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Abstract: Fujino and Tanaka established the minimal model theory for Q-factorial log

surfaces in characteristic 0 and p, respectively. We prove that every intermediate surface has

only log terminal singularities if we run the minimal model program starting with a pair

consisting of a smooth surface and a boundary R-divisor. We further show that such a property

does not hold if the initial surface is singular.
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1. Introduction. We work over an algebrai-

cally closed field of arbitrary characteristic

throughout this paper. We will also follow the

language and notational conventions of the book

[KM98] unless stated otherwise.

Let ðX;�Þ be a log surface. Remember that a

pair ðX;�Þ is called log surface if X is a normal

algebraic surface and � is a boundary R-divisor on

X such that KX þ� is R-Cartier (See [Fjn12,

Definition 3.1]). To complete Fujita’s results [Fjt84]

on the semi-ampleness of semi-positive parts of

Zariski decompositions of log canonical divisors and

the finite generation of log canonical rings for

smooth projective log surfaces, Fujino [Fjn12] de-

veloped the log minimal model program for projec-

tive log surfaces in characteristic 0. It is generalized

to characteristic p > 0 by Tanaka in his paper

[Tnk14]. One of their main results is the following

Theorem 1.1 ([Fjn12, Theorem 3.3], [Tnk14,

Theorem 1.1]). Let ðX;�Þ be a log surface which is

not necessarily log canonical, and let � : X ! S be

a projective morphism onto an algebraic variety S.

Assume that X is Q-factorial. Then we can run the

log minimal model program over S with respect to

KX þ� and get a sequence of at most �ðX=SÞ � 1

contractions

ðX;�Þ ¼ ðX0;�0Þ ! ðX1;�1Þ ! � � � ! ðXk;�kÞ
¼ ðX�;��Þ

over S such that one of the following holds:

(1) (Minimal model) KX� þ�� is nef over S. In

this case, ðX�;��Þ is called a minimal model of

ðX;�Þ.
(2) (Mori fiber space) There is a morphism

g : X� ! C over S such that �ðKX� þ��Þ is

g-ample, dimC < 2, C is projective over S

and �ðX�=CÞ ¼ 1. We sometimes call g :
ðX�;��Þ ! C a Mori fiber space.

Note that Xi is Q-factorial for every i. Furthermore,

if KX þ� is big, then on the minimal model

ðX�;��Þ, KX� þ�� is nef and big over S.

First, we try to clarify that, given such a log

surface ðX;�Þ where X is smooth, what every

intermediate surface Xi would look like after

running this log minimal model program. Note that

the final log surface ðX�;��Þ could be a minimal

model or a Mori fiber space g : ðX�;��Þ ! C. The

following theorem is our main result in this paper to

achieve this aim.

Theorem 1.2 (Theorem 3.1). Notations are

as in Theorem 1.1. Let " be a real number such that

0 � " < 1. If X is smooth and the coefficients of �
are � 1� ", then Xi is "-log terminal for every i. In

particular, X� is "-log terminal.

Next, a natural question is that, given a log

surface ðX;�Þ where X is not smooth, what every

intermediate surface Xi would look like after

running log minimal model program (Theorem 1.1).

Proposition 1.3. In Theorem 1.1, Xi is not

necessarily log canonical even if X is log canonical.

Moreover, we have:

Proposition 1.4. In Theorem 1.1, Xi is not

necessarily log canonical even if X is "-log canonical

and the coefficients of � are � 1� " for some

0 < " < 1.
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In Section 4 we construct some examples to

show that Propositions 1.3 and 1.4 are true. Fur-

thermore, we show that Xi could not even be MR

log canonical if X is not smooth. In fact this shows

that Fujino and Tanaka’s minimal model program

on log surfaces is more general than Alexeev’s

minimal model program which is running mainly on

MR log canonical surfaces in [Alex94, Section 10]

(see Definition 2.2 for the definition of MR log

canonical).

2. Preliminaries. Let ðX;�Þ be a log sur-

face. If X is smooth, then it is Q-factorial. Choose

a set I � ½0; 1� "� where " 2 ½0; 1� is a fixed real

number. Assume that the coefficients of � are in

I. We say that I satisfies the descending chain

condition or I is a DCC set for short, if it does not

contain any infinite strictly decreasing sequence.

Finally, recall that the volume of an R-divisor D

on a normal projective variety X of dimension n is

defined as

volðDÞ ¼ lim sup
m!1

h0ðX;OXðbmDcÞÞ
mn=n!

:

We recall some kinds of singularities and MR

singularities following the same way of Alexeev.

Definition 2.1 ([Alex94, Definition 1.5]). Let

ðX;�Þ be a log surface. Let " be a real number such

that 0 � " < 1. It is called:

1. "-log canonical, if the total discrepancies �
�1þ ",

2. "-log terminal, if the total discrepancies >

�1þ "
for every resolution f : Y ! X in both cases.

Simply, we call it "-lc or "-lt instead. Note that

when " is not zero, we can replace " by a smaller

positive "0, and assume that "-log canonical is "0-log

terminal.

Definition 2.2 ([Alex94, Definition 1.7]). We

call a log surface ðX;�ÞMR log canonical, MR "-log

canonical, MR "-log terminal etc. if we require the

previous inequalities in Definition 2.1 to hold not

for all resolutions f : Y ! X but only for a minimal

desingularization.

A strange but trivial example of MR log

canonical log surface is the following

Example 2.3. Given a log surface ðX;�Þ,
where X is smooth and � is a boundary. ðX;�Þ is

not necessarily log canonical in the usual sense. But

id : X ! X is the minimal desingularization, there-

fore ðX;�Þ is MR log canonical.

3. Main results. Now we go to the proof of

Theorem 1.2. Note that " in this theorem could be

zero:

Theorem 3.1. Notations are as in Theorem

1.1. Let " be a real number such that 0 � " < 1. If X

is smooth and the coefficients of � are � 1� ", then

Xi is "-log terminal for every i. In particular, X� is

"-log terminal.

Proof. Step 1. Run log minimal model pro-

gram (Theorem 1.1) for KX þ� as in Theorem 1.1:

ðX;�Þ ¼ ðX0;�0Þ ! ðX1;�1Þ ! � � � ! ðXk;�kÞ
¼ ðX�;��Þ

where ðX�;��Þ is a minimal model or a Mori fiber

space. In the following proof, we consider every-

thing over Xj for a fixed j. Put Xy ¼ Xj for this

fixed j. Then take Xy as a base (that is, replace S

by Xy and hence we are reduced to the case where

S ¼ X� ¼ Xj. Therefore, if needed, shrink Xy to be

affine since "-log terminal or not is a local property)

and run ðKX þ�Þ-LMMP for the relative mor-

phism f : X ! Xy, which ends up again on Xy and

KXy þ�y is nef over Xy. In each step we have a

relative morphism Xi ! Xy (i � j) and denote it by

Xi=X
y. We use fi and hi to denote the morphisms

ðXi;�iÞ=Xy ! ðXy;�yÞ=Xy and ðX;�Þ=Xy !
ðXi;�iÞ=Xy with that hj ¼ f0 ¼ f. By [Fjn12,

Section 3] and [Tnk14, Section 3],

KXi
þ�i ¼ f�i ðKXy þ�yÞ þ Ei

where Ei is all effective over Xy for every 0 � i < j.

In particular, hi�ðKX þ�Þ ¼ KXi
þ�i, hi�ð�Þ ¼

�i. Furthermore, every curve in ExcðfÞ ¼
SuppðE0Þ is a smooth rational curve by [Fjn12,

Proposition 3.8] and [Tnk14, Theorem 3.19].

Step 2. Now we may assume that there is no

ð�1Þ-curve in ExcðfÞ. Indeed, if there is some

ð�1Þ-curve, say C, in ExcðfÞ, then by Castelnuovo’s

theorem, contracting this ð�1Þ-curve in X=Xy leads

to a new smooth surface X0=Xy. Therefore we can

run another ðKX0 þ�0Þ-LMMP over Xy until reach-

ing to a final log surface ð eX; e�Þ=Xy, where �0 is the

image of �. Every assumption of ðX;�Þ is obviously

keeping if we replace ðX;�Þ by ðX0;�0Þ except that

we need to prove ð eX; e�Þ ¼	 ðXy;�yÞ. We have three

morphisms over Xy: � : X ! X0, g : X0 ! eX and � :eX ! Xy such that

KX þ� ¼ ��ðKX0 þ�0Þ þ aC;
KX0 þ�0 ¼ g�ðK eX þ e�Þ þ E00;

116 H. LIU [Vol. 93(A),



K eX þ e� ¼ ��ðKXy þ�yÞ þD

where � : X ! X0 is the Castelnuovo’s contraction,

� is not necessarily the identity and K eX þ e� is

nef over Xy. Then by negativity lemma (see

[KM98, Lemma 3.39 and Lemma 3.40]), we have

that �D � 0, since K eX þ e��D 	� 0 and D is

�-exceptional. Remember that KX þ� ¼ f�ðKXy þ
�yÞ þ E0, f� ¼ ��g���. That is, E0 	f ��g�Dþ
��E00 þ aC. By negativity lemma again, D > 0 since

E0 is effective and both sides have the same

support. Therefore we get a contradiction unless �

is the identity. That is, ð eX; e�Þ ¼	 ðXy;�yÞ. Then,

by contracting ð�1Þ-curves finitely many times, we

may assume that ExcðfÞ contains no ð�1Þ-curve

from now on.

Step 3. Assume that Ci is the contracted

curve in step i of the log minimal model program,

then ðKXi
þ�iÞ � Ci < 0. Therefore

ðKX þ�Þ � h�i ðCiÞ ¼ ðKXi
þ�iÞ � Ci < 0:

Note that ðh�i ðCiÞÞ
2 ¼ ðCiÞ2 < 0 by the negativity

lemma. Then KX � h�i ðCiÞ � 0 since h�i ðCiÞ is effec-

tive and its support contains no ð�1Þ-curve. Indeed,

if KX � h�i ðCiÞ < 0, there must be a curve, say E, in

Supph�i ðCiÞ such that KX � E < 0. But E2 < 0 since

E is in ExcðfÞ. Thus it is a ð�1Þ-curve which

contradicts our assumption. Therefore � � h�i ðCiÞ <
0. Then

�i � Ci ¼ hi�ð�Þ � Ci ¼ � � h�i ðCiÞ < 0:

That is, Ci is in Supp�i, and its strict transform is

in Supp�. Therefore all those curves in ExcðfÞmust

be such a strict transform of Ci under the assump-

tion of the above step.

Step 4. Next, we need to prove that, for the

resolution f : X ! Xy where KX ¼ f�KXy þ
P
aiFi,

we have that ai > �1þ ". Note that KX þ� ¼
f�ðKXy þ�yÞ þ E0 where E0 is effective in ExcðfÞ
and Fi is in Supp� by the above steps. Further-

more, let � ¼
P
�iFi þ�0 where

P
Fi and �0 have

no common components. Therefore, f��
0 ¼ �y.

Then

KX þ� ¼ f�KXy þ
X

aiFi þ
X

�iFi þ�0

¼ f�KXy þ f��y þ E0:

That is, X
ðai þ �iÞFi ¼ f��y ��0 þ E0

in which both sides are supported in ExcðfÞ and the

right hand side is effective since f��y ��0 ¼
f�f��

0 ��0 and �0 is effective. Note that SuppE0 ¼
SuppðExcðfÞÞ by our log minimal model program

(Theorem 1.1). Thus comparing both sides, ai þ
�i > 0. That is, ai > ��i � �1þ " since the coeffi-

cients of � are � 1� ".
Step 5. We claim that, the resolution f :

X ! Xy is a log resolution. That is, the reducedP
Fi must be a simple normal crossing curve.

Remember that Fi is all smooth extremal rational

curves since Xy has rational singularities by

[FT12, Theorem 6.2] for any characteristic. Fur-

thermore, the dual graph of
P
Fi must be a tree.

This shows that the reduced
P
Fi must be a simple

normal crossing curve. We get what we want. �

Remark 3.2. It is pointed out by Tanaka

that, our claim in Step 5 can be proved by

[KM98, Theorem 4.7].

From the above theorem, we know that when

X is smooth, those contracting curves in log

minimal model program consist of some images of

ð�1Þ-curves and some components of Supp�. Sev-

eral direct but important implications of Theorem

3.1 are the following. When KX þ� is big, KX� þ
�� is nef and big on the minimal model. What we

have done in the proof of Theorem 3.1 is in fact

showing that f : X0 ! X� is exactly the minimal

desingularization and ðX�;��Þ is MR "-log termi-

nal. Then the following corollaries are just simple

consequences of [Alex94, Theorem 7.6, Theorem

7.7, Theorem 8.2]. It is another way to see that

Fujino and Tanaka’s minimal model program on

log surfaces cover Alexeev’s minimal model pro-

gram stated in [Alex94, Section 10].

Corollary 3.3. Let ðX;�Þ be a projective log

surface where X is smooth and KX þ� is big.

Fixing " > 0, let I � ½0; 1� "� be a DCC set and the

coefficients of � be in I. If there is a positive integer

M such that ðKX� þ��Þ2 �M where ðX�;��Þ is a

minimal model of ðX;�Þ, then these ðX�; Supp��Þ
belong to a bounded family.

Corollary 3.4. Let ðX;�Þ be a projective log

surface where X is smooth and KX þ� is big.

Fixing " � 0, let I � ½0; 1� "� be a DCC set and the

coefficients of � be in I. Then ðKX� þ��Þ2 is a DCC

set. In particular the volume volðKX þ�Þ is bound-

ed from below away from 0.

Proof. Since volðKX þ�Þ ¼ volðK�X þ��Þ ¼
ðKX� þ��Þ2 by Theorem 3.1, this corollary is a

direct consequence of [Alex94, Theorem 8.2]. �
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Remark 3.5. Note that in Corollary 3.3, the

" is smaller, the bounded family of ðX�; Supp��Þ is

bigger. When " goes to 0, all those X� may not be in

a bounded family, so may not be ðX�; Supp��Þ. See

[Lin03, Remark 1.5] for the example showing that

X� could be Q-Fano and not in a bounded family.

Note also that Corollary 3.4 is an answer of the

question coming from the first version of Di Cerbo’s

paper which has been confirmed by his second

version [Dic, Corollary 4.3].

4. Examples. By [Alex94, Section 10], we

easily see that if the log surface ðX;�Þ is MR

"-log canonical, then so is every ðXi;�iÞ in the step

of log minimal model program; by Grothendieck

spectral sequence and [FT12, Theorem 6.2], it is

also easy to see that if X has only rational

singularities, then so has every Xi. Now it is natural

to generalize Theorem 3.1 and ask that if X is "-log

canonical, is so every Xi or not. But unfortunately

we have the following example:

Example 4.1. Let us first recall an example

of log canonical surface which is rational but not

log terminal. Blowing up at a point of P2, we get a

ð�1Þ-curve E0; find three points at E0 and blow up

several times (at these three points and some points

at the exceptional curves over them), we can easily

get a smooth and projective surface Y and four

smooth rational curves E0, E1, E2, E3 on it such

that n0 ¼ �E2
0 � 3, n1 ¼ �E2

1 ¼ 2, n2 ¼ �E2
2 ¼ 3,

n3 ¼ �E2
3 ¼ 6 where by abusing of notations, we

still use E0 to denote its strict transform on Y . By

construction, Ei � E0 ¼ 1, Ei � Ej ¼ 0 for 1 � i <
j � 3. Let E ¼ E0 þ E1 þ E2 þ E3, then its dual

graph is a triple fork. See also that its intersection

matrix is negative definite. Therefore by Artin’s

criterion [Art62, Theorem 2.3], we can contract E

and finally get a surface X with a singular point.

Now we have f : Y ! X with KY ¼ f�KX þ
P
aiEi.

Using adjunction, we have that:

�2þ n0 ¼ �a0n0 þ a1 þ a2 þ a3;

0 ¼ �2þ n1 ¼ a0 � a1n1 ¼ a0 � 2a1;

1 ¼ �2þ n2 ¼ a0 � a2n2 ¼ a0 � 3a2;

4 ¼ �2þ n3 ¼ a0 � a3n3 ¼ a0 � 6a3:

Solving these equations we have a0 ¼ �1, a1 ¼ � 1
2,

a2 ¼ � 2
3, a3 ¼ � 5

6. These show that the singularity

of X is exactly log canonical but not log terminal.

Keeping this example in mind, we construct an

example as follows:

Similar to the above blowing-up method, we

can easily construct a surface Y and five smooth

rational curves D, E0, E1, E2, E3 on it such that

n ¼ �D2 is as big as we want, n0 ¼ �E2
0 � 3,

n1 ¼ �E2
1 ¼ 2, n2 ¼ �E2

2 ¼ 3, n3 ¼ �E2
3 ¼ 6 and

Ei � E0 ¼ D � E0 ¼ 1, Ei � Ej ¼ D � Ei ¼ 0 for 1 � i <
j � 3. Let E ¼ E0 þ E1 þ E2 þ E3 and F ¼ E þD.

Then E is a triple fork and F is a quadruple fork in

dual graph. Note that both of the intersection

matrices of E and F are negative definite which are

exercises of diagonalization of matrix. By contract-

ing E on Y we get a morphism f from Y to a log

canonical surface X which is rational but not log

terminal as above. Now consider the log surface

ðX;D0Þ where D0 is the image of the smooth rational

curve D. Note that D and D0 are isomorphic outside

the point E \D and its image. Note also that

ðKX þD0Þ �D0 < 0. Indeed, let f�D0 ¼ Dþ
P
ciEi.

Then by Ei � f�D0 ¼ 0,

0 ¼ 1� c0n0 þ c1 þ c2 þ c3;

0 ¼ c0 � c1n1;

0 ¼ c0 � c2n2;

0 ¼ c0 � c3n3:

That is, c0 ¼ 1
n0�1, c1 ¼ c0

2 , c2 ¼ c0

3 , c3 ¼ c0

6 . Then

ðKX þD0Þ �D0 ¼ ðKY þDÞ � f�D0

¼ ðKY þDÞ � Dþ
X

ciEi

� �
¼ ðKY þDÞ �Dþ

X
ciðKY � EiÞ þ

X
ciðD � EiÞ

¼ �2þ c0ð�2þ n0Þ þ c1ð�2þ 2Þ þ c2ð�2þ 3Þ
þ c3ð�2þ 6Þ þ c0

¼ �2þ c0ð�2þ n0Þ þ
c0

3
þ

2c0

3
þ c0

¼ �2þ 1þ c0 ¼ c0 � 1 < 0

since c0 ¼ 1
n0�1 < 1. Therefore, by [Tnk14, (1) of

Theorem 3.19], D0 is a smooth rational curve.

Moreover, contracting D0 on X is indeed a step of

log minimal model program (Theorem 1.1). Finally,

we get a log surface ðX�; 0Þ where X� is no longer log

canonical since the dual graph of F is a quadruple

fork which is not in the classification of dual graph

of log canonical singularities in [KM98, Theorem

4.7]. Furthermore, it is not even MR log canonical

by calculating the discrepancy of E0 (which is
2�nn0

nn0�n�1 < �1). But remember that X� still has

rational singularities by [FT12, Theorem 6.2]. This

example proves Proposition 1.3.

118 H. LIU [Vol. 93(A),



Example 4.2. We just gave an example for

Proposition 1.3 where " ¼ 0. In fact, by a similar

construction as above, we can get some examples

where " > 0. A sketch of construction is the follow-

ing. As Example 4.1, we can easily construct a

smooth and projective surface Y and five smooth

rational curves D, E0, E1, E2, E3 on it with n ¼
�D2, ni ¼ �E2

i such that n ¼ 3, n0 ¼ 5, n1 ¼ n2 ¼
n3 ¼ 2, Ei � E0 ¼ D � E0 ¼ 1, Ei � Ej ¼ D � Ei ¼ 0 for

1 � i < j � 3. Let E ¼ E0 þ E1 þ E2 þ E3 and F ¼
E þD. Then E is a triple fork and F is a quadruple

fork which is not in the classification of dual graph

of log canonical singularities. Note that both of the

intersection matrices of E and F are negative

definite again by diagonalization of the intersection

matrices. Choose an " such that 0 < " � 1
7. The

same calculation as Example 4.1 shows that by

contracting E on Y we get a morphism f from Y to

an "-log canonical surface X. Now consider the log

surface ðX; bD0Þ where D0 is the image of D and b

is a non-negative real number. Note that D0 is still

a smooth rational curve by construction. Choose a

proper real number b such that ðKX þ bD0Þ �D0 < 0.

Indeed, by careful calculations as in Example 4.1,

we can check that ðKX þ bD0Þ �D0 < 0 for b > 13
19.

Therefore, ðKX þ ð1� "ÞD0Þ �D0 < 0 for 0 < " � 1
7.

Now contracting D0 on ðX; bD0Þ by log minimal

model program, we get a log surface ðX�; 0Þ where

X� is no longer log canonical. This gives an example

to confirm Proposition 1.4.

Remark 4.3. The above two examples are

based on one of the dual graphs of log canonical

singularities in [KM98, Theorem 4.7]. In fact, we can

construct similar examples based on the other dual

graphs there and get a bunch of similar examples.

It will be interesting to ask the following

question:

Question 4.4. In Theorem 1.1, if X is can-

onical, is Xi log canonical?
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