the modified Bessel

function of the second kind (§17.71 in [WW], (6.5)
in [Bu]), and « is a real number such that

—Re(az)}.

Let (II(4),H(,.q) be an irreducible principal
series representation with v = (1,15) € C?, d =
(dy,ds) € A. Let c € C*. Let m € Z>y and we set
A= (A1, A2) = (di + m,dy —m). By Proposition 4.1,
there is a non-zero K-homomorphism ¢:V) —
W(L,,q), ¥c), which is unique up to scalar multiple.
For g € G with the Iwasawa decomposition

(YN O\ (v Ry,
9=\ o 1 0 2€C, ke K

and v € V), we have

3(v)(9) = Ye(@)yy” " ¢ (ma(k)v) (diag(y1, 1))

Hence we note that ¢ is characterized by the func-
tions ¢(v )(dlag(yl, 1)(0<g< A —X)onR;. We
will give expllclt formulas of these functions.

Because of (2.1), it suffices to consider the case
of c=1. Weset c=1 and

¢(v,)(diag(y1,1))
(V=DM

Translating Eq. (15) and Eq. (16) in [Po
notation, for 0 < ¢ < A\ — Ao, we have

(51) {(81—2V1—m+q)(81—2ug—|—m—(j)
— (dmy)e, =

a > max{—Re(a;),

©q(y1) = (0<g<XA—XN).

] into our

—8TqY1P4—1,
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(5.2) {(Oy —2v1 +m — q) (01 — 219 — M + §)
— (4my1)* Yo, = —8miy1 041
with §=XA — X2 —¢q and 01 = . Here we set

di
w,=0if g<0org>XA — Ao

Since the functions ¢, (0 <¢g <X — A are
determined from ¢ by the equation (5.2), we note
that ¢ # 0 implies @y # 0. Taking ¢=0 in the
equation (5.1) and comparing with the Bessel
differential equation, Popa shows that ¢, is a non-
zero constant multiple of K(z/l +%, v +M)
in [Po].

If we assume g , we
obtain the formula

min{q,m} <q) (_m)l ( — vty — )\12)\9 )i

=\ 2m)" (=M1 + o),
<K+ 55 52

for0<qg< A —

{(01 — 2b1)(01 — 2b9)

Al=Ao—
=K(v +2, vy +25=m)

Pq =

Ao, recursively, by (5.2) with
— (4my1)* YK (a1, a2) (1)
8Ty

= (b1 + by — a1 — a2)K(ar + 3, a2 — ) (1)

+ (2m) (b1 — a1) (b2 — a1)K(ay — 3, a2 — 3) (1)
for aj,a2,b1,b0 € C and y; € Ry. From the above
arguments, we obtain the following proposition.

Proposition 5.1. Let (Il q,Hyq) be an
irreducible principal series representation of G
with v = (v1,1) € C?, d = (dy,ds) € A. Let ¢ € C*
and m € Zxy. Set A= ()\17)\2) (dy +m,dy —m).
There is a K-homomorphism (b )d )’ Vi — W, g,
Ye) such that, for y; € Ry and O < g <A — Ay,

—Ai+q
cv—1 1 ,(c
( ) Y 1¢Eu?d;7n] (U

o) (diag(y:, 1))

|c|
(5.3) = mini:wn} (q) (_m)i(—ilﬁ + vy — AL A’)i
=0\ (2m)" (=M1 + o),
X K (v + 52 — i, v + 552 (|elyn)
(5.4) = mmi:[ml} (q) (—=m); (_Z_V2 N %)1
=\ (2m)" (=M1 + o),
K (v 55— 6y 01+ 457) (ely)
with § = A\ — X2 — q.

Here the second expression (5.4) is derived
from the formula (7.4.4.1 in [PBM)])

3F2( ai, az, —m ;1) _ (b1 + by — a1 —az),,
b17 b? (bl)m
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><3F2< bg—al, bg—ag, —m ;1>
by +by—ar —ag, by

(m is a non-negative integer)
of the generalized hypergeometric series (the both
sides of this equality are rational functions of aq, as,
b1, by), and the expression

(cx/_l

el

—A1+q
) U1 B (o (V) (diag (1, 1))
1 (y+ﬁoo _2
= — c

Pyl NP (Iely1)

nl ™ + =258 g —m 1
X312 e _qgtm ’
1 S 141 5 )\1 + )\2

XFc(S+V1+q+Tm)Fc(S+V2 +‘?7Tm) ds

obtained from (5.3).

“ Remark 5.2. From the explicit formulas of
¢[;.d~m} (v

q)(diag(yl, 1)) in Proposition 5.1, we have
—A
CcV 71 1 (c)
(725 v dm](

. ) (diag(y1,1))

K(z/l +4, 1 —l—g)(|c|y1) if m=0,
= ¢ K(v1 45, v+ 257 (|ely) if ¢ = 0
K(z/l +w, Vo +5)(|c\y1) ifg=0

6. The local zeta integrals for G X G.
Let S(C?) be the space of Schwartz functions on
C?. Let 8(C*)™ be the subspace of S(C?) consisting
of all functions f of the form

f(21,22)

for z, 2, € C, with polynomial functions p on C*.
We call functions in S(C?)*™ standard Schwartz
functions on C2.

Let (H(u.d)aH(u,d)) and (H(V’.d’)vH(z/,d’)) be irre-
ducible principal series representations of G with
v=(v,1n) € C* d=(d,dy) €A,V = (V,y) € C?
and d' = (d},d}) € A. From the Langlands parame-
ters of 11, 4y and I, 4y, we define the local L-factor
L(saH(V,d) X H(l/,d’)) by

L(S,H(Md) x IT () )
= H Fc(s—l-yz—ky —|—‘d+d‘)

1<i,j<2

2n(|21 [+ 2 )

(61) :p(2172272—17'z_2)e_

For W e Wy q),%
{£1}) and feS(C
integral Z(s, W, W,

)7 W/ € W(H(l/,d’)awﬁf) (5 €
%), we define the local zeta
f) for G x G by
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Z(s, W, W', f)
= W(g)W'(9) f((0,

NG

1)g)| det g** dg,

where dg is the right invariant measure on N\G.
In this article, we normalize dg so that, for any
compactly supported continuous function F on
N\G,

diy, d
fuor@s= [ [ (froma) G5
N\G i Y2

with y = diag(y1y2,92) € A and dk is the Haar

measure on K such that fK dk = 1. The local zeta

integral Z(s, W, W', f) converges for Re(s) > 0.
The group K acts on S(C?)* b

(T(k) f)(z1, 22) = f((21,22)k)
for k € K and f € S(C*)™. For non-negative inte-
gers [, r, let S(CQ)‘;;d be the subspace of S(C?)*¢
consisting of all functions of the form (6.1) with
polynomial functions p(w;,ws,ws,wy) which are
degree [ homogeneous with respect to wy,ws, and

degree r homogeneous with respect to ws, w,s. Then
it is casy to see that S(C?)™ = D10 S(C2);t7f1 and

(6.2) S(C*)iy = Vg ®c Vio, -
For n = (ny,n,n3,14) € (Zs0)", we define a func-

tion fn = f(nl,ng,ng,m) on 02 by

Ny No—ng—ny  —
fa(z1,22) = 220222 e
std

Then we note that f("l,“w,”:s ny) € S(Cz)n1+nz n3+ng’

Let €€ {:tl} We take K-homomorphisms
qSEj)dm and gb[y, dam) BS in Proposition 5.1. Let m
and m’ be non—negatlve integers. Set

A= ()\17A2) = (dl + madQ - m)a

Xo= (A, X)) = (dy +m/,dy —m).
For each s € C such that Re(s) > 0, we note that
O ) (0 Bl (V) )
defines a K-homomorphism from the tensor product

Vy ®c Vv ®c S(CQ)7t7d to Vi) = C, and this homo-
morphism vanishes unless

(6.3) HOHIK(V)\ ®c Vv ®c S(CQ):I’trd>

2m(|21[*+=f)

@V @ fr Z(s,

Vioo)) # {0}.

By (6.2) and the decomposition law
min{pu — g, 0y — iy}
Vi ®c Vir = @ Vit w+(=ii)
=0

of K-modules for = (1, p2), ' = (), uh) € A, we
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know that (6.3) holds if and only if the non-negative
integers m, m/, | and r satisfy

(6.4) A4 A] > 0> A+ A,
(6.5) r=MAFN AN+
(66) l Z max{—)\l — )\’2, —)\2 — )\/1}

The inequality (6.4) implies that m + m' > mg with
(67) my = maX{O, 7d1 — d/lﬂ dQ + dIQ}

Assume m = mg and m’ = 0. Then the smallest
non-negative integers [, r satisfying (6.5) and (6.6)
are given by [ =11 + Iy and r = r; + 9 with

li:—)\i—d{ =0 lf)\t-‘rd, - <0
(6.8) { s . o
li:O, Ti:)\i+d37 lf)\i+d37720

Theorem 6.1. Retain the notation. Then
(69) Z(S7 W(), W(/), fo) = L(S, H("ad) X H(z/’,d’))
holds for s € C such that Re(s) > 0, where

c

Wy = ('ZSE;,)d;mU](v())\ ), W= ¢’Ew€d)' ](UZ: d_’z)’
fo=(- d{24(/\1+d'1+11+12+1)-
T (A1 = Aa)!(dy — dy)!
X (AL 4+ dy — 1= 72)! ity r)-
7. The proof of Theorem 6.1.
prepare two lemmas.
Lemma 7.1. (i) Let aj,a,b1,bo € C. Then
for s € C such that Re(s) > 0, it holds that

> dyl
AR CSION ORI
Te(s+ a1 +b1)Tc(s+ ag + be)
- Pc(2s + a1 +as + by + bo)
x Ta(s+az 4+ b)Tc(s+ ag + ba).
(ii) For s € C such that Re(s) > 0, it holds that

& dt 1
727rt2 2s
t =-T .
/0 t 4 C(S)

(iii) For z1,22 € C, n € Zsq such that Re(z) > 0,
Re(z2) > n, it holds that

zn: Fo(z1 + j)le(ze — )

A Tr]

B Pc(z1)Te(z1 + 22)Te(z0 — n)
n!lc(z1 + 20 — n) '
Proof. The statement (i) is derived from

Barnes’ lemma (§14.52 in [WW]) and the Mellin

inversion formula (see for example, §1.5 in [Bu]).
The statement (ii) is immediately follows from

First, we
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Euler’s integral form of the Gamma function. The
statement (iii) is derived from the formula of the
value of the Gaussian hypergeometric series at 1
(§14.11 in [WW]). O

Lemma 7.2. Lety=diag(y1y2,y2) € A. For
A= ()\1,)\2), N = ()\/1,)\/2) eN 0L q< A — X, 0L
d <X =X, and n = (ni,ne,ng,ng) € (Z20)4, the
integral

AR RN CE ARV
s equal to

(_1)71/1 +ng— Q(q + nl) ( + n2) 7211+n2+n3+n4e—27ry§
M+ XN +n1+ne+1)!

’lf )\1+)\/2+7L17n3:>\2+>\/1+n27n4:)\1+
N —q—¢ =0, and is equal to 0 if otherwise. Here
wesetg=M—X—qandq =X, — N, —¢.

Proof. By direct computation, we have

(0, ma(k)ug) = (1) "(det k) KT KL,
(v (koY) = (—1)7 (det k) “ Rk,
Fa((0,1)yk) = (—1)" (det k)™ " ki kpski3ky

ni+nstng+ny

x v —27ry2

e

for k = ( Fu ko ) € K. Hence, we have
ka1 koo

[ @B B0k ) a0, Dy

ng, ni+netng+ng —2my?
(71) Yo € 2

A (ng,—n A(nq,—n,
[ g (B

N+ (ng,—n:
’T/\’+(n2-*713)(k)v)\’+( o)

1= Ay F+natng

N+(ng,—na)
q+n3

x (v Vdk.

Applying Schur’s orthogonality relations (Proposi-
tion 4.4 in [BD])

/ (w, T (K)o, 0 (B dl
K

(v, V) {w, w')

if o=,

= p— po+1
0 otherwise
(:u'la.UJZ) € Aa w e Vllta

veV,,
v eV,
to the right-hand side of this equality, we obtain the

assertion. (]
Let us prove Theorem 6.1. Let € € {£1}. Let

'LL:
'u/

= (W) py) €A, W €V,
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(H(V,d)vH(V,d)) and (H(l/',d/)7H(V/,d')) be irreducible
principal series representations of G with v =
(vi,1) € C? d=(d,dy) €A, V= (V1) € C?
and d' = (dy,d;) € A. Let mg be the integer defined
by (6.7), and put A = (A, A2) = (dy + mg, d2 — myg).
Let Iy, Iy, 71 and 72 be the integers defined by (6.8).
In order to simplify the notation, hereafter, we set

6= iy @ = b0y = b
For s € C such that Re(s) > 0, we have

Z(Sv ¢('U(/})7 QS’(’UZ: —d, )7 f)
= (v)(9)¢ (v

N\G
/ / (K(b
2s 4sd3/ dys

< (0, 1)yk) dk) e

1

~)(9)£((0,1)g)| det g** dg

)( )& (1ar (K )Ud’ d{z)(y)

with y = diag(y1y2,y2) € A. Since

A= AL — Ao -
nkw =Y (—1)AIQ< ><vA (k) vg)vy,
q=0 q
d—d, ;o
" . L d — d
iyl g = 3 (-1 ()
q/:(] q
X (v, T (R)v g YU
with § = A — X2 —¢qand ¢ =d] —d, — ¢, we have
Z(3> d)(v(/})a ¢’(Uja—d;)a f)
A1—Xs d/lfd'/z
=Y ()
= = q q

//(/ )US><v§f,m(k)vg’,ﬁd,2>

/ s 45 QY1 dyo
< £0.08) 8 ) o) )6 o) o - 2.
1
Applying Lemma 7.2 and Lemma 7.1 (ii), succes-
sively, we find that
Z(sv QS(U())\)a ¢I(U§1—d’2)a f)
_ T'c (25 +uvi 4+ + v+ 7ll+12+2”+”)
A4\ +d+ 1+ 1+ 1)!
Ar+d)—ry (_1))\1+d,’27(1()\ _ )\2)|(d/ _ d/)'
(¢ —r)!(N +dy =72 — q)!
2s dy1

P(v Yy —
/ T

X

UA.+d/ q)( )1
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with ¢ = diag(y1,1) € A.

Let us consider the case of my =0, that is,
A = d. By Remark 5.2, Lemma 7.1 (i) and the above
equality, we have

Z(s, (1), &' (W _4): f)

_ (_1)% T'c (28 +v + e+ lli + yé 4 lHrlzJ;THrm)
Ad(di +dy+ 1+ 1+ 1)

(s~ (s w144 + 952

>< U 4
T'c (23 Fui vt v+ —dl‘dzgdl‘%)
x I'c (s + s+ vy + _d22_d;)
dy+dy =7y FC (S +u+ Vé + —d12—d; + q)

X
q=r1 (q_rl)'(d1+d/1 — 19 _q)l

ch(s—i—uQ—l—l/i—&—M—q).

Replacing ¢ — j + 1 and applying Lemma 7.1 (iii),
we obtain (6.9) in this case.

Let us consider the case of my = —d; —d]. In
this case, we note that

h=-M—-d), b=-X—d, rn=r=0
and \; = —d. Hence, we have

(A — A)I(d, — db)!
Ao — )+ 1)

Z(s,$(v), &' (v _a)s f) =

X (—1)A1+d,2FC (25 +uv v+ v+ _M;dg)

*© 1 N dyl
< [N )

1

By Remark 5.2 and Lemma 7.1 (i), we obtain (6.9)
in this case.

Let us consider the case of my = dy + d. In this
case, we note that

11212:0, T1:)\1+d/27 TQZ)\Q-i-d/l

and Ay = —d,. Hence, we have

[Vol. 94(A),

, A1 — X)) — dy)!
Z(S,¢(U6\)7¢/(U§37d;)af) = ( 11(/\1 —21—)65' 1_,_ 1)12)
| !

x ' <28 +uv it U+ /\lgd/l)

o0 . s dy
<[ o)W )W G
1

By Remark 5.2 and Lemma 7.1 (i), we obtain (6.9)
in this case.
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