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Symmetry breaking operators for the restriction of representations

of indefinite orthogonal groups O(p, q)
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Abstract:

For the pair (G,G')=(0(p+1,q+1),0(p,q+ 1)), we construct and give a

complete classification of intertwining operators (symmetry breaking operators) between most
degenerate spherical principal series representations of G and those of the subgroup G’, extending
the work initiated by Kobayashi and Speh [Mem. Amer. Math. Soc. 2015] in the real rank one
case where ¢ = 0. Functional identities and residue formule of the regular symmetry breaking
operators are also provided explicitly. The results contribute to Program C of branching
problems suggested by the first author [Progr. Math. 2015].
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1. Branching problem. Suppose G D G
are reductive groups and w is an irreducible
representation of G. The restriction of m to the
subgroup G’ is no more irreducible in general as a
representation of G'. If G is compact, then any
irreducible 7 is finite-dimensional and splits into a
finite direct sum

e @ m(m, 7 )7’
Tr’ea’
of irreducibles 7’ of G' with multiplicities m(m, 7).
These multiplicities have been studied by various
techniques including combinatorial algorithms.

However, for noncompact G’ and for infinite-
dimensional 7, the restriction 7|, is not always a
direct sum of irreducible representations, see [5,6]
for details. In order to define the “multiplicity” in
this generality, we recall that, associated to a
continuous representation 7w of a Lie group on a
Banach space H, a continuous representation 7> is
defined on the Fréchet space H™ of C*-vectors of
‘H. Given another representation 7’ of a subgroup
G', we consider the space of continuous G’-inter-
twining operators (symmetry breaking operators)
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(1.1) Home (7%, (7')°).

If both 7 and 7’ are admissible representations of

finite length of reductive Lie groups G and G’,

respectively, then the dimension of the space (1.1) is

determined by the underlying (g, K)-module 7x of
7w and the (g, K')-module 7% of ', and is in-
dependent of the choice of Banach globalizations by
the Casselman—Wallach theory [17,Chap. 11]. We
denote by m(m, ') the dimension of (1.1), and call it

the multiplicity of 7’ in the restriction 7.

The above definition of the multiplicity
m(m, ') makes sense for nonunitary representa-
tions, too.

In general, m(m, 7') may be infinite, even when
G’ is a maximal reductive subgroup of G (e.g.
symmetric pairs). By using the theory of real spher-
ical spaces [14], the geometric criterion for finite
multiplicities was proved in [7] and [14] as follows.

Fact 1.1. Let (G,G) be a pair of real reduc-
tiwe Lie groups with complezification (Gc, Gg).

(1) The multiplicity m(m, ') is finite for all irre-
ducible representations ™ of G and all irredu-
cible representations © of G' if and only if a
manimal parabolic subgroup of G' has an open
orbit on the real flag variety of G.

(2) The multiplicity m(w, ") is uniformly bounded
if and only if a Borel subgroup of Gg has an
open orbit on the complex flag variety of Ge.
The complete classification of symmetric pairs

(G, @) satisfying the above geometric criteria was

accomplished in Kobayashi-Matsuki [11].
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On the other hand, switching the order in (1.1),
we may also consider another space

Home (7)™, 7| ) or Homg g (s, Tre | er)-

The study of these objects is closely related to the
theory of discretely decomposable restrictions [5,6].

Notation. We adopt the same convention as
in [16] for the following notation. N :={0,1,2,---}.
(z);=z(x+1)-(x+j—1). For two subsets A
and B of a set, we write A—B:={a€ A:a¢ B}
rather than the usual notation A\ B. The symbols
//,\\, ||, and ||| are defined to be subsets of C?, and
are not binary relations.

2. ABC program for branching. In [8] the
first author suggested a program for studying the
restriction of representations of reductive groups,
which may be summarized as follows:

(A) Abstract features of the restriction;

(B) Branching law of 7|

(C) Construction of symmetry breaking operators.
Program A aims for establishing the general theory
of the restrictions 7| (e.g. spectrum, multiplicity),
which would single out the good triples (G,G’, 7). In
turn, we could expect concrete and detailed study of
those restrictions 7|, in Programs B and C.

The current work concerns Program C for
certain standard representations with focus on
symmetry breaking operators (SBOs for short) as
follows:

(C1) Construct SBOs explicitly;

(C2) Classify all SBOs;

(C3) Find residue formulee for SBOs;

(C4) Study functional equations among SBOs;
(C5) Determine the images of subquotients by

SBOs.

The subprogram (C1)-(C5) was proposed by
Kobayashi—Speh in their book [16] with a complete
answer for the pair (G,G') = (O(n+1,1),0(n,1))
of real rank one groups.

In this note we treat degenerate spherical prin-
cipal series representations m = I(\) of G and 7’ =
J(v) of G’ for the pair of higher real rank groups

(21)  (G,G)=(0(p+1,q+1),0(p,q+1)),

and give an answer to (C1)—(C4). The subprogram
(C5) will be discussed in a separate paper.

Concerning Program A, Fact 1.1 assures the
following a priori estimate:

m(m,7') is uniformly bounded

Symmetry breaking operator 87

if the pair of Lie algebras (g,g’) is a real form of
(sl(n+1,C),gl(n,C)) or (o(n+1,C),0(n,C)), in
particular, if (G,G’) is of the form (2.1).

3. Settings. Let G=0(p+1,q+ 1) be the
automorphism group of the quadratic form on
RP"2 of signature (p + 1,¢+ 1) defined by

Qo) = a3 oy

A degenerate spherical principal series repre-
sentation I(\) := Ind$(C,) with parameter A € C
of (¢ is induced from a character C, of a maximal
parabolic subgroup P = MAN, with Levi part
MA ~ O(p,q) x {£1} x R. We realize I(\) on the
space of C* sections of the G-equivariant line
bundle

Ly=GxpCy— G/P

so that I(X) itself is the smooth Fréchet global-
ization of moderate growth. Our parametrization is
chosen in a way that I(\) contains a finite-dimen-
sional submodule if —A\ € 2N and a finite-dimen-
sional quotient if A — (p + q) € 2N (cf. [3]).

Let G'=0O(p,q+1) be the stabilizer of the
basis element e,. Similarly to I()), we denote by
J(v) :=Ind%(C,) the representation of G’ induced
from a character C, of a maximal parabolic
subgroup P’ of G' with Levi part O(p—1,q) x
{£1} x R.

The representation I(\) arises from conformal
geometry as follows. We endow the direct product
manifold S” x S? with the pseudo-Riemannian
structure ggr @ (—gge) of signature (p,q). Then the
group G =O(p+1,q+ 1) acts as conformal diffeo-
morphisms on SP x S, and also on its quotient
space X = (S? x S?)/Zy by identifying the direct
product of antipodal points. By the general theory
of conformal groups, one has a natural family of
representations wy on C*(X) with parameter A €
C [12, Sect. 2]. Then X identifies with G/P, and w)
identifies with I(A). Thus the branching problem
in our setting arises from the conformal construc-
tion of representations for the pair

(X,Y) = ((S? x 8U)/Zy, (SP™! x 8V)/Zy).
4. Multiplicity formulae. In this section
we determine explicitly the multiplicity
m(I(A), J(v)) = dim Home: (I(N)| ¢, J(v)).

We shall find m(I(X),J(v)) >0 for all \,ve C.
Following [16], we define four subsets of C? as below:
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||| {(\v)eC?lve —2NU(q+1+2Z)},
={(\v)eC’|n—1—-\—ve2N},
={(\,v) € C*|v—\€ 2N},

|| {(\v) €C?|vel+ 2N},

§§

and two subsets of Z by
A:=//N||] and X := || N\\.

Theorem 4.1.
p,q>1. Then

Let (G,G") be as in (2.1) with

m(I(A), J(v)) € {1,2}

for all \,v € C. Furthermore, m(I(\),J(v)) =2 if
and only if one of the following conditions holds:
Casel.p>1. (\v) € A
Case 2. p=1 and q is odd. (\,v) € AUX.
Case3. p=1 and q is even. (\,v) e AUX —
xn/.

We shall construct explicitly all the symmetry
breaking operators in Section 6.

5. Double coset space P’\G/P. In gener-
al, as is seen in Fact 1.1 (and Fact 6.2 below), the
double coset space P'\G/P plays a fundamental
role in analyzing symmetry breaking operators

Ind$ (o) — Ind% (7),

where o is a representation of a parabolic subgroup
P of G and 7 is that of a parabolic subgroup P’ of
G'. The description of the double coset space
P\G/P is nothing but the Bruhat decomposition
if G’ =@; the Iwasawa decomposition if G’ is a
maximal compact subgroup K of G where P’ auto-
matically equals K.

In this section we give a description of P"\G/P
together with its closure relation in the setting
where (G,G', P, P') is given as in Section 3. Then
the natural action of G = O(p + 1,¢+ 1) on R
preserves the isotropic cone

== {2 € R — {0} | Qprgii(2) = 0},
inducing the G-action on its quotient space
X =Z/R* ~ (S x 8Y)/Zs,.
We define the subvarieties of X by
Y :={[z] e X |z, =0},
C:={[z] € X |z =Tprqt1}
Let P be the stabilizer of the point
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0:=[1:0:---:0:1] € X ~E/RX,

and P’ := PN G’. Then X and Y are identified with
the real flag varieties G/P and G'/P’, respectively.

Theorem 5.1 (description  of  P'\G/P).
Suppose p,q > 1. The left P'-invariant closed sub-
sets of G/P are described in the following Hasse

/\1,”, means that A D B and that the
B

subvariety B is of codimension m in A.

1 X 1 1 X
Y/ \C Y/
~__ _—

diagram. Here

\10

cny
g2 pt+g—1 pt+g—1
pta—
(lol} {lo]}
(a) when p > 1 (b) when p =1
6. Construction of SBOs. Let n:=p+gq.

The slice of = by the hyperplane xy + piq+1 = 2
defines the coordinates (zi,...,x,) € R" of the
open Bruhat cell U of G/P, and induces the
N-picture of the representation I(X), ¢} : I(A) —
C>(R") via the trivialization £,|; ~ R" x C. Like-
wise, 2’ = (x1,...,T,...,2,) € R"! give the coor-
dinates of the Bruhat cell of G'/P’, and we have the
N-picture ¢ : J(v) — C®(R"™).

We shall realize a symmetry breaking operator
T in the N-pictures of I(A) and J(v), and find a
distribution K7 € D'(R") such that for all f € I())

i5(TF)(@') = Rest,, o o /R Kol — ) (3./) (u)dy

In order to analyze the distribution kernels K¢
of symmetry breaking operators T', we begin with:

Definition 6.1. We let O(p—1,q9) act on
R" (n =p+q) by leaving z, invariant. We define
Sol(R”; \,v) to be the space of distributions F' €
D'(R") satisfying the following three conditions:
(1) Fis O(p—1,q)-invariant and F(z) = F(—x);
(2) F is homogeneous of degree A—v—n;
(3) F is invariant by N’ := N, NG".

Applying the general results proven in
[16, Chap. 3] to our particular setting, we get the
following.

Fact 6.2 ([16, Thm. 3.16]). Recall n=p+
q (p,q > 1). Then the following diagram commutes:
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Home: (I(N)|r, J(v)) —— (D'(G/P, Ln-s) ©C,)"
Op} R’esf

Sol(RP%; \,v) € D'(R")

For T € Homg (I(N\)|w,J(v)), a closed P'-in-
variant subset Supp(T') in X = G/P is defined to be
the support of the distribution kernel Krp €
(D(G/P,L,-) ®C,)". By [15,Lem. 2.22], T is a
differential symmetry breaking operator if and only
if Supp(T) is a singleton.

Conversely, for each P'-invariant closed subset
S ={0},C,Y or X itself, we define a subset Dg of
C? which is either the whole C* or a countable
union of one-dimensional complex affine spaces, and
construct a family of SBOs, Ry : I(\) — J(v), such
that

° Rf‘y depends holomorphically on (A, v) € Dg;

e Supp(Ry ) C S for every (A, v) € Dg, and the

equality'holds for generic points in Dyg.

The distribution kernels Kfy of the operators Riu
will be given explicitly in Theorems 6.3-6.6 and
Fact 6.7. The relations among them are discussed in
Section 8 as “residue formula”. The space of SBOs
is generated by these operators, as we shall see the
classification results in Theorem 6.9.

Here is a summary of the symmetry breaking
operators that we construct below.

R}, =Op(K},) | Ds
R{,=O0p(Ky,) | C* | Theorem 6.3
RY,=0p(KY,) | |l | Theorem 6.4
R}, =Op (Kf’y) \\ | Theorem 6.5
R, =O0p(Kf,) | I| | Theorem 6.6
R =op(k{)| /| Fact 6.7

Theorem 6.3 (regular symmetry breaking
operator). Suppose n =p+ q with p,q > 1.

(1) There exists a family of symmetry breaking
operators Ry, € Homeg (I(A\)|g, J(v)) that de-
pends holomorphically on (\,v) in the entire C*
with the distribution kernel K3\, (z) given by

1 )\ _ _
| Qg -

[T

(2) RY, vanishes if and only if (X, v) belongs to the
discrete set A forp>1, AUX forp=1,q odd
and AUX — XN/ forp=1,q even.

(3) Swp(RY,) € ¥,C or {o} if () €\, or //,
respectively, and Supp(R3,) = X otherwise.
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The above normalization of Ri(y is optimal in
the sense that the zeros of Ry, form a subset of
codimension two in C?. Next, we renormalize R{,
in the places where Rify vanishes. For this, we
observe that I'(35%) is holomorphic in C?>—//, and

therefore
N A —
KY = F( > ”)Kﬁf,, _

makes sense if (\,v) € C? — //. Moreover, in light of
the fact that K3, vanishes on A = ||| N //, we obtain
its analytic continuation on ||| as follows.
Theorem 6.4 (renormalized operator Ri(y)
(1) The renormalized symmetry breaking operator

Rfﬂj = Op(f(f,/) € Homg (I()\)|G,, J(V))

is defined for (A v)€ ||| that depends holo-
morphically on X\ in the entire C for each fized

Atv— _
|| +V 7L|Qp,q| Y

r (/\Jrz/gnJrl ) r (1;_1/)

v.
(2) Rf\(y vanishes if and only if p=1, q even and
\v)eXx—//.

Let N:R — Z be a discontinuous function
defined by N(z) := z if z € N; = 0 otherwise.
Associated to closed subsets Y and C in
P\G/P we introduce families of singular SBOs.
For later purpose, we discuss only the case p = 1.
Theorem 6.5 (singular symmetry breaking
operators R{_V). Suppose p=1 and q¢>1. For
(\v) €\, we fiz k= 1(¢g— X —v) € N. Then there
ezists a family of symmetry breaking operators Rf\/‘y
that depends holomorphically on v in the entire
plane C with the distribution kernel K}:V given by
1
L33+ N(k—9))
Theorem 6.6 (singular symmetry breaking
operators Rgu). Suppose p=1 and ¢q>1. For
(\v) €], we fix m:=3(@w—1)€N. Then there
exists a family of symmetry breaking operators REV
that depends holomorphically on X\ in the entire
plane C with the distribution kernel KSV given by

1
)

5h) (2p)|Qpq e

|6 (@)

The differential symmetry breaking operators
R;{\?E:COO(R”) — C®°(R"™') were previously found
in [4, Thms. 5.1.1 and 5.2.1] for ¢=0 and in
[13, Thm. 4.3] for general p,q by a different ap-
proach. See also [9,10] for further generalization.

Fact 6.7. Suppose (\v) € //. We set l:=
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3 (v—=2X) e N. We define RE\OV} by

! 5\ 22
Rest,,—o o Z aj(\ V) (—Apgp14)’ (37)
7=0 D
where a;(\,v) is given by
(_1)(722172‘7‘ l=j Atv—n—1 '
i ; +1 ).
20 = 29)! 2
Then RE\UE € Homeg (I(N)|g, J(v)). The coefficients

a;j(A,v) give rise to a Gegenbauer polynomial

l
~A+_
= g aj(\v) t2] 2

J=

(L]‘()\, V) =

renormalized as 021 (0) = (-1)'/1.

Its distribution kernel is given by

1
K% =3 aj(00) (= Ape ) S 1872 (wy).
=0

Remark 6.8.
Riog do not vanish.

The SBOs are not always linearly independent,
but exhaust all SBOs. We provide explicit basis for
Homg (I(\)| ¢, J(v)) for every (A, v) € C%:

Theorem 6.9 (classification of SBOs). The
vector space Home (I(N)|q, J(v)) is spanned by the
operators as below.

The operators RKV, Rfv and

(1) Supposep=1 and q>1
Rfy, (\v)¢ AUX,
RY, RV, if \v)eA- X,
RY,, RS, if \wv)eXx—/,
Ry, (A v) elln\n /.

(2) Supposep>2andq>1.
RY, R, if (\v) € A,
R/\ v

7. Spectrum of SBOs. The representation
I(X) of G contains a one-dimensional subspace of
spherical vectors (i.e. K-fixed vectors), and likewise
J(v) of G'. Let 1) € I(N\),1, € J(v) be the spherical
vectors normalized by 1)(e) = 1,(e) = 1. With this
normalization, we have:

Theorem 7.1 (spectrum for spherical vec-

otherwise.

tors). Letn=p+q(p,q>1) as before.
¥ 21—)\7T71/2
By, = = — o b
| D)0 (50 (557)
Remark 7.2. Theorem 7.1 was known in

Bernstein—-Reznikov [1] for p=¢=1 and in
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[16, Prop. 7.4] for ¢=0. Another generalization
was given in [2, Thm. 1.1] for higher dimensional
cases.

8. Residue formulse of SBOs. The regular
symmetry breaking operators wa have two com-
plex parameters (A, v) € C?, whereas the singu-
lar operators R/\D, ng and Rf\} are defined for
(A v) e\, || and //, respectively. We find the
relationship among these operators as explicit
residue formulae.

Proposition 8.1. Suppose p=1.

(1) For (\v)e\\, we set k=1(¢g—X—v)eN.

Then
1) (59 (s
Ri(ﬂ/ = ((21;)']‘3' ;(Q(Vk) d RE\/,V if (A v)€e\\.

(2) For (\v) €|, wesetm:=1(v—1)€N. Then

_cyrm vy
- (2m) F()\+u271+1)

Theorem 8.2 (residue

Ry, v (Asv) el

formula). Let n=

p+q(p,g>1). For (\v)e//, we set l:=1%(v—
A) € N. Then we have for (\,v) € //
RX (=) ltmln=2/2 . sin (122 ) -
Ay out2l-1 1—‘(%) Av”

Proposition 8.1 treats easier cases as the
subvarieties Y and C are of codimension one in X
(see Theorem 5.1), whereas Theorem 8.2 is more
involved.

Remark 8.3. The residue formula in the
case ¢ = 0 was given in [16, Thm. 12.2].

9. Functional identities among SBOs.
Let n := p + q as before. We recall that there exist
nonzero Knapp—Stein intertwining operators

TS : I(\) — I(n— )

with holomorphic parameter A € C by the distribu-
tion kernel in the N-picture normalized as follows:

. Q™"
1—1()\ 7L+1)F(2)\ 4n+2)1—‘(#) P

— 2
F< nr ) if min(p, q) = 0,
if p,g > 0,p # q mod 2
X 2\ .
I‘( 1 >, if p,g>0,p—¢g=2mod 4
2X — 2
F( nt ),ifp,q>0,p—q50mod4
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Similarly, we write TS : J(v) — J(n —1 —v)
for the Knapp-Stein intertwining operator for G’.
Theorem 9.1 (functional identities).

7r"773 sin(pfy 77)
~ G/ X 9 X
T oR, 1, = anlj a(\ )Ry,
(=)
oo p=A+1
. 2 lsin (B2t 1
Rff)\,u o Tg\; = ( 2 ) b()‘v V)Ri(,w

2B ()

for any \,v € C, where

2FT(Y), ifp=1,

1-n

ahv)=4{ 2% if p>1,p=qgmod 2,
r(5%), ifp>1,p—q=1mod4,
r(~=2=2), if p>1,p—q=3mod 4,
272, if p=q+1mod 2,
bAv) =4 T(*5+), if p—g=0mod 4,
F(32),  if p—q=2mod 4.
Remark 9.2. The functional identities in

the case ¢ = 0 were proven in [8, Thm. 12.6].

We have given all the constants in this note
as multiplicative formule so that we can tell the
zeros explicitly. Their representation-theoretic in-
terpretation serves as a clue in the subprogram
(C5).

A detailed proof will appear elsewhere.
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