
Hardy’s inequality on Hardy spaces

By Kwok-Pun HO

Department of Mathematics and Information Technology, The Education University of Hong Kong,

10 Lo Ping Road, Tai Po, Hong Kong, China

(Communicated by Masaki KASHIWARA, M.J.A., Nov. 14, 2016)

Abstract: We extend the Hardy inequalities to the classical Hardy spaces and the

rearrangement-invariant Hardy spaces.

Key words: Hardy’s inequality; Hardy space; rearrangement-invariant; atomic decom-
position; interpolation.

1. Introduction. The main theme of this

paper is the Hardy inequalities on rearrangement-

invariant Hardy spaces including the classical

Hardy spaces, the Hardy-Lorentz spaces and the

Hardy-Orlicz spaces.

The Hardy inequality is one of the important

inequalities in analysis. It is a crucial tool in real

interpolation theory [2] and its high dimension

generalization provides inspiration on the Hardy

inequality for Sobolev functions.

It is impossible to give a detailed review on

Hardy’s inequality in this short paper, the reader

is referred to [4,19,24] for a detailed reference for

Hardy’s inequality and its applications on analysis.

One of the extensions on the Hardy inequality

is the validity of the Hardy inequalities on some

non-Lebesgue spaces. For instance, we have the

Hardy inequalities on rearrangement-invariant

Banach function spaces in [20].

The Hardy inequalities on the Morrey spaces

built on rearrangement-invariant Banach function

spaces are obtained [13]. In addition, the Hardy

inequalities on block spaces are given in [14].

We have the Hardy inequalities on Lebesgue

spaces with variable exponents in [3,8,9,21,25,26].

The Hardy inequalities on the Hardy-Morrey

spaces, Hardy-Morrey spaces with variable expo-

nents and weak Hardy-Morrey spaces are presented

in [16–18], respectively.

In this paper, we extend the Hardy inequalities

to the classical Hardy spaces and the rearrange-

ment-invariant Hardy spaces in the form given

in [3] and [19, p. 6] which are generalizations of the

Hardy inequalities in [13,17,18].

We use the atomic decompositions of Hardy

spaces to obtain the Hardy inequalities on the

classical Hardy spaces. With these Hardy inequal-

ities, the Hardy inequalities on rearrangement-

invariant Hardy space are established by using the

interpolation functor introduced in [15].

2. Hardy’s inequality. We establish the

Hardy inequalities on the classical Hardy spaces in

this section. We begin with the Hardy operator used

in this paper.

Let Z� denote the set of non-positive integers.

For any � 2 R and � 2 Z�, write

T�;�fðxÞ ¼ x�þ��1

Z x

0

fðyÞ
y�

dy:

We present the main result of this paper in the

following theorem.

Theorem 2.1. Let 0 < p � 1 and 0 � � < 1

and � 2 Z�. If

1

p
¼

1

r
þ �;

then there exists a constant C > 0 such that for any

f 2 HpðRÞ with suppf � ½0;1Þ,
kT�;�fkLrð0;1Þ � CkfkHpðRÞ:

As we prove the above theorem by using the

atomic decompositions of Hardy spaces, we recall

the atomic decompositions in the followings.

Let Bðz; rÞ ¼ fx 2 R : jx� zj < rg denote the

open ball with center z 2 R and radius r > 0. Let

B ¼ fBðz; rÞ : z 2 R; r > 0g and Bþ ¼ fB 2 B :

B � ð0;1Þg.
Definition 2.1. Let 1 < q � 1 and N 2 N.

A Lebesgue measurable function A is a ðq;NÞ-atom
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for HpðRÞ if there exists a B 2 B such that

suppA � �B;

kAkLq � jBj
1
q�

1
p andZ

x�AðxÞdx ¼ 0 and 8� 2 N; 0 � � � N:

Theorem 2.2. Let 0 < p � 1 < q � 1. For

any N 2 N with N � ½1p � 1� and f 2 HpðRÞ, we have

a family of ðq;NÞ-atoms fajg and scalars f�jg such

that f ¼
P
�jaj in HpðRÞ and

X
j�jjp

� �1=p
� CkfkHpðRÞð2:1Þ

for some C > 0. Furthermore,

kfkHpðRÞ � inf

� X
j�jjp

� �1=p
:

f ¼
X

�jaj; aj are ðq;NÞ-atoms

�
:

The reader is referred to [5, Theorem 7.4] for

the proof of the above result.

We now study the action of T�;� on the

ðq;NÞ-atom.

Lemma 2.1. Let 0 < r <1, 1 < q � 1,

� 2 R and � 2 Z�. If 1
q � 1

r < � � 1
q, then for any

Lebesgue measurable function a satisfying

supp a � �B; B 2 Bþ;ð2:2Þ

kakLq � jBj
1
q�

1
p andð2:3Þ Z

x��aðxÞdx ¼ 0;ð2:4Þ

we have

kT�;�akLr � CjBj
�þ1

r�
1
p

for some C > 0.

Proof. Let supp a ¼ ½c; d� ¼ �B. In view of the

support condition (2.2) and the vanishing moment

condition (2.4) satisfied by a, we find thatZ x

0

y��aðyÞdy ¼ 0; x < c and

Z x

0

y��aðyÞdy ¼ 0; x > d:

Therefore, suppðT�;�aÞ � ½c; d�.
By the Hölder inequality, we haveZ x

0

aðyÞ
y�

dy

����
���� � kakLq

Z x

0

y��q
0
dy

� �1=q0

¼ CkakLqx
��þ 1

q0

for some C > 0.

Consequently,

jT�;�aðxÞj ¼ x�þ��1

Z x

0

aðyÞ
y�

dy

����
����

� CkakLqx
��1

q :

As suppðT�;�aÞ � ½c; d�, we find that

kT�;�aðxÞkLr

� CkakLq
Z d

c

x
r��rqdx

� �1=r

¼ CkakLq d
r��rqþ1 � cr��

r
qþ1

� �1=r
:

As 1
q � 1

r < � � 1
q, we have 0 < r�� r

q þ 1 � 1.

Hence,

d
r��rqþ1 � cr��

r
qþ1 � ðd� cÞr��

r
qþ1
:

The size condition (2.3) assures that

kT�;�aðxÞkLr � CjBj
�þ1

r�
1
p :

�

In Theorem 2.1, we consider f 2 HpðRÞ with

supp f � ½0;1Þ. Notice that the atomic decomposi-

tion given in Theorem 2.2 does not guarantee that

the supports of the atoms for the atomic decom-

position of f are subsets of ½0;1Þ. In order to tackle

this problem, we consider the even part and the odd

part of tempered distributions and modify the

atomic decomposition obtained in Theorem 2.2.

For any f 2 S0ðRÞ, define fð��Þ as hf; ’i ¼
hfð��Þ; ’ð��Þi, ’ 2 SðRÞ. For any f 2 HpðRÞ, the

even part and the odd part of f is defined as feðxÞ ¼
fðxÞþfð�xÞ

2 and foðxÞ ¼ fðxÞ�fð�xÞ
2 , respectively.

Proposition 2.1. Let 0 < p � 1 < q � 1
and � 2 Z�. For any f 2 HpðRÞ with suppf �
½0;1Þ, we have a family of Lebesgue measurable

functions fajg satisfying (2.2)–(2.4) and scalars

f�jg such that f ¼
P
�jaj and

X
j�jjp

� �1=p
� CkfkHpðRÞð2:5Þ

for some C > 0.

Proof. We first consider the case when j�j is

even.

According to Theorem 2.2, we have f ¼P
j2Z �jaj where fajgj2Z are ðp;NÞ atoms with

N > j�j.
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We consider the even part of f and find that

feðxÞ ¼
X
j2Z

�j
ajðxÞ þ ajð�xÞ

2
:

As aj satisfies the vanishing moment condition up

to order N and N > j�j, we find that

1

2

Z
R

x��ajðxÞdx ¼
1

2

Z
R

x��ajð�xÞdx ¼ 0:

If supp aj 	 ½0;1Þ, ajð�xÞ 
 0 on ð0;1Þ. If

supp aj 	 ð�1; 0�, ajðxÞ 
 0 on ð0;1Þ and ajð�xÞ is

a ðp;NÞ atom. Therefore, they satisfy (2.2)–(2.4).

If 0 is an interior point of supp aj, we getZ
R

x��
�½0;1ÞðxÞajðxÞ þ �½0;1ÞðxÞajð�xÞ

2
dx

¼
Z

R

x��ajðxÞdx ¼ 0:

Therefore,

�ð0;1ÞðxÞajðxÞ þ �ð0;1ÞðxÞajð�xÞ
2

satisfies (2.2)–(2.4).

As supp f � ½0;1Þ, we have

fðxÞ ¼ 2�½0;1ÞðxÞfeðxÞ

¼ 2
X
j2Z

�j
�½0;1ÞðxÞajðxÞ þ �½0;1ÞðxÞajð�xÞ

2
:

Finally, (2.5) is inherited from (2.1). Therefore, we

obtain our desired decomposition for f .

For the case when j�j is odd, we consider the

odd part of f . The rest of the proof for this case is

almost identical to the proof of the case when j�j is
even. The only modification is that for the odd part

foðxÞ ¼
X
j2Z

�j
ajðxÞ � ajð�xÞ

2
;

when 0 is the interior point of supp aj, we haveZ
R

x��
�½0;1ÞðxÞajðxÞ � �½0;1ÞðxÞajð�xÞ

2
dx

¼
Z

R

x��ajðxÞdx ¼ 0:

This is similar to the case when j�j is even, we find

that

fðxÞ ¼ 2�½0;1ÞðxÞfoðxÞ

¼ 2
X
j2Z

�j
�½0;1ÞðxÞajðxÞ � �½0;1ÞðxÞajð�xÞ

2

which is our desired decomposition. �

We are now ready to present the proof of

Theorem 2.1.

Proof of Theorem 2.1. In view of Proposi-

tion 2.1, we have a family of Lebesgue measurable

functions fajg and scalars f�jg satisfying (2.2)–

(2.5) such that f ¼
P
�jaj.

We consider F ¼
P
�jT�;�aj. As 0 < p � 1 and

0 � � < 1, there exists a q > 1 such that

1

q
� 1

r
<

1

p
� 1

r
¼ � < 1

q
:

When r � 1, k � krLrð0;1Þ satisfies the triangle inequal-

ity. According to Lemma 2.1, we have

kFkrLrð0;1Þ �
X
j�jjrkT�;�ajkrLrð0;1Þ

� C
X
j�jjr � C

X
j�jjp

� �r=p
for some C > 0 because p � r.

When r > 1, as 0 < p � 1 and k � kLrð0;1Þ is a

norm, we find that

kFkLrð0;1Þ �
X
j�jjkT�;�ajkLrð0;1Þ

� C
X
j�jj � C

X
j�jjp

� �1=p
:

Therefore, (2.5) yields that

kFkLrð0;1Þ � CkfkHpðRÞ:

�

In the proof of Theorem 2.1, we find that we

need to use the atomic decompositions of Hardy

spaces with ðq;NÞ-atoms satisfying 1 < q < 1
�. No-

tice that a substantial amount of applications of the

atomic decomposition can be achieved by consider-

ing ð1; NÞ-atoms.

The above result shows that the atomic decom-

positions of Hardy spaces by ðq;NÞ-atoms with q

close to 1 also yield some valuable application

which cannot be obtained by ð1; NÞ-atoms.

For the atomic decompositions with atoms

defined by non-Lebesgue spaces, the reader is

referred to [10,12].

3. Rearrangement-invariant Hardy

spaces. In this section, we extend the Hardy

inequalities to rearrangement-invariant Hardy

spaces. We first recall the definition of rearrange-

ment-invariant quasi-Banach function space

(r.i.q.B.f.s.) from [11, Definition 4.1].

Let MðRÞ be the set of Lebesgue measurable

functions on R.
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Definition 3.1. A quasi-Banach space X 	
MðRÞ is called a rearrangement-invariant quasi-

Banach function space if there exists a quasi-norm

�X :Mð0;1Þ ! ½0;1� satisfying

(a) �XðfÞ ¼ 0, f ¼ 0 a.e.,

(b) jgj � jf j a.e. ) �XðgÞ � �XðfÞ,
(c) 0 � fn " f a.e. ) �XðfnÞ " �XðfÞ and

(d) �E 2Mð0;1Þ and jEj <1) �Xð�EÞ <1,

so that

kfkX ¼ �Xðf�Þ; 8f 2 X:ð3:1Þ

For any s � 0 and f 2Mð0;1Þ, define

ðDsfÞðtÞ ¼ fðstÞ, t 2 ð0;1Þ. Let kDsk �X! �X be the

operator norm of Ds on �X. We recall the definition

of Boyd’s indices for r.i.q.B.f.s. from [22].

Definition 3.2. Let X be a r.i.q.B.f.s. on R.

Define the lower Boyd index of X, pX and the upper

Boyd index of X, qX as

pX ¼ supfp > 0 : 9C > 0 such that

8 0 � s < 1; kDsk �X! �X � Cs�1=pg and

qX ¼ inffq > 0 : 9C > 0 such that

8 1 � s; kDsk �X! �X � Cs�1=qg;
respectively.

As the definition of interpolation functor in-

volves the notion of category and compatible

couples, for simplicity, we refer the reader to

[27, Section 1.2] for details of category and compat-

ible couples.

We recall the definition of the K-functional

from [2, Section 3.1] and [27, Section 1.3.1].

Definition 3.3. Let ðX0; X1Þ be a compat-

ible couple of quasi-normed spaces. For any f 2
X0 þX1, the K-functional is defined as

Kðf; t;X0; X1Þ
¼ inffkf0kX0

þ tkf1kX1
: f ¼ f0 þ f1g

where the infimum is taking over all f ¼ f0 þ f1 for

which fi 2 Xi, i ¼ 0; 1.

The following interpolation functor is intro-

duced in [15, Definition 4.2].

Definition 3.4. Let 0 < �; r <1 and X be a

r.i.q.B.f.s. Let ðX0; X1Þ be a compatible couple of

quasi-normed spaces. The space ðX0; X1Þ�;r;X con-

sists of all f in X0 þX1 such that

kfkðX0;X1Þ�;r;X

¼ �Xðt�
1
rKðf; t

1
� ;X0; X1ÞÞ <1

where �X is the quasi-norm given in (3.1).

The above interpolation functor is an extension

of the interpolation functor given in Marcinkiewicz

real interpolation functor and the interpolation

functors in [6,7] for the studies of Lorentz-

Karamata spaces and Orlicz spaces, respectively.

We recall a function space associated with the

above interpolation from [15, Section 3.1].

Definition 3.5. Let � � 0. For any

r.i.q.B.f.s. X, X� consists of those f 2MðRÞ such

that

kfkX�
¼ �Xðt��f�ðtÞÞ <1:

Obviously, from (3.1), we have X0 ¼ X. In [15],

we find that X� is related to the mapping properties

of the fractional integral operators, the convolution

operators and the Fourier integral operators in

r.i.q.B.f.s.

We find that whenever X is a r.i.q.B.f.s., X� is

also a r.i.q.B.f.s.

Proposition 3.1. Let � > 0 and X be a

r.i.q.B.f.s. If 0 < pX � qX < 1
�, then X� is a

r.i.q.B.f.s.

For the proof of the above proposition, the

reader is referred to [15, Proposition 3.1].

We have the following theorem from [15, Theo-

rem 4.2] which assures that X� is an interpolation

space from Lebesgue spaces by using the functor

ð�; �Þ�;r;X.

Theorem 3.1. Let 0 � � <1, 0 < p0 <

p1 <1 and X be a r.i.q.B.f.s. with 0 < pX �
qX < 1

�. Let r; � satisfy

1

�
¼ 1

p0
�

1

p1
and

1

r
¼ 1

p0
þ �:ð3:2Þ

Suppose that p1 > qX, p0 < pX and

1

p1
þ
�

n
<

1

qX
�

1

pX
<

1

p0
þ �:ð3:3Þ

Then

ðLp0 ; Lp1Þ�;r;X ¼ X�:

The reader may consult [15, Theorem 4.2] for

the proof of the preceding theorem.

We now turn to the definition of rearrange-

ment-invariant Hardy spaces. Let P denote the

class of polynomials on R.

Definition 3.6. Let X be a r.i.q.B.f.s with

0 < pX � qX <1. The rearrangement-invariant

Hardy space associated with X, HX, consists of

those f 2 S0ðRÞ=P such that
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kfkHX
¼

X
j2Z

j’j � f j2
 !1=2
						

						
X

<1

where ’jðxÞ ¼ 2jn’ð2jxÞ, j 2 Z and ’ 2 SðRÞ
satisfy

supp ’̂ � f	 2 Rn : 1=2 � j	j � 2g and

j’̂ð	Þj � C; 3=5 � j	j � 5=3

for some C > 0.

Notice that HX is not rearrangement-invariant

in terms of the condition given in [2, Chapter 2,

Definition 1.2]. For simplicity, we use the absurd

terminology ‘‘rearrangement-invariant’’ to name

HX.

If X ¼ Lp with 0 < p � 1, we write HX by Hp.

When X ¼ Lp;q where Lp;q is a Lorentz space,

then HX becomes the Hardy-Lorentz spaces Hp;q

studied in [1].

If X is generated by a growth function of lower

type � (see [28, p. 403]), then HX is the Hardy type

Orlicz spaces H� considered in [23,28].

Theorem 3.2. Let X be a r.i.q.B.f.s. with

0 < pX � qX < 1
�. Suppose that 0 < p0 < pX � qX <

p1 <1 and r; � satisfy (3.2) and (3.3). Then,

ðHp0
; Hp1
Þ�;r;X ¼ HX�

:

For the proof of Theorem 3.2, the reader is

referred to [15, Corollary 8.5].

We are now ready to extend the Hardy inequal-

ities to rearrangement-invariant Hardy spaces.

Theorem 3.3. Let 0 � � < 1, � 2 Z� and X

be a r.i.q.B.f.s. with 0 < pX � qX < 1. Then there

exists a constant C > 0 such that for any f 2 HX

with suppf � ½0;1Þ,
kT�;�fkX�ð0;1Þ � CkfkHX

:

Proof. In view of Theorem 2.1, we have

kT�;�fkLrð0;1Þ � CkfkHpðRÞ

whenever

1

p
¼ 1

r
þ �:

As 0 < pX � qX < 1, there exist s1; s0 such that

qX < s1 < 1 < 1
� and 0 < s0 < pX.

The mappings T�;� : Hs0
! Lq0ð0;1Þ and T�;� :

Hs1
! Lq1 with

1

si
¼

1

qi
þ �; i ¼ 0; 1

are bounded.

Let 1
� ¼ 1

s0
� 1

s1
¼ 1

q0
� 1

q1
. In addition, as

1

q1
þ � ¼

1

s1
<

1

qX
�

1

pX
<

1

s0
¼

1

q0
þ �;

(3.2) and (3.3) are fulfilled for the interpolations

ðLq0 ; Lq1Þ�;s0;X
.

Theorems 3.1 and 3.2 yield

kT�;�fkX�ð0;1Þ � CkT�;�fkðLq0 ;Lq1 Þ�;s0 ;X

� CkfkðHs0 ;Hs1 Þ�;s0 ;X
¼ kfkHX

:

�

As some special cases of the above theorem,

we have Hardy inequalities on the Hardy-Lorentz

spaces [1] and the Hardy-Orlicz spaces [23,28].
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