Symmetry breaking operators for the restriction of representations of indefinite orthogonal groups $O(p, q)$

By Toshiyuki Kobayashi ${ }^{*), * *)}$ and Alex Leontiev*)
(Communicated by Masaki Kashiwara, m.J.A., Sept. 12, 2017)

Abstract

For the pair $\left(G, G^{\prime}\right)=(O(p+1, q+1), O(p, q+1))$, we construct and give a complete classification of intertwining operators (symmetry breaking operators) between most degenerate spherical principal series representations of G and those of the subgroup G^{\prime}, extending the work initiated by Kobayashi and Speh [Mem. Amer. Math. Soc. 2015] in the real rank one case where $q=0$. Functional identities and residue formulæ of the regular symmetry breaking operators are also provided explicitly. The results contribute to Program C of branching problems suggested by the first author [Progr. Math. 2015].

Key words: Representation theory; reductive group; branching law; broken symmetry; conformal geometry; symmetry breaking operator.

1. Branching problem. Suppose $G \supset G^{\prime}$ are reductive groups and π is an irreducible representation of G. The restriction of π to the subgroup G^{\prime} is no more irreducible in general as a representation of G^{\prime}. If G is compact, then any irreducible π is finite-dimensional and splits into a finite direct sum

$$
\left.\pi\right|_{G^{\prime}}=\bigoplus_{\pi^{\prime} \in \widehat{G^{\prime}}} m\left(\pi, \pi^{\prime}\right) \pi^{\prime}
$$

of irreducibles π^{\prime} of G^{\prime} with multiplicities $m\left(\pi, \pi^{\prime}\right)$. These multiplicities have been studied by various techniques including combinatorial algorithms.

However, for noncompact G^{\prime} and for infinitedimensional π, the restriction $\left.\pi\right|_{G^{\prime}}$ is not always a direct sum of irreducible representations, see $[5,6]$ for details. In order to define the "multiplicity" in this generality, we recall that, associated to a continuous representation π of a Lie group on a Banach space \mathcal{H}, a continuous representation π^{∞} is defined on the Fréchet space \mathcal{H}^{∞} of C^{∞}-vectors of \mathcal{H}. Given another representation π^{\prime} of a subgroup G^{\prime}, we consider the space of continuous G^{\prime}-intertwining operators (symmetry breaking operators)

[^0]\[

$$
\begin{equation*}
\operatorname{Hom}_{G^{\prime}}\left(\left.\pi^{\infty}\right|_{G^{\prime}},\left(\pi^{\prime}\right)^{\infty}\right) \tag{1.1}
\end{equation*}
$$

\]

If both π and π^{\prime} are admissible representations of finite length of reductive Lie groups G and G^{\prime}, respectively, then the dimension of the space (1.1) is determined by the underlying (\mathfrak{g}, K)-module π_{K} of π and the $\left(\mathfrak{g}^{\prime}, K^{\prime}\right)$-module $\pi_{K^{\prime}}^{\prime}$ of π^{\prime}, and is independent of the choice of Banach globalizations by the Casselman-Wallach theory [17, Chap. 11]. We denote by $m\left(\pi, \pi^{\prime}\right)$ the dimension of (1.1), and call it the multiplicity of π^{\prime} in the restriction $\left.\pi\right|_{G^{\prime}}$.

The above definition of the multiplicity $m\left(\pi, \pi^{\prime}\right)$ makes sense for nonunitary representations, too.

In general, $m\left(\pi, \pi^{\prime}\right)$ may be infinite, even when G^{\prime} is a maximal reductive subgroup of G (e.g. symmetric pairs). By using the theory of real spherical spaces [14], the geometric criterion for finite multiplicities was proved in [7] and [14] as follows.

Fact 1.1. Let $\left(G, G^{\prime}\right)$ be a pair of real reductive Lie groups with complexification $\left(G_{\mathbf{C}}, G_{\mathbf{C}}^{\prime}\right)$.
(1) The multiplicity $m\left(\pi, \pi^{\prime}\right)$ is finite for all irreducible representations π of G and all irreducible representations π^{\prime} of G^{\prime} if and only if a minimal parabolic subgroup of G^{\prime} has an open orbit on the real flag variety of G.
(2) The multiplicity $m\left(\pi, \pi^{\prime}\right)$ is uniformly bounded if and only if a Borel subgroup of $G_{\mathbf{C}}^{\prime}$ has an open orbit on the complex flag variety of $G_{\mathbf{C}}$.
The complete classification of symmetric pairs $\left(G, G^{\prime}\right)$ satisfying the above geometric criteria was accomplished in Kobayashi-Matsuki [11].

On the other hand, switching the order in (1.1), we may also consider another space

$$
\operatorname{Hom}_{G^{\prime}}\left(\left(\pi^{\prime}\right)^{\infty},\left.\pi^{\infty}\right|_{G^{\prime}}\right) \text { or } \operatorname{Hom}_{\mathfrak{g}^{\prime}, K^{\prime}}\left(\pi_{K^{\prime}}^{\prime},\left.\pi_{K}\right|_{\mathfrak{g}^{\prime}, K^{\prime}}\right)
$$

The study of these objects is closely related to the theory of discretely decomposable restrictions [5,6].

Notation. We adopt the same convention as in [16] for the following notation. $\mathbf{N}:=\{0,1,2, \cdots\}$. $(x)_{j}:=x(x+1) \cdots(x+j-1)$. For two subsets A and B of a set, we write $A-B:=\{a \in A: a \notin B\}$ rather than the usual notation $A \backslash B$. The symbols $/ /, \backslash \backslash, \|$, and ||| are defined to be subsets of \mathbf{C}^{2}, and are not binary relations.
2. $\mathcal{A B C}$ program for branching. In [8] the first author suggested a program for studying the restriction of representations of reductive groups, which may be summarized as follows:
(\mathcal{A}) Abstract features of the restriction;
(B) Branching law of $\left.\pi\right|_{G^{\prime}}$;
(\mathcal{C}) Construction of symmetry breaking operators. Program \mathcal{A} aims for establishing the general theory of the restrictions $\left.\pi\right|_{G^{\prime}}$ (e.g. spectrum, multiplicity), which would single out the good triples $\left(G, G^{\prime}, \pi\right)$. In turn, we could expect concrete and detailed study of those restrictions $\left.\pi\right|_{G^{\prime}}$ in Programs \mathcal{B} and \mathcal{C}.

The current work concerns Program \mathcal{C} for certain standard representations with focus on symmetry breaking operators (SBOs for short) as follows:
(C1) Construct SBOs explicitly;
(C2) Classify all SBOs;
(C3) Find residue formulæ for SBOs ;
(C4) Study functional equations among SBOs;
(C5) Determine the images of subquotients by SBOs.
The subprogram (C1)-(C5) was proposed by Kobayashi-Speh in their book [16] with a complete answer for the pair $\left(G, G^{\prime}\right)=(O(n+1,1), O(n, 1))$ of real rank one groups.

In this note we treat degenerate spherical principal series representations $\pi=I(\lambda)$ of G and $\pi^{\prime}=$ $J(\nu)$ of G^{\prime} for the pair of higher real rank groups

$$
\begin{equation*}
\left(G, G^{\prime}\right)=(O(p+1, q+1), O(p, q+1)) \tag{2.1}
\end{equation*}
$$

and give an answer to $(\mathcal{C} 1)-(\mathcal{C} 4)$. The subprogram $(\mathcal{C} 5)$ will be discussed in a separate paper.

Concerning Program \mathcal{A}, Fact 1.1 assures the following a priori estimate:

$$
m\left(\pi, \pi^{\prime}\right) \text { is uniformly bounded }
$$

if the pair of Lie algebras $\left(\mathfrak{g}, \mathfrak{g}^{\prime}\right)$ is a real form of $(\mathfrak{s l}(n+1, \mathbf{C}), \mathfrak{g l}(n, \mathbf{C}))$ or $(\mathfrak{o}(n+1, \mathbf{C}), \mathfrak{o}(n, \mathbf{C}))$, in particular, if $\left(G, G^{\prime}\right)$ is of the form (2.1).
3. Settings. Let $G=O(p+1, q+1)$ be the automorphism group of the quadratic form on \mathbf{R}^{p+q+2} of signature $(p+1, q+1)$ defined by

$$
Q_{p+1, q+1}(x)=x_{0}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q+1}^{2} .
$$

A degenerate spherical principal series representation $I(\lambda):=\operatorname{Ind}_{P}^{G}\left(\mathbf{C}_{\lambda}\right)$ with parameter $\lambda \in \mathbf{C}$ of G is induced from a character \mathbf{C}_{λ} of a maximal parabolic subgroup $P=M A N_{+}$with Levi part $M A \simeq O(p, q) \times\{ \pm 1\} \times \mathbf{R}$. We realize $I(\lambda)$ on the space of C^{∞} sections of the G-equivariant line bundle

$$
\mathcal{L}_{\lambda}=G \times_{P} \mathbf{C}_{\lambda} \rightarrow G / P
$$

so that $I(\lambda)$ itself is the smooth Fréchet globalization of moderate growth. Our parametrization is chosen in a way that $I(\lambda)$ contains a finite-dimensional submodule if $-\lambda \in 2 \mathbf{N}$ and a finite-dimensional quotient if $\lambda-(p+q) \in 2 \mathbf{N}(c f$. [3]).

Let $G^{\prime}=O(p, q+1)$ be the stabilizer of the basis element e_{p}. Similarly to $I(\lambda)$, we denote by $J(\nu):=\operatorname{Ind}_{P^{\prime}}^{G^{\prime}}\left(\mathbf{C}_{\nu}\right)$ the representation of G^{\prime} induced from a character \mathbf{C}_{ν} of a maximal parabolic subgroup P^{\prime} of G^{\prime} with Levi part $O(p-1, q) \times$ $\{ \pm 1\} \times \mathbf{R}$.

The representation $I(\lambda)$ arises from conformal geometry as follows. We endow the direct product manifold $\mathbf{S}^{p} \times \mathbf{S}^{q}$ with the pseudo-Riemannian structure $g_{\mathbf{S}^{p}} \oplus\left(-g_{\mathbf{S}^{q}}\right)$ of signature (p, q). Then the group $G=O(p+1, q+1)$ acts as conformal diffeomorphisms on $\mathbf{S}^{p} \times \mathbf{S}^{q}$, and also on its quotient space $X=\left(\mathbf{S}^{p} \times \mathbf{S}^{q}\right) / \mathbf{Z}_{2}$ by identifying the direct product of antipodal points. By the general theory of conformal groups, one has a natural family of representations ϖ_{λ} on $C^{\infty}(X)$ with parameter $\lambda \in$ $\mathbf{C}\left[12\right.$, Sect. 2]. Then X identifies with G / P, and ϖ_{λ} identifies with $I(\lambda)$. Thus the branching problem in our setting arises from the conformal construction of representations for the pair

$$
(X, Y)=\left(\left(\mathbf{S}^{p} \times \mathbf{S}^{q}\right) / \mathbf{Z}_{2},\left(\mathbf{S}^{p-1} \times \mathbf{S}^{q}\right) / \mathbf{Z}_{2}\right)
$$

4. Multiplicity formulæ. In this section we determine explicitly the multiplicity

$$
m(I(\lambda), J(\nu))=\operatorname{dim} \operatorname{Hom}_{G^{\prime}}\left(\left.I(\lambda)\right|_{G^{\prime}}, J(\nu)\right)
$$

We shall find $m(I(\lambda), J(\nu))>0$ for all $\lambda, \nu \in \mathbf{C}$. Following [16], we define four subsets of \mathbf{C}^{2} as below:

$$
\begin{aligned}
\|\| & :=\left\{(\lambda, \nu) \in \mathbf{C}^{2} \mid \nu \in-2 \mathbf{N} \cup(q+1+2 \mathbf{Z})\right\}, \\
\| & :=\left\{(\lambda, \nu) \in \mathbf{C}^{2} \mid n-1-\lambda-\nu \in 2 \mathbf{N}\right\}, \\
\| & :=\left\{(\lambda, \nu) \in \mathbf{C}^{2} \mid \nu-\lambda \in 2 \mathbf{N}\right\}, \\
\| & :=\left\{(\lambda, \nu) \in \mathbf{C}^{2} \mid \nu \in 1+2 \mathbf{N}\right\},
\end{aligned}
$$

and two subsets of \mathbf{Z}^{2} by

$$
\mathcal{A}:=/ / \cap \| \mid \text { and } \mathcal{X}:=\| \cap \backslash \backslash .
$$

Theorem 4.1. Let $\left(G, G^{\prime}\right)$ be as in (2.1) with $p, q \geq 1$. Then

$$
m(I(\lambda), J(\nu)) \in\{1,2\}
$$

for all $\lambda, \nu \in \mathbf{C}$. Furthermore, $m(I(\lambda), J(\nu))=2$ if and only if one of the following conditions holds:
Case 1. $p>1 .(\lambda, \nu) \in \mathcal{A}$.
Case 2. $p=1$ and q is odd. $(\lambda, \nu) \in \mathcal{A} \cup \mathcal{X}$.
Case 3. $p=1$ and q is even. $(\lambda, \nu) \in \mathcal{A} \cup \mathcal{X}-$ $\mathcal{X} \cap / /$.
We shall construct explicitly all the symmetry breaking operators in Section 6.
5. Double coset space $\boldsymbol{P}^{\prime} \backslash \boldsymbol{G} / \boldsymbol{P}$. In general, as is seen in Fact 1.1 (and Fact 6.2 below), the double coset space $P^{\prime} \backslash G / P$ plays a fundamental role in analyzing symmetry breaking operators

$$
\operatorname{Ind}_{P}^{G}(\sigma) \rightarrow \operatorname{Ind}_{P^{\prime}}^{G^{\prime}}(\tau)
$$

where σ is a representation of a parabolic subgroup P of G and τ is that of a parabolic subgroup P^{\prime} of G^{\prime}. The description of the double coset space $P^{\prime} \backslash G / P$ is nothing but the Bruhat decomposition if $G^{\prime}=G$; the Iwasawa decomposition if G^{\prime} is a maximal compact subgroup K of G where P^{\prime} automatically equals K.

In this section we give a description of $P^{\prime} \backslash G / P$ together with its closure relation in the setting where $\left(G, G^{\prime}, P, P^{\prime}\right)$ is given as in Section 3. Then the natural action of $G=O(p+1, q+1)$ on \mathbf{R}^{p+q+2} preserves the isotropic cone

$$
\Xi:=\left\{x \in \mathbf{R}^{p+q+2}-\{0\} \mid Q_{p+1, q+1}(x)=0\right\}
$$

inducing the G-action on its quotient space

$$
X:=\Xi / \mathbf{R}^{\times} \simeq\left(\mathbf{S}^{p} \times \mathbf{S}^{q}\right) / \mathbf{Z}_{2}
$$

We define the subvarieties of X by

$$
\begin{aligned}
Y & :=\left\{[x] \in X \mid x_{p}=0\right\} \\
C & :=\left\{[x] \in X \mid x_{0}=x_{p+q+1}\right\}
\end{aligned}
$$

Let P be the stabilizer of the point

$$
o:=[1: 0: \cdots: 0: 1] \in X \simeq \Xi / \mathbf{R}^{\times}
$$

and $P^{\prime}:=P \cap G^{\prime}$. Then X and Y are identified with the real flag varieties G / P and G^{\prime} / P^{\prime}, respectively.

Theorem 5.1 (description of $P^{\prime} \backslash G / P$). Suppose $p, q \geq 1$. The left P^{\prime}-invariant closed subsets of G / P are described in the following Hasse diagram. Here ${ }_{B}^{\mid}{ }_{B}^{A}$ means that $A \supset B$ and that the subvariety B is of codimension m in A.

(a) when $p>1$

(b) when $p=1$
6. Construction of SBOs. Let $n:=p+q$. The slice of Ξ by the hyperplane $x_{0}+x_{p+q+1}=2$ defines the coordinates $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ of the open Bruhat cell U of G / P, and induces the N-picture of the representation $I(\lambda), \iota_{\lambda}^{*}: I(\lambda) \hookrightarrow$ $C^{\infty}\left(\mathbf{R}^{n}\right)$ via the trivialization $\left.\mathcal{L}_{\lambda}\right|_{U} \simeq \mathbf{R}^{n} \times \mathbf{C}$. Likewise, $x^{\prime}=\left(x_{1}, \ldots, \widehat{x_{p}}, \ldots, x_{n}\right) \in \mathbf{R}^{n-1}$ give the coordinates of the Bruhat cell of G^{\prime} / P^{\prime}, and we have the N-picture $\iota_{\nu}^{*}: J(\nu) \hookrightarrow C^{\infty}\left(\mathbf{R}^{n-1}\right)$.

We shall realize a symmetry breaking operator T in the N-pictures of $I(\lambda)$ and $J(\nu)$, and find a distribution $K_{T} \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ such that for all $f \in I(\lambda)$

$$
\iota_{\nu}^{*}(T f)\left(x^{\prime}\right)=\operatorname{Rest}_{x_{p}=0} \circ \int_{\mathbf{R}^{n}} K_{T}(x-y)\left(\iota_{\lambda}^{*} f\right)(y) d y
$$

In order to analyze the distribution kernels K_{T} of symmetry breaking operators T, we begin with:

Definition 6.1. We let $O(p-1, q)$ act on $\mathbf{R}^{n}(n=p+q)$ by leaving x_{p} invariant. We define $\mathcal{S o l}\left(\mathbf{R}^{p, q} ; \lambda, \nu\right)$ to be the space of distributions $F \in$ $\mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ satisfying the following three conditions:
(1) F is $O(p-1, q)$-invariant and $F(x)=F(-x)$;
(2) F is homogeneous of degree $\lambda-\nu-n$;
(3) F is invariant by $N_{+}^{\prime}:=N_{+} \cap G^{\prime}$.

Applying the general results proven in
[16, Chap. 3] to our particular setting, we get the following.

Fact 6.2 ([16, Thm. 3.16]). Recall $n=p+$ $q(p, q \geq 1)$. Then the following diagram commutes:

For $T \in \operatorname{Hom}_{G^{\prime}}\left(\left.I(\lambda)\right|_{G^{\prime}}, J(\nu)\right)$, a closed P^{\prime}-invariant subset $\operatorname{Supp}(T)$ in $X=G / P$ is defined to be the support of the distribution kernel $K_{T} \in$ $\left(\mathcal{D}^{\prime}\left(G / P, \mathcal{L}_{n-\lambda}\right) \otimes \mathbf{C}_{\nu}\right)^{P^{\prime}}$. By [15, Lem. 2.22], T is a differential symmetry breaking operator if and only if $\operatorname{Supp}(T)$ is a singleton.

Conversely, for each P^{\prime}-invariant closed subset $S=\{o\}, C, Y$ or X itself, we define a subset D_{S} of \mathbf{C}^{2} which is either the whole \mathbf{C}^{2} or a countable union of one-dimensional complex affine spaces, and construct a family of SBOs, $R_{\lambda, \nu}^{S}: I(\lambda) \rightarrow J(\nu)$, such that

- $R_{\lambda, \nu}^{S}$ depends holomorphically on $(\lambda, \nu) \in D_{S}$;
- $\operatorname{Supp}\left(R_{\lambda, \nu}^{S}\right) \subset S$ for every $(\lambda, \nu) \in D_{S}$, and the equality holds for generic points in D_{S}.
The distribution kernels $K_{\lambda, \nu}^{S}$ of the operators $R_{\lambda, \nu}^{S}$ will be given explicitly in Theorems 6.3-6.6 and Fact 6.7. The relations among them are discussed in Section 8 as "residue formulæ". The space of SBOs is generated by these operators, as we shall see the classification results in Theorem 6.9.

Here is a summary of the symmetry breaking operators that we construct below.

$R_{\lambda, \nu}^{S}=\operatorname{Op}\left(K_{\lambda, \nu}^{S}\right)$	D_{S}			
$R_{\lambda, \nu}^{X}=\operatorname{Op}\left(K_{\lambda, \nu}^{X}\right)$	\mathbf{C}^{2}	Theorem 6.3		
$\tilde{R}_{\lambda, \nu}^{X}=\operatorname{Op}\left(\tilde{K}_{\lambda, \nu}^{X}\right)$	$\\|\\|$	Theorem 6.4		
$R_{\lambda, \nu}^{Y}=\operatorname{Op}\left(K_{\lambda, \nu}^{Y}\right)$	$\\|$	Theorem 6.5		
$R_{\lambda, \nu}^{C}=\operatorname{Op}\left(K_{\lambda, \nu}^{C}\right)$	$\\|$	Theorem 6.6		
$R_{\lambda, \nu}^{\{0\}}=\operatorname{Op}\left(K_{\lambda, \nu}^{\{0\}}\right)$	$/ /$	Fact 6.7		

Theorem 6.3 (regular symmetry breaking operator). Suppose $n=p+q$ with $p, q \geq 1$.
(1) There exists a family of symmetry breaking operators $R_{\lambda, \nu}^{X} \in \operatorname{Hom}_{G^{\prime}}\left(\left.I(\lambda)\right|_{G^{\prime}}, J(\nu)\right)$ that depends holomorphically on (λ, ν) in the entire \mathbf{C}^{2} with the distribution kernel $K_{\lambda, \nu}^{X}(x)$ given by

$$
\frac{1}{\Gamma\left(\frac{\lambda-\nu}{2}\right) \Gamma\left(\frac{\lambda+\nu-n+1}{2}\right) \Gamma\left(\frac{1-\nu}{2}\right)}\left|x_{p}\right|^{\lambda+\nu-n}\left|Q_{p, q}\right|^{-\nu}
$$

(2) $R_{\lambda, \nu}^{X}$ vanishes if and only if (λ, ν) belongs to the discrete set \mathcal{A} for $p>1, \mathcal{A} \cup \mathcal{X}$ for $p=1, q$ odd and $\mathcal{A} \cup \mathcal{X}-\mathcal{X} \cap / /$ for $p=1, q$ even.
(3) $\operatorname{Supp}\left(R_{\lambda, \nu}^{X}\right) \subset Y, C$ or $\{o\}$ if $(\lambda, \nu) \in \backslash \backslash, \|$ or $/ /$, respectively, and $\operatorname{Supp}\left(R_{\lambda, \nu}^{X}\right)=X$ otherwise.

The above normalization of $R_{\lambda, \nu}^{X}$ is optimal in the sense that the zeros of $R_{\lambda, \nu}^{X}$ form a subset of codimension two in \mathbf{C}^{2}. Next, we renormalize $R_{\lambda, \nu}^{X}$ in the places where $R_{\lambda, \nu}^{X}$ vanishes. For this, we observe that $\Gamma\left(\frac{\lambda-\nu}{2}\right)$ is holomorphic in $\mathbf{C}^{2}-/ /$, and therefore

$$
\tilde{K}_{\lambda, \nu}^{X}:=\Gamma\left(\frac{\lambda-\nu}{2}\right) K_{\lambda, \nu}^{X}=\frac{\left|x_{p}\right|^{\lambda+\nu-n}\left|Q_{p, q}\right|^{-\nu}}{\Gamma\left(\frac{\lambda+\nu-n+1}{2}\right) \Gamma\left(\frac{1-\nu}{2}\right)}
$$

makes sense if $(\lambda, \nu) \in \mathbf{C}^{2}-/ /$. Moreover, in light of the fact that $K_{\lambda, \nu}^{X}$ vanishes on $\mathcal{A}=\| \| \cap / /$, we obtain its analytic continuation on $\mid \|$ as follows.

Theorem 6.4 (renormalized operator $\tilde{R}_{\lambda, \nu}^{X}$). (1) The renormalized symmetry breaking operator

$$
\tilde{R}_{\lambda, \nu}^{X}:=\operatorname{Op}\left(\tilde{K}_{\lambda, \nu}^{X}\right) \in \operatorname{Hom}_{G^{\prime}}\left(\left.I(\lambda)\right|_{G^{\prime}}, J(\nu)\right)
$$

is defined for $(\lambda, \nu) \in\|\|$ that depends holomorphically on λ in the entire \mathbf{C} for each fixed ν.
(2) $\tilde{R}_{\lambda, \nu}^{X}$ vanishes if and only if $p=1, q$ even and $(\lambda, \nu) \in \mathcal{X}-/ /$.
Let $N: \mathbf{R} \rightarrow \mathbf{Z}$ be a discontinuous function defined by $N(x):=x$ if $x \in \mathbf{N} ;=0$ otherwise.

Associated to closed subsets Y and C in $P^{\prime} \backslash G / P$ we introduce families of singular SBOs. For later purpose, we discuss only the case $p=1$.

Theorem 6.5 (singular symmetry breaking operators $R_{\lambda, \nu}^{Y}$). Suppose $p=1$ and $q \geq 1$. For $(\lambda, \nu) \in \backslash \backslash$, we fix $k:=\frac{1}{2}(q-\lambda-\nu) \in \mathbf{N}$. Then there exists a family of symmetry breaking operators $R_{\lambda, \nu}^{Y}$ that depends holomorphically on ν in the entire plane \mathbf{C} with the distribution kernel $K_{\lambda, \nu}^{Y}$ given by

$$
\frac{1}{\Gamma\left(\frac{\lambda-\nu}{2}+N\left(k-\frac{q}{2}\right)\right)} \delta^{(2 k)}\left(x_{p}\right)\left|Q_{p, q}\right|^{-\nu} .
$$

Theorem 6.6 (singular symmetry breaking operators $R_{\lambda, \nu}^{C}$). Suppose $p=1$ and $q \geq 1$. For $(\lambda, \nu) \in \|$, we fix $m:=\frac{1}{2}(\nu-1) \in \mathbf{N}$. Then there exists a family of symmetry breaking operators $R_{\lambda, \nu}^{C}$ that depends holomorphically on λ in the entire plane \mathbf{C} with the distribution kernel $K_{\lambda, \nu}^{C}$ given by

$$
\frac{1}{\Gamma\left(\frac{\lambda-\nu}{2}+N\left(\nu-\frac{q}{2}\right)\right)}\left|x_{p}\right|^{\lambda+\nu-n} \delta^{(2 m)}\left(Q_{p, q}\right)
$$

The differential symmetry breaking operators $R_{\lambda, \nu}^{\{o\}}: C^{\infty}\left(\mathbf{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbf{R}^{n-1}\right)$ were previously found in [4, Thms. 5.1.1 and 5.2.1] for $q=0$ and in [13, Thm. 4.3] for general p, q by a different approach. See also $[9,10]$ for further generalization.

Fact 6.7. Suppose $(\lambda, \nu) \in / /$. We set $l:=$

$$
\begin{aligned}
& \frac{1}{2}(\nu-\lambda) \in \mathbf{N} \text {. We define } R_{\lambda, \nu}^{\{0\}} \text { by } \\
& \quad \operatorname{Rest}_{x_{p}=0} \circ \sum_{j=0}^{l} a_{j}(\lambda, \nu)\left(-\Delta_{\mathbf{R}^{p-1, q}}\right)^{j}\left(\frac{\partial}{\partial x_{p}}\right)^{2 l-2 j}
\end{aligned}
$$

where $a_{j}(\lambda, \nu)$ is given by

$$
a_{j}(\lambda, \nu)=\frac{(-1)^{j} 2^{2 l-2 j}}{j!(2 l-2 j)!} \prod_{i=1}^{l-j}\left(\frac{\lambda+\nu-n-1}{2}+i\right)
$$

Then $R_{\lambda, \nu}^{\{o\}} \in \operatorname{Hom}_{G^{\prime}}\left(\left.I(\lambda)\right|_{G^{\prime}}, J(\nu)\right)$. The coefficients $a_{j}(\lambda, \nu)$ give rise to a Gegenbauer polynomial

$$
\tilde{C}_{2 l}^{\lambda+\frac{n-1}{2}}(t)=\sum_{j=0}^{l} a_{j}(\lambda, \nu) t^{2 l-2 j}
$$

renormalized as $\tilde{C}_{2 l}^{\lambda+\frac{n-1}{2}}(0)=(-1)^{l} / l!$.
Its distribution kernel is given by

$$
K_{\lambda, \nu}^{\{o\}}:=\sum_{j=0}^{l} a_{j}(\lambda, \nu)\left(-\Delta_{\mathbf{R}^{p-1, q}}\right)^{j} \delta_{\mathbf{R}^{p+q-1}} \delta^{(2 l-2 j)}\left(x_{p}\right)
$$

Remark 6.8. The operators $R_{\lambda, \nu}^{Y}, R_{\lambda, \nu}^{C}$ and $R_{\lambda, \nu}^{\{o\}}$ do not vanish.

The SBOs are not always linearly independent, but exhaust all SBOs. We provide explicit basis for $\operatorname{Hom}_{G^{\prime}}\left(\left.I(\lambda)\right|_{G^{\prime}}, J(\nu)\right)$ for every $(\lambda, \nu) \in \mathbf{C}^{2}$:

Theorem 6.9 (classification of SBOs). The vector space $\operatorname{Hom}_{G^{\prime}}\left(\left.I(\lambda)\right|_{G^{\prime}}, J(\nu)\right)$ is spanned by the operators as below.
(1) Suppose $p=1$ and $q \geq 1$.

$$
\begin{cases}R_{\lambda, \nu}^{X}, & \text { if }(\lambda, \nu) \notin \mathcal{A} \cup \mathcal{X} \\ \tilde{R}_{\lambda, \nu}^{X}, R_{\lambda, \nu}^{\{o\}}, & \text { if }(\lambda, \nu) \in \mathcal{A}-\mathcal{X}, \\ R_{\lambda, \nu}^{Y}, R_{\lambda, \nu}^{C}, & \text { if }(\lambda, \nu) \in \mathcal{X}-/ /, \\ R_{\lambda, \nu}^{\{0\}}, & \text { if }(\lambda, \nu) \in \| \cap \backslash \backslash / /\end{cases}
$$

(2) Suppose $p \geq 2$ and $q \geq 1$.

$$
\begin{cases}\tilde{R}_{\lambda, \nu}^{X}, R_{\lambda, \nu}^{\{o\}}, & \text { if }(\lambda, \nu) \in \mathcal{A} \\ R_{\lambda, \nu}^{X}, & \text { otherwise }\end{cases}
$$

7. Spectrum of SBOs. The representation $I(\lambda)$ of G contains a one-dimensional subspace of spherical vectors (i.e. K-fixed vectors), and likewise $J(\nu)$ of G^{\prime}. Let $\mathbf{1}_{\lambda} \in I(\lambda), \mathbf{1}_{\nu} \in J(\nu)$ be the spherical vectors normalized by $\mathbf{1}_{\lambda}(e)=\mathbf{1}_{\nu}(e)=1$. With this normalization, we have:

Theorem 7.1 (spectrum for spherical vectors). Let $n=p+q(p, q \geq 1)$ as before.

$$
R_{\lambda, \nu}^{X} \mathbf{1}_{\lambda}=\frac{2^{1-\lambda} \pi^{n / 2}}{\Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{\lambda+1-q}{2}\right) \Gamma\left(\frac{q-\nu+1}{2}\right)} \mathbf{1}_{\nu}
$$

Remark 7.2. Theorem 7.1 was known in Bernstein-Reznikov [1] for $p=q=1$ and in
[16, Prop. 7.4] for $q=0$. Another generalization was given in [2, Thm. 1.1] for higher dimensional cases.
8. Residue formulæ of SBOs. The regular symmetry breaking operators $R_{\lambda, \nu}^{X}$ have two complex parameters $(\lambda, \nu) \in \mathbf{C}^{2}$, whereas the singular operators $R_{\lambda, \nu}^{Y}, R_{\lambda, \nu}^{C}$, and $R_{\lambda, \nu}^{\{0\}}$ are defined for $(\lambda, \nu) \in \ \backslash, \|$ and $/ /$, respectively. We find the relationship among these operators as explicit residue formulæ.

Proposition 8.1. Suppose $p=1$.
(1) $\operatorname{For}(\lambda, \nu) \in \backslash \backslash$, we set $k=\frac{1}{2}(q-\lambda-\nu) \in \mathbf{N}$. Then

$$
R_{\lambda, \nu}^{X}=\frac{(-1)^{k} k!}{(2 k)!} \frac{\left(\frac{\lambda-\nu}{2}\right)}{\Gamma\left(\frac{1-\nu}{2}\right)} R_{\lambda, \nu}^{Y} \text { if }(\lambda, \nu) \in \backslash \backslash
$$

(2) $\operatorname{For}(\lambda, \nu) \in \|$, we set $m:=\frac{1}{2}(\nu-1) \in \mathbf{N}$. Then

$$
R_{\lambda, \nu}^{X}=\frac{(-1)^{m} m!}{(2 m)!} \frac{\left(\frac{\lambda-\nu}{2}\right)_{N\left(\nu-\frac{q}{2}\right)}}{\Gamma\left(\frac{\lambda+\nu-n+1}{2}\right)} R_{\lambda, \nu}^{C} \text { if }(\lambda, \nu) \in \|
$$

Theorem 8.2 (residue formula). Let $n=$ $p+q(p, q \geq 1)$. For $(\lambda, \nu) \in / /$, we set $l:=\frac{1}{2}(\nu-$ $\lambda) \in \mathbf{N}$. Then we have for $(\lambda, \nu) \in / /$

$$
R_{\lambda, \nu}^{X}=\frac{(-1)^{l} l!\pi^{(n-2) / 2}}{2^{\nu+2 l-1}} \cdot \frac{\sin \left(\frac{1+q-\nu}{2} \pi\right)}{\Gamma\left(\frac{\nu}{2}\right)} R_{\lambda, \nu}^{\{o\}} .
$$

Proposition 8.1 treats easier cases as the subvarieties Y and C are of codimension one in X (see Theorem 5.1), whereas Theorem 8.2 is more involved.

Remark 8.3. The residue formula in the case $q=0$ was given in [16, Thm. 12.2].
9. Functional identities among SBOs. Let $n:=p+q$ as before. We recall that there exist nonzero Knapp-Stein intertwining operators

$$
\tilde{\mathbf{T}}_{\lambda}^{G}: I(\lambda) \rightarrow I(n-\lambda)
$$

with holomorphic parameter $\lambda \in \mathbf{C}$ by the distribution kernel in the N-picture normalized as follows:

$$
\begin{gathered}
\frac{1}{\Gamma\left(\frac{\lambda-n+1}{2}\right) \Gamma\left(\frac{2 \lambda-n+2}{4}\right) \Gamma\left(\frac{2 \lambda-n}{4}\right)} \cdot\left|Q_{p, q}\right|^{\lambda-n} \\
\times \begin{cases}\Gamma\left(\frac{\lambda-n+2}{2}\right), & \text { if } \min (p, q)=0, \\
1, & \text { if } p, q>0, p \not \equiv q \bmod 2 \\
\Gamma\left(\frac{2 \lambda-n}{4}\right), & \text { if } p, q>0, p-q \equiv 2 \bmod 4 \\
\Gamma\left(\frac{2 \lambda-n+2}{4}\right), & \text { if } p, q>0, p-q \equiv 0 \bmod 4\end{cases}
\end{gathered}
$$

Similarly, we write $\tilde{\mathbf{T}}_{\nu}^{G^{\prime}}: J(\nu) \rightarrow J(n-1-\nu)$ for the Knapp-Stein intertwining operator for G^{\prime}.

Theorem 9.1 (functional identities).

$$
\begin{gathered}
\tilde{\mathbf{T}}_{n-1-\nu}^{G^{\prime}} \circ R_{\lambda, n-1-\nu}^{X}=\frac{\pi^{\frac{n-3}{2}} \sin \left(\frac{p-\nu}{2} \pi\right)}{\Gamma\left(\frac{n-1-\nu}{2}\right)} a(\lambda, \nu) R_{\lambda, \nu}^{X}, \\
R_{n-\lambda, \nu}^{X} \circ \tilde{\mathbf{T}}_{\lambda}^{G}=\frac{\pi^{-\frac{n}{2}-1} \sin \left(\frac{p-\lambda+1}{2} \pi\right)}{2^{n-2 \lambda} \Gamma\left(\frac{n-\lambda}{2}\right)} b(\lambda, \nu) R_{\lambda, \nu}^{X},
\end{gathered}
$$

for any $\lambda, \nu \in \mathbf{C}$, where

$$
\begin{aligned}
& a(\lambda, \nu)= \begin{cases}2^{\frac{1-n}{2}} \Gamma\left(\frac{1-\nu}{2}\right), & \text { if } p=1, \\
2^{\frac{1-n}{2}}, & \text { if } p>1, p \equiv q \bmod 2, \\
\Gamma\left(\frac{n-2 \nu}{2}\right), & \text { if } p>1, p-q \equiv 1 \bmod 4, \\
\Gamma\left(\frac{n-2 \nu-2}{4}\right), & \text { if } p>1, p-q \equiv 3 \bmod 4,\end{cases} \\
& b(\lambda, \nu)= \begin{cases}2^{-\frac{n}{2}}, & \text { if } p \equiv q+1 \bmod 2, \\
\Gamma\left(\frac{\lambda-n+2}{4}\right), & \text { if } p-q \equiv 0 \bmod 4, \\
\Gamma\left(\frac{\lambda-n}{4}\right), & \text { if } p-q \equiv 2 \bmod 4 .\end{cases}
\end{aligned}
$$

Remark 9.2. The functional identities in the case $q=0$ were proven in [8, Thm. 12.6].

We have given all the constants in this note as multiplicative formula so that we can tell the zeros explicitly. Their representation-theoretic interpretation serves as a clue in the subprogram (C5).

A detailed proof will appear elsewhere.
Acknowledgement. The first author was partially supported by the Grant-in-Aid for Scientific Research (A) 25247006.

References

[1] J. Bernstein and A. Reznikov, Estimates of automorphic functions, Mosc. Math. J. 4 (2004), no. 1, 19-37.
[2] J.-L. Clerc, T. Kobayashi, B. Ørsted, and M. Pevzner, Generalized Bernstein-Reznikov integrals, Math. Ann. 349 (2011), no. 2, 395-431.
[3] R. E. Howe and E.-C. Tan, Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 1, 1-74.
[4] A. Juhl, Families of conformally covariant differential operators, Q-curvature and holography, Progress in Mathematics, 275, Birkhäuser Verlag, Basel, 2009.
[5] T. Kobayashi, Discrete decomposability of the restriction of $A_{q}(\lambda)$ with respect to reductive subgroups. II. Micro-local analysis and asymptotic K-support, Ann. of Math. (2) 147 (1998), no. 3, 709-729.
[6] T. Kobayashi, Discrete decomposability of the restriction of $A_{q}(\lambda)$ with respect to reductive subgroups. III. Restriction of Harish-Chandra modules and associated varieties, Invent. Math. 131 (1998), no. 2, 229-256.
[7] T. Kobayashi, Shintani functions, real spherical manifolds, and symmetry breaking operators, in Developments and retrospectives in Lie theory, Dev. Math., 37, Springer, Cham, 2014, pp. 127-159.
[8] T. Kobayashi, A program for branching problems in the representation theory of real reductive groups, in Representations of reductive groups: in honor of the 60th birthday of D. Vogan (MIT, 2014), 277-322, Progr. Math., 312, Birkhäuser/ Springer, Cham, 2015.
[9] T. Kobayashi, T. Kubo and M. Pevzner, Conformal symmetry breaking operators for differential forms on spheres, Lecture Notes in Mathematics, 2170, Springer, Singapore, 2016.
[10] T. Kobayashi, T. Kubo and M. Pevzner, Conformal symmetry breaking operators for antide Sitter spaces, arXiv:1610.09475. (to appear in Trends Math.).
[11] T. Kobayashi and T. Matsuki, Classification of finite-multiplicity symmetric pairs, Transform. Groups 19 (2014), no. 2, 457-493. (In special issue in honour of Professor Dynkin for his 90th birthday).
[12] T. Kobayashi and B. Ørsted, Analysis on the minimal representation of $\mathrm{O}(p, q)$. I. Realization via conformal geometry, Adv. Math. 180 (2003), no. 2, 486-512.
[13] T. Kobayashi, B. Ørsted, P. Somberg and V. Souček, Branching laws for Verma modules and applications in parabolic geometry. I, Adv. Math. 285 (2015), 1796-1852.
[14] T. Kobayashi and T. Oshima, Finite multiplicity theorems for induction and restriction, Adv. Math. 248 (2013), 921-944.
[15] T. Kobayashi and M. Pevzner, Differential symmetry breaking operators: I. General theory and F-method, Selecta Math. (N.S.) 22 (2016), no. 2, 801-845.
[16] T. Kobayashi and B. Speh, Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc. 238 (2015), no. 1126, $\mathrm{v}+110 \mathrm{pp}$.
[17] N. R. Wallach, Real reductive groups. II, Pure and Applied Mathematics, 132-II, Academic Press, Inc., Boston, MA, 1992.

[^0]: 2010 Mathematics Subject Classification. Primary 22E46; Secondary 33C45, 53C35.
 *) Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan.
 **) Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan.

