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Abstract: In this note, we show that determinantal point processes on the real line

corresponding to de Branges spaces of entire functions are rigid in the sense of Ghosh-Peres and,

under certain additional assumptions, quasi-invariant under the group of diffeomorphisms of the

line with compact support.
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1. De Branges spaces. Recall that a de

Branges function is an entire function E satisfying

jEðzÞj > jE#ðzÞj for z 2 Cþ;

where E#ðzÞ ¼ Eð�zÞ. We note that such an entire

function E does not have zeros in Cþ. The de

Branges space associated with E is a Hilbert

space BðEÞ of entire functions such that (i)

fjR 2 L2ðR; jEð�Þj�2d�Þ, and (ii) j fðzÞEðzÞ j; j
f#ðzÞ
EðzÞ j �

CfðIm zÞ�1=2 for z 2 Cþ, where f jR is the restriction

of f on R. Under the condition (i), the condition (ii)

is equivalent to the condition that f=E and f#=E

belong to the Hardy space H2 on the upper-half

plane Cþ. The de Branges space is a natural gener-

alization of the Paley-Wiener space which is asso-

ciated with the de Branges function EðzÞ ¼ e�iaz.
The Hilbert space BðEÞ admits the following

reproducing kernel:

�ðEÞðz; wÞ ¼
EðzÞEðwÞ � E#ðzÞE#ðwÞ

�2�iðz� �wÞ ;

i.e., for any f 2 BðEÞ,

fðzÞ ¼
Z

R

�ðEÞðz; �Þfð�ÞjEð�Þj�2d�:

The diagonal value is given by

�ðEÞðz; zÞ ¼ jEðzÞj
2 � jE#ðzÞj2

4� Im z
> 0 ðz 2 C nRÞ;

and

�ðEÞðx; xÞ ¼
1

2�

@

@y
jEðxþ iyÞj2

���
y¼0

ðx 2 RÞ:

The Hilbert space BðEÞ is naturally identified with

a subspace of L2ðR; jEð�Þj�2d�Þ.
It will, however, be more convenient for us to

consider the space

eBðEÞ ¼ F ð�Þ
Eð�Þ ; F 2 BðEÞ

� �
;

which is then naturally identified with a subspace

of L2ðRÞ. Let e�ðEÞ : L2ðRÞ ! eBðEÞ be the corre-

sponding operator of orthogonal projection with

kernel e�ðEÞðz; wÞ ¼ �ðEÞðz; wÞðEðzÞEðwÞÞ�1:

In this note we study determinantal point process

(DPP) Pe�ðEÞ on R corresponding to the locally

trace class projection operator e�ðEÞ. We recall the

necessary definitions.

2. Determinantal point processes.

2.1. Locally trace class operators and their

kernels. Let � be a �-finite Borel measure on a

Polish space S.

Let I 1ðS; �Þ be the ideal of trace class oper-

ators eK:L2ðS; �Þ ! L2ðS; �Þ (see e.g. [15] for the
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precise definition); the symbol k eKkI 1
will stand for

the I 1-norm of the operator eK.

Let I 1;locðS; �Þ be the space of operators

K:L2ðS; �Þ ! L2ðS; �Þ such that for any bounded

Borel subset B � S we have

�BK�B 2 I 1ðS; �Þ:

Such an operator K is called a locally trace class

operator. Again, we endow the space I 1;locðS; �Þ
with a countable family of semi-norms

k�BK�BkI 1
ð1Þ

where, as before, B runs through an exhausting

family Bn of bounded sets. A locally trace class

operator K admits a kernel, for which, slightly

abusing notation, we use the same symbol K.

2.2. Determinantal point processes. A

Borel probability measure P on ConfðSÞ, the space

of locally finite configurations, is called determi-

nantal if there exists an operator K 2 I 1;locðS; �Þ
such that for any bounded measurable function g,

for which g� 1 is supported in a bounded set B,

we have

EP�g ¼ detð1þ ðg� 1ÞK�BÞ;ð2Þ

where �gðXÞ ¼
Q
x2X

gðxÞ for X 2 ConfðSÞ. The

Fredholm determinant in (2) is well-defined since

K 2 I 1;locðE; �Þ. The equation (2) determines the

measure P uniquely.

For any pairwise disjoint bounded Borel sets

B1; . . . ; Bl � S and any z1; . . . ; zl 2 C from (2) we

have

EPz
#B1

1 � � � z#Bl

l ¼ det 1þ
Xl
j¼1

ðzj � 1Þ�Bj
K�tiBi

 !
:

If K belongs to I 1;locðS; �Þ, then, throughout

the paper, we denote the corresponding determi-

nantal measure by PK . If K 2 I 1;locðS; �Þ, then the

existence of the probability measure PK is guaran-

teed ([16,19]).

For further results and background on deter-

minantal point processes, see e.g. [8,10–12,17–19].

3. The integrable form of the reproduc-

ing kernel. Our aim in this note is to study

rigidity (in the sense of Ghosh and Peres) and

the quasi-symmetries of the point process Pe�ðEÞ.
We start by fixing some notation. For a de Branges

function E, we set

AðzÞ ¼
EðzÞ þ E#ðzÞ

2
; BðzÞ ¼

EðzÞ � E#ðzÞ
2i

:

The kernel of the operator e�ðEÞ, essentially the

reproducing kernel of our de Branges space, takes

the form

e�ðEÞðx; yÞ ¼ 1

�

AðxÞBðyÞ � BðxÞAðyÞ
ðx� yÞEðxÞEðyÞ

; x; y 2 R:

Slightly abusing notation, we keep the same symbol

for the kernel as well as for the operator. For the

diagonal values, it is easy to see thate�ðEÞðx; xÞ ¼ 1

2�
jEðxÞj�2 @

@y
jEðxþ iyÞj2

����
y¼0

ð3Þ

¼
1

�

@

@y
log jEðxþ iyÞj

����
y¼0

:

The kernel e�ðEÞ has an integrable form.

Corollary 2.2 in [2] now implies the rigidity, in the

sense of Ghosh and Peres [8,9], of the determinantal

measure Pe�ðEÞ. Before giving the notion of rigidity

and our results, we provide some examples of

determinantal point processes (DPPs).

4. Examples of determinantal point proc-

esses associated with de Branges spaces.

Here we give some examples of DPPs associated

with de Branges spaces.

Example 1 (A class of orthogonal polynomial

ensembles). Let EðzÞ ¼
Qn

i¼1ðzþ aiÞ for ai 2 Cþ.

In this case, BðEÞ is the space of polynomials of

degree less than or equal to n� 1. The correspond-

ing DPP is the n-th orthogonal polynomial ensem-

ble with weight jEð�Þj�2. In particular, its intensity

is given by

e�ðEÞðx; xÞ ¼ 1

�

Xn
i¼1

Im ai

jxþ aij2
:

Example 2 (Sine-process). The Paley-

Wiener space, for which EðzÞ ¼ e�iaz ða > 0Þ,
AðzÞ ¼ cos az, BðzÞ ¼ �sin az yields the sine-kernele�ðEÞðx; yÞ ¼ sin aðx�yÞ

�ðx�yÞ .

Example 3 (Eigenfunction expansion for

Schrödinger equation). Fix ‘ 2 ð0;1�. For V 2
L1

locð½0; ‘ÞÞ, we consider the Schrödinger equation

�’00� þ V ’� ¼ �’� ð� 2 CÞ

with ’�ð0Þ ¼ 1 and ’0�ð0Þ ¼ 0. The solution ’�ðxÞ is

jointly continuous in ð�; xÞ and entire in �. Suppose

that the right boundary x ¼ ‘ is of the limit circle
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type. Then, for each fixed b 2 ð0; ‘Þ,

EbðzÞ ¼ ’zðbÞ þ i’0zðbÞ

defines a de Branges function. In this case,

�ðEbÞðz; wÞ ¼
1

�

’zðbÞ’0wðbÞ � ’0zðbÞ’wðbÞ
z� �w

¼ 1

�

Z b

0

’zðtÞ’wðtÞdt:

The intensity of the corresponding DPP is given by

e�ðEbÞð�; �Þ ¼
1

�

Z b

0

j’�ðtÞj2dt

j’�ðbÞj2 þ j’0�ðbÞj
2
:

5. Ghosh-Peres rigidity. Given a bounded

subset B � R and a configuration X 2 ConfðRÞ, let

#BðXÞ stand for the number of particles of X lying

in B. Given a Borel subset C � R, we let FC be

the �-algebra generated by all random variables of

the form #B;B � C: If P is a point process on R

then we write FP
C for the P-completion of FC .

Definition (Ghosh and Peres [8,9]). A point

process P is called rigid if for any bounded Borel

subset B the random variable #B is FP
RnB-meas-

urable.

Theorem 1. The determinantal measure

Pe�ðEÞ is rigid in the sense of Ghosh and Peres.

Proof. By Corollary 2.2 in [2], we need to

establish the existence of R > 0, C > 0 and " > 0

such that for all jxj < R we have jAðxÞj �
Cjxj�1=2þ"jEðxÞj; jBðxÞj � Cjxj�1=2þ"jEðxÞj and for

all jxj > R we have jAðxÞj � Cjxj1=2�"jEðxÞj;
jBðxÞj � Cjxj1=2�"jEðxÞj; and these conditions hold

since jAðxÞj; jBðxÞj � jEðxÞj. �

Proposition 8.1 in [4] now implies the following

Corollary 2. For any k; l 2 N, k 6¼ l, for

almost any k-tuple ðp1; . . . ; pkÞ and almost any

l-tuple ðq1; . . . ; qlÞ of distinct points in R, the

reduced Palm measures Pp1;...;pke�ðEÞ and Pq1;...;qle�ðEÞ are

mutually singular.

6. Quasi-symmetries. We next give suffi-

cient conditions for the equivalence of Palm meas-

ures of the same order. Let p1; . . . ; pl; q1; . . . ; ql 2
R be distinct. For R > 0, " > 0 and a configura-

tion X on R, similarly to [1], we introduce an

approximation of the Radon-Nikodym density

dPp1;...;ple�ðEÞ =dPq1;...;qle�ðEÞ as the real-valued normalized

multiplicative functional

�R;"ðp1; . . . ; pl; q1; . . . ; ql;XÞ

¼ CðR; "Þ �
Y

x2X;jxj�R;min jx�qij	"

Yl
i¼1

x� pi
x� qi

� �2

;

where the constant CðR; "Þ is chosen in such a way

thatZ
ConfðRÞ

�R;"ðp1; . . . ; pl; q1; . . . ; ql;XÞdPq1;...;qle�ðEÞ ¼ 1:ð4Þ

We will often need the following assumption on

our de Branges function E:Z
R

@
@y
jEðxþ iyÞj2jy¼0

ð1þ x2ÞjEðxÞj2
dx < þ1:ð5Þ

Given our de Branges function E, there exists a

nondecreasing continuous function � on R such that

EðxÞ expði�ðxÞÞ is real for all x 2 R. The function

�ðxÞ is called a phase function associated with EðzÞ.
We note that

�0ðxÞ ¼ �e�ðEÞðx; xÞ > 0 ð8x 2 RÞ:ð6Þ

(See de Branges [5] Problem 48.) From (3) and (6),

the assumption (5) can equivalently be reformu-

lated as follows:Z
R

�0ðxÞ
1þ x2

dx ¼
Z

R

d�ðxÞ
1þ x2

<1:ð7Þ

It is known that there exists a p > 0 such that

@

@y
log jEðxþ iyÞjð8Þ

¼ pyþ 1

�

Z 1
�1

y

ðt� xÞ2 þ y2
d�ðtÞ

if E has no real zeros and jEðxþ iyÞj is a non-

decreasing function of y > 0 for each x 2 R. (See

de Branges [5] Problem 63.)

Remark. If E is of exponential type and has

no real zeros, then the condition (7) holds. Indeed, if

E is of exponential type, then jEðxþ iyÞj is non-

decreasing in y > 0 (see Dym [6] Lemma 4.1).

Setting x ¼ 0 and y ¼ 1 in (8) yields (7). In

particular, if E is short in the sense that BðEÞ is

closed under the map fðzÞ 7! fðzÞ�fðiÞ
z�i (see Dym and

McKean [7] Proposition 6.2.2), then (7) holds.

Proposition 3. Let E be a de Branges func-

tion satisfying (7). Then the limit

�ðp1; . . . ; pl; q1; . . . ; ql;XÞ
¼ lim

R!1;"!0
�R;"ðp1; . . . ; pl; q1; . . . ; ql;XÞ

exists in L1

�
ConfðRÞ;Pq1;...;qle�ðEÞ

�
, almost surely along
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a subsequence, and satisfiesZ
ConfðRÞ

�ðp1; . . . ; pl; q1; . . . ; ql;XÞdPq1;...;qle�ðEÞ ¼ 1:ð9Þ

Corollary 4.12 in [1] now directly implies

Proposition 4. Let E be a de Branges func-

tion satisfying (7). Then for any distinct points

p1; . . . ; pl; q1; . . . ; ql 2 R, the corresponding reduced

Palm measures are equivalent, and we have

dPp1;...;ple�ðEÞ
dPq1;...;qle�ðEÞ

ðXÞ ¼ �ðp1; . . . ; pl; q1; . . . ; ql;XÞ:

Remark. Similar results to Corollary 2 and

Proposition 4 for the Ginibre point process were

obtained in [14] and for generalized Ginibre point

processes in [4].

Theorem 1.5 in [1] directly implies the follow-

ing

Proposition 5. Let E be a de Branges func-

tion satisfying (7). Let F : R! R be a diffeomor-

phism acting as the identity beyond a bounded open

set V � R. For Pe�ðEÞ-almost every configuration

X 2 ConfðRÞ the following holds. If X
T
V ¼

fq1; . . . ; qlg, then

dPe�ðEÞ 
 F
dPe�ðEÞ ðXÞð10Þ

¼ �ðF ðq1Þ; . . . ; F ðqlÞ; q1; . . . ; ql;XÞ

�
detðe�ðEÞðF ðqiÞ; F ðqjÞÞÞi;j¼1;...;l

detðe�ðEÞðqi; qjÞÞi;j¼1;...;l

� F 0ðq1Þ � � �F 0ðqlÞ:

Remark. The open set V can be chosen in

many ways; the resulting value of the Radon-

Nikodym derivative is of course the same.

Remark. As in [1], F can, more generally, be

a compactly supported Borel automorphism pre-

serving the Lebesgue measure class. In this case, the

derivative F 0 in (10) should be replaced by the

Radon-Nikodym derivative of the Lebesgue meas-

ure under F . In the discrete setting, similar results

were obtained in [13] in the case of the Gamma-

kernel and in [1] in the generality of integrable

kernels.

Remark. Conditional measures of our DPPs

can now also be found using the results of [3].
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