An algebraic proof of determinant formulas of Grothendieck polynomials

By Tomoo Matsumura
Department of Applied Mathematics, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
(Communicated by Masaki Kashiwara, M.J.A., Sept. 12, 2017)

Abstract

We give an algebraic proof of the determinant formulas for factorial Grothendieck polynomials obtained by Hudson-Ikeda-Matsumura-Naruse in [6] and by Hudson-Matsumura in [7].

Key words: Symmetric polynomials; Grothendieck polynomials; K-theory; Grassmannians; Schubert varieties.

1. Definition and Theorems. In [12] and [14], Lascoux and Schützenberger introduced (double) Grothendieck polynomials indexed by permutations as representatives of K-theory classes of structure sheaves of Schubert varieties in a full flag variety. In [4] and [5], Fomin and Kirillov introduced β-Grothendieck polynomials in the framework of Yang-Baxter equations together with their combinatorial formula and showed that they coincide with the ones defined by Lascoux and Schützenberger with the specialization $\beta=-1$. Let $x=\left(x_{1}, \ldots, x_{d}\right), b=\left(b_{1}, b_{2}, \ldots\right)$ be sets of indetermiants. A Grassmannian permutation with descent at d corresponds to a partition λ of length at most d, i.e. a sequence of non-negative integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ such that $\lambda_{i} \geq \lambda_{i+1}$ for each $i=$ $1, \ldots, d-1$. For such permutation, Buch [3] gave a combinatorial expression of the corresponding Grothendieck polynomial $G_{\lambda}(x)$ as a generating series of set-valued tableaux, a generalization of semistandard Young tableaux by allowing a filling of a box in the Young diagram to be a set of integers. In [18], McNamara gave an expression of factorial (double β-) Grothendieck polynomials $G_{\lambda}(x \mid b)$ also in terms of set-valued tableaux.

In this paper, we prove the following JacobiTrudi type determinant formulas for $G_{\lambda}(x \mid b)$. For each non-negative integer k and an integer m, let $G_{m}^{(k)}(x \mid b)$ be a function of x and b given by

$$
G^{(k)}(u):=\sum_{m \in \mathbf{Z}} G_{m}^{(k)}(x \mid b) u^{m}
$$

[^0]$$
:=\frac{1}{1+\beta u^{-1}} \prod_{i=1}^{d} \frac{1+\beta x_{i}}{1-x_{i} u} \prod_{j=1}^{k}\left(1+(u+\beta) b_{j}\right),
$$
where β is a formal variable of degree -1 and $\frac{1}{1+\beta u^{-1}}$ is expanded as $\sum_{s \geq 0}(-1)^{s} \beta^{s} u^{-s}$. We use the generalized binomial coefficients $\binom{n}{i}$ given by $(1+x)^{n}=\sum_{i \geq 0}\binom{n}{i} x^{i}$ for $n \in \mathbf{Z}$ with the convention that $\binom{n}{i}=0$ for all integers $i<0$.

Theorem 1.1. For each partition λ of length at most d, we have

$$
\begin{aligned}
& G_{\lambda}(x \mid b) \\
& \quad=\operatorname{det}\left(\sum_{s \geq 0}\binom{i-d}{s} \beta^{s} G_{\lambda_{i}+j-i+s}^{\left(\lambda_{i}+d-i\right)}(x \mid b)\right)_{1 \leq i, j \leq d} .
\end{aligned}
$$

Theorem 1.2. We have

$$
\begin{aligned}
& G_{\lambda}(x \mid b) \\
& \quad=\operatorname{det}\left(\sum_{s \geq 0}\binom{i-j}{s} \beta^{s} G_{\lambda_{i}+j-i+s}^{\left(\lambda_{i}+d-i\right)}(x \mid b)\right)_{1 \leq i, j \leq d}
\end{aligned}
$$

In particular, we have

$$
G_{(k, 0, \ldots, 0)}(x \mid b)=G_{k}^{(k+d-1)}(x \mid b)
$$

Theorems 1.1 and 1.2 were originally obtained in the context of degeneracy loci formulas for flag bundles by Hudson-Matsumura in [7] and Hudson-Ikeda-Matsumura-Naruse in [6] respectively. The proof in this paper is purely algebraic, generalizing Macdonald's argument in [16, (3.6)] for JacobiTrudi formula of Schur polynomials. It is based on the following "bi-alternant" formula of $G_{\lambda}(x \mid b)$ described by Ikeda-Naruse in [8]:
(1) $G_{\lambda}(x \mid b)=\frac{\operatorname{det}\left(\left[x_{j} \mid b\right]^{\lambda_{i}+d-i}\left(1+\beta x_{j}\right)^{i-1}\right)_{1 \leq i, j \leq d}}{\prod_{1 \leq i<j \leq d}\left(x_{i}-x_{j}\right)}$.

Here we denote $x \oplus y:=x+y+\beta x y$ and $[y \mid b]^{k}:=$ $\left(y \oplus b_{1}\right) \cdots\left(y \oplus b_{k}\right)$ for any variable x, y. Note that the Grothendieck polynomial $G_{\lambda}(x)$ given in [3] coincides with $G_{\lambda}(x \mid b)$ by setting $\beta=-1$ and $b_{i}=0$.

Determinant formulas different from the ones in Theorems 1.1 and 1.2 have been also obtained by Lenart in [15] (cf. [2], [13]), by Kirillov in [10] and [11], and by Yeliussizov [22]. Each entry of these previously known determinant formulas is given as a finite linear combination of elementary/ complete symmetric polynomials, while in our formula it is given as a possibly infinite linear combination of Grothendieck polynomials associated to one row partitions. A combinatorial proof of Theorem 1.2 has been also obtained in [17] for the non-factorial case, as well as an analogous determinant formula for skew flagged Grothendieck polynomials, special cases of which arise as the Grothendieck polynomials associated to 321-avoiding permutations [1] and vexillary permutations.

It is also worth mentioning that in [3] Buch obtained the Littlewood-Richardson rule for the structure constants of Grothendieck polynomials $G_{\lambda}(x)$, and hence the Schubert structure constants of the K-theory of Grassmannians (see also the paper [9] by Ikeda-Shimazaki for another proof). For the equivariant K-theory of Grassmannians (or equivalently for $G_{\lambda}(x \mid b)$), the structure constants were determined by Pechenik and Yong in [20] by introducing a new combinatorial object called genomic tableaux. Motegi-Sakai [19] identified Grothendieck polynomials with the wave functions arising in the five vertex models and obtained a variant of the Cauchy identity. Using this framework of integrable systems, Wheeler-Zinn-Justin [21] recently obtained another equivariant Littlewood-Richardson rule for factorial Grothendieck polynomials.
2. Proof of Theorem 1.1. By (1), it suffices to show the identity

$$
\begin{aligned}
& \frac{\operatorname{det}\left(\left[x_{j} \mid b\right]^{a_{i}+d-i}\left(1+\beta x_{j}\right)^{i-1}\right)_{1 \leq i, j \leq d}}{\prod_{1 \leq i<j \leq d}\left(x_{i}-x_{j}\right)} \\
& \quad=\operatorname{det}\left(\sum_{s \geq 0}\binom{i-d}{s} \beta^{s} G_{a_{i}+j-i+s}^{\left(a_{i}+d-i\right)}(x \mid b)\right)_{1 \leq i, j \leq d}
\end{aligned}
$$

for each $\left(a_{1}, \ldots, a_{d}\right) \in \mathbf{Z}^{d}$ such that $a_{i}+d-i \geq 0$. For each $j=1, \ldots, d$, we let

$$
E^{(j)}(u):=\sum_{p=0}^{d-1} e_{p}^{(j)}(x) u^{p}:=\prod_{\substack{1 \leq i \leq d \\ i \neq j}}\left(1+x_{i} u\right)
$$

We denote $\bar{y}:=\frac{-y}{1+\beta y}$. Since $1+(u+\beta) y=$ $\frac{1-\bar{y} u}{1+\beta \bar{y}}$, we have

$$
G^{(k)}(u)=\frac{1}{1+\beta u^{-1}} \prod_{i=1}^{d} \frac{1+\beta x_{i}}{1-x_{i} u} \prod_{\ell=1}^{k} \frac{1-\bar{b}_{\ell} u}{1+\beta \bar{b}_{\ell}} .
$$

Consider the identity

$$
\begin{aligned}
& G^{(k)}(u) E^{(j)}(-u) \\
& \quad=\frac{1}{1+\beta u^{-1}} \frac{1}{1-x_{j} u} \prod_{i=1}^{d}\left(1+\beta x_{i}\right) \prod_{\ell=1}^{k} \frac{1-\bar{b}_{\ell} u}{1+\beta \bar{b}_{\ell}} .
\end{aligned}
$$

By comparing the coefficient of $u^{m}, m \geq k$ in (2) we obtain

$$
\begin{aligned}
& \sum_{p=0}^{d-1} G_{m-p}^{(k)}(x \mid b)(-1)^{p} e_{p}^{(j)}(x) \\
& \quad=x_{j}^{m-k} \frac{\prod_{\ell=1}^{k}\left(x_{j}-\bar{b}_{\ell}\right)}{\prod_{\ell=1}^{k}\left(1+\beta \bar{b}_{\ell}\right)} \prod_{\substack{\leq i \leq d \\
i \neq j}}\left(1+\beta x_{i}\right)
\end{aligned}
$$

Since $\frac{y-\bar{b}}{1+\beta \bar{b}}=y \oplus b$, we have
(2) $\sum_{p=0}^{d-1} G_{m-p}^{(k)}(x \mid b)(-1)^{p} e_{p}^{(j)}(x)$

$$
=x_{j}^{m-k}\left[x_{j} \mid b\right]_{\substack{1 \leq i \leq d \\ i \neq j}}\left(1+\beta x_{i}\right), \quad(m \geq k) .
$$

Consider the matrices

$$
H:=\left(\sum_{s \geq 0}\binom{i-d}{s} \beta^{s} G_{a_{i}+j-i+s}^{\left(a_{i}+d-i\right)}(x \mid b)\right)_{1 \leq i, j \leq d}
$$

and

$$
M:=\left((-1)^{d-i} e_{d-i}^{(j)}(x)\right)_{1 \leq i, j \leq d}
$$

By using (2), we find that the (i, j)-entry of $H M$ is

$$
(H M)_{i j}=\left[x_{j} \mid b\right]^{a_{i}+d-i}\left(1+\beta x_{j}\right)^{i-d-1} \prod_{1 \leq t \leq d}\left(1+\beta x_{t}\right) .
$$

By taking the determinant of $H M$, the factor $\prod_{1 \leq j \leq d}\left(1+\beta x_{j}\right)^{-d} \prod_{1 \leq t \leq d}\left(1+\beta x_{t}\right)^{d}$ which turns to be 1 comes out, and therefore we obtain

$$
\operatorname{det} H \operatorname{det} M=\operatorname{det}\left(\left[x_{j} \mid b\right]^{a_{i}+d-i}\left(1+\beta x_{j}\right)^{i-1}\right)_{1 \leq i, j \leq d}
$$

By dividing by $\operatorname{det} M$, we obtain the desired identity since $\quad \operatorname{det} M=\prod_{1 \leq i<j \leq d}\left(x_{i}-x_{j}\right) \quad$ (see
[16, p. 42]).
3. Proof of Theorem 1.2. By (1), it suffices to show the identity

$$
\begin{aligned}
& \frac{\operatorname{det}\left(\left[x_{j} \mid b\right]^{a_{i}+d-i}\left(1+\beta x_{j}\right)^{i-1}\right)_{1 \leq i, j \leq d}}{\prod_{1 \leq i<j \leq d}\left(x_{i}-x_{j}\right)} \\
& \quad=\operatorname{det}\left(\sum_{s \geq 0}\binom{i-j}{s} \beta^{s} G_{a_{i}+j-i+s}^{\left(a_{i}+d-i\right)}(x \mid b)\right)_{1 \leq i, j \leq d}
\end{aligned}
$$

for each $\left(a_{1}, \ldots, a_{d}\right) \in \mathbf{Z}^{d}$ such that $a_{i}+d-i \geq 0$. For each $j=1, \ldots, d$, let

$$
\bar{E}^{(j)}(u):=\sum_{p=0}^{d-1} e_{p}^{(j)}(-\bar{x}) u^{p}:=\prod_{\substack{1 \leq i \leq d \\ i \neq j}}\left(1-\bar{x}_{i} u\right) .
$$

Since $1+(u+\beta) y=\frac{1-\bar{y} u}{1+\beta \bar{y}}$, we have the identity

$$
\begin{align*}
& G^{(k)}(u) \bar{E}^{(j)}(-u-\beta) \tag{3}\\
& \quad=\frac{1}{1+\beta u^{-1}} \frac{1+\beta x_{j}}{1-x_{j} u} \prod_{1 \leq \ell \leq k} \frac{1-\bar{b}_{\ell} u}{1+\beta \bar{b}_{\ell}} .
\end{align*}
$$

By comparing the coefficient of $u^{m}, m \geq k$ in (3) we obtain
(4) $\sum_{p=0}^{d-1} \sum_{s=0}^{p}\binom{p}{s} \beta^{s} G_{m-p+s}^{(k)}(x \mid b)(-1)^{p} e_{p}^{(j)}(-\bar{x})$

$$
=x_{j}^{m-k} \prod_{1 \leq \ell \leq k} \frac{x_{j}-\bar{b}_{\ell}}{1+\beta \bar{b}_{\ell}}=x_{j}^{m-k}\left[x_{j} \mid b\right]^{k}
$$

where the last equality follows from the identity $\frac{x-\bar{y}}{1+\beta \bar{y}}=x \oplus y$ for any variable x, y.

Consider the matrices

$$
H^{\prime}:=\left(\sum_{s \geq 0}\binom{i-j}{s} \beta^{s} G_{a_{i}+j-i+s}^{\left(a_{i}+d-i\right)}(x \mid b)\right)_{1 \leq i, j \leq d}
$$

and

$$
\bar{M}:=\left((-1)^{d-i} e_{d-i}^{(j)}(-\bar{x})\right)_{1 \leq i, j \leq d}
$$

We write the (i, j)-entry of the product $H^{\prime} \bar{M}$ as

$$
\begin{aligned}
\left(H^{\prime} \bar{M}\right)_{i j}= & \sum_{p=0}^{d-1} \sum_{s \geq 0}\binom{i-d+p}{s} \beta^{s} \\
& \times G_{a_{i}+d-i+s-p}^{\left(a_{i}+d-i\right)}(x \mid b)(-1)^{p} e_{p}^{(j)}(-\bar{x}) .
\end{aligned}
$$

By writing $\binom{i-d+p}{s}=\sum_{\ell \geq 0}\binom{i-d}{\ell}\binom{p}{s-\ell}$ using a well-known identity of binomial coefficients and
then applying (4), we obtain

$$
\left(H^{\prime} \bar{M}\right)_{i j}=\left[x_{j} \mid b\right]^{a_{i}+d-i}\left(1+\beta x_{j}\right)^{i-1}\left(1+\beta x_{j}\right)^{1-d} .
$$

By taking the determinant of $H^{\prime} \bar{M}$, we have

$$
\begin{aligned}
\operatorname{det} H^{\prime} \operatorname{det} \bar{M}= & \prod_{1 \leq j \leq d}\left(1+\beta x_{j}\right)^{1-d} \\
& \times \operatorname{det}\left(\left[x_{j} \mid b\right]^{a_{i}+d-i}\left(1+\beta x_{j}\right)^{i-1}\right)_{1 \leq i, j \leq d} .
\end{aligned}
$$

Since we have (see [16, p. 42])

$$
\begin{aligned}
\operatorname{det} \bar{M} & =\prod_{1 \leq i<j \leq d}\left(\bar{x}_{j}-\bar{x}_{i}\right) \\
& =\prod_{1 \leq i<j \leq d} \frac{x_{i}-x_{j}}{\left(1+\beta x_{i}\right)\left(1+\beta x_{j}\right)} \\
& =\prod_{1 \leq i \leq d}\left(1+\beta x_{i}\right)^{1-d} \prod_{1 \leq i<j \leq d}\left(x_{i}-x_{j}\right),
\end{aligned}
$$

we obtain the desired identity.
Acknowledgements. The author would like to thank Prof. Takeshi Ikeda for useful discussions, and the referee for valuable comments. The author is supported by Grant-in-Aid for Young Scientists (B) 16 K 17584 .

References

[1] D. Anderson, L. Chen and N. Tarasca, K-classes of Brill-Noether loci and a determinantal formula, arXiv:1705.02992.
[2] A. S. Buch, Grothendieck classes of quiver varieties, Duke Math. J. 115 (2002), no. 1, 75-103.
[3] A. S. Buch, A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math. 189 (2002), no. 1, 37-78.
[4] S. Fomin and A. N. Kirillov, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, in Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), Discrete Math. 153 (1996), no. 1-3, 123-143.
[5] S. Fomin and A. N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, in Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique (University of Rutgers, Piscataway, 1994), 183189, DIMACS, Piscataway, NJ, s.d.
[6] T. Hudson, T. Ikeda, T. Matsumura and H. Naruse, Degeneracy loci classes in K-theory -Determinantal and Pfaffian formula-, arXiv:1504.02828.
[7] T. Hudson and T. Matsumura, Segre classes and Kempf-Laksov formula in algebraic cobordism, arXiv:1602.05704.
[8] T. Ikeda and H. Naruse, K-theoretic analogues of factorial Schur P - and Q-functions, Adv. Math. 243 (2013), 22-66.
[9] T. Ikeda and T. Shimazaki, A proof of K-theoretic

Littlewood-Richardson rules by Bender-Knuthtype involutions, Math. Res. Lett. 21 (2014), no. 2, 333-339.
[10] A. N. Kirillov, On some algebraic and combinatorial properties of Dunkl elements, Internat. J. Modern Phys. B 26 (2012), no. 27-28, 1243012, 28 pp .
[11] A. N. Kirillov, On some quadratic algebras I $\frac{1}{2}$: combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 002, 172 pp.
[12] A. Lascoux, Anneau de Grothendieck de la variété de drapeaux, in The Grothendieck Festschrift, Vol. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, pp. 1-34.
[13] A. Lascoux and H. Naruse, Finite sum Cauchy identity for dual Grothendieck polynomials, Proc. Japan Acad. Ser. A Math. Sci. 90 (2014), no. 7, 87-91.
[14] A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math.

295 (1982), no. 11, 629-633.
[15] C. Lenart, Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb. 4 (2000), no. 1, 67-82.
[16] I. G. Macdonald, Schubert polynomials, in Surveys in combinatorics, 1991 (Guildford, 1991), 73-99, London Math. Soc. Lecture Note Ser., 166, Cambridge Univ. Press, Cambridge, 1991.
[17] T. Matsumura, Flagged Grothendieck polynomials, arXiv:1701.03561.
[18] P. J. McNamara, Factorial Grothendieck polynomials, Electron. J. Combin. 13 (2006), no. 1, Research Paper 71, 40 pp .
[19] K. Motegi and K. Sakai, Vertex models, TASEP and Grothendieck polynomials, J. Phys. A 46 (2013), no. 35, 355201, 26 pp .
[20] O. Pechenik and A. Yong, Equivariant K-theory of Grassmannians, Forum Math. Pi 5 (2017), e3, 128 pp .
[21] M. Wheeler and P. Zinn-Justin, LittlewoodRichardson coefficients for Grothendieck polynomials from integrability, arXiv:1607.02396.
[22] D. Yeliussizov, Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin. 45 (2017), no. 1, 295-344.

[^0]: 2010 Mathematics Subject Classification. Primary 05E05, 14M15, 19E08.

