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Abstract: For a locally compact Hausdorff semigroup S, the L1-representation algebra

RðSÞ was extensively studied by Dunkl and Ramirez. In this paper we give a characterization of

the Banach algebra RðSÞ of a foundation semigroup S and as an application we determine some

BSE semigroup algerbras.
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1. Introduction. The notation of the

L1-representation Banach algebra RðSÞ of a com-

mutative topological semigroup S was introduced

and extensively studied by Dunkl and Ramirez

in [4]. Recall that an L1-representation of S is a

triple ð�; �; T Þ where � is a complete probability

measure on a set �, and s 7! Ts is a homomorphism

of S into the unit ball of L1ð�; �Þ (where L1ð�; �Þ
has the pointwise multiplication) and is weak-�
continuous (i.e., �ðL1ð�; �Þ; L1ð�; �ÞÞ) (see [4]).

The L1-representation algebra RðSÞ is defined to

be the set of all functions

s 7!
Z

�

Tsgd�

of S into C, where ð�; �; T Þ is an L1-representation

of S and g 2 L1ð�; �Þ.
It is shown in [12] that for a foundation

semigroup S with identity and for every function

f 2 RðSÞ, there exists a unique measure �f 2MðbSÞ
such that

fðsÞ ¼
Z
bS �ðsÞd�fð�Þ ðs 2 SÞ:ð1Þ

If we define k:kR on RðSÞ by kfkR :¼ k�fk ðf 2 RÞ,
then ðRðSÞ; k:kRÞ with the pointwise multiplication

becomes a commutative Banach algebra.

Let A be a commutative Banach algebra.

Denote by �ðAÞ and MðAÞ the Gelfand spectrum

and the multiplier algebra of A, respectively. A

bounded continuous function � on �ðAÞ is called a

BSE-function if there exists a constant C > 0 such

that for every finite number of ’1; . . . ; ’n in �ðAÞ
and complex numbers c1; . . . ; cn, the inequalityXn

j¼1

cj�ð’jÞ
�����

����� � C: Xn
j¼1

cj’j

�����
�����
A�

holds. The BSE-norm of � (k�kBSE) is defined to be

the infimum of all such C. The set of all BSE-

functions is denoted by CBSEð�ðAÞÞ. Takahasi and

Hatori [16] showed that under the norm k:kBSE ,

CBSEð�ðAÞÞ is a commutative semisimple Banach

algebra.

A bounded linear operator on A is called a

multiplier if it satisfies xT ðyÞ ¼ T ðxyÞ for all

x; y 2 A. The set MðAÞ of all multipliers of A is a

unital commutative Banach algebra, called the

multiplier algebra of A.

For each T 2MðAÞ there exists a unique

continuous function bT on �ðAÞ such that dTðaÞð’Þ ¼bT ð’Þâð’Þ for all a 2 A and ’ 2 �ðAÞ. See [11] for a

proof.

Define dMðAÞ ¼ f bT : T 2MðAÞg:
A commutative Banach algebra A is called

without order if aA ¼ f0g implies a ¼ 0 (a 2 A).

A commutative and without order Banach

algebra A is called a BSE algebra (or has BSE-

property) if it satisfies the condition

CBSEð�ðAÞÞ ¼ dMðAÞ:
The abbreviation BSE stands for Bochner-
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Schoenberg-Eberlin and refers to a famous theorem,

proved by Bochner and Schoenberg [3,14] for the

additive group of real numbers and in general by

Eberlein [6] for a locally compact abelian group G,

saying that, in the above terminology, the group

algebra L1ðGÞ is a BSE algebra. See [13] for a proof.

The notion of BSE algebras was introduced and

studied by Takahasi and Hatori [16] and later by

Kaniuth and Ülger [10]. There are several other

papers on BSE algebras such as [7], [8] and [9].

It is worth noting that the semigroup algebra

l1ðZþÞ (where Zþ is the additive semigroup of non-

negative integers) is a BSE algebra [17], but for

k � 1, l1ðNkÞ (Nk ¼ fk; kþ 1; kþ 2; . . .g) is not a

BSE algebra.

In [9], we established affirmatively a question

raised by Takahasi and Hatori [16] that whether

L1ðRþÞ is a BSE algebra.

Let S be a locally compact topological semi-

group and MðSÞ be the space of all bounded

complex Borel measures on S. Then MðSÞ ¼
C0ðSÞ� and MðSÞ with convolution

� ? �ð Þ ¼
Z Z

 ðxyÞd�ðxÞd�ðyÞ

ð�; � 2MðSÞ;  2 C0ðSÞÞ;
is a Banach algebra. The subalgebra MaðSÞ of MðSÞ
consists of all measures � in MðSÞ for which the

translations x! j�j ? �x and x! �x ? j�j from S

into MðSÞ are weakly continuous. A topological

semigroup S is called a foundation semigroup if

S coincides with the closure of [fsuppð�Þ : � 2
MaðSÞg. This class of semigroups is very extensive

for which discrete semigroups and topological

groups are elementary examples. For more exam-

ples see [5] and [15].

In the present paper we first give a character-

ization of the L1-representation algebra RðSÞ of

a foundation semigroup S with identity and then

we apply this characterization in order to prove

that MaðSÞ, for a reflexive foundation semigroup

S, is a BSE algebra. We present examples which

show that the assumption of reflexivity cannot be

dropped.

We also prove that for a compact foundation

semigroup S, the semigroup algebra MaðSÞ is BSE if

and only if it has a �-weak bounded approximate

identity.

2. Preliminaries. In this paper, the term

semigroup will describe a set S endowed with an

associative, binary operation mapping S � S into

S. A commutative semigroup is a semigroup with

a commutative operation. If S is also a Hausdorff

topological space and the binary operation is con-

tinuous for the product topology of S � S, then S is

said to be a topological semigroup. If in addition S

contains a unit with respect to the operation, we say

S has an identity.

An inverse semigroup S is a semigroup in which

every element x in S has a unique inverse x�1 in S in

the sense that x ¼ xx�1x and x�1 ¼ x�1xx�1.

A Clifford semigroup is an inverse semi-

group with xx�1 ¼ x�1x. Examples of Clifford

semigroups are groups and commutative inverse

semigroups.

In this paper all semigroups are considered to

be commutative, so the term ‘‘inverse semigroup’’ is

the same as ‘‘Clifford semigroup’’.

A semicharacter � on a topological semigroup

S is a bounded, continuous, complex-valued func-

tion on S, not identically zero, such that �ðxyÞ ¼
�ðxÞ�ðyÞ whenever x and y are in S. The set

consisting of all semicharacters on S is denoted bybS. If S has a unit, bS forms a semigroup under the

pointwise multiplication. We endow bS with the

topology of uniform convergence on compact sub-

sets of S. Under this topology bS is a topological

semigroup. A topological semigroup S is said to be

reflexive if S ¼� bbS under the map x! ~x where

~xð�Þ ¼ �ðxÞ for each � in bS and x in S.

Remark 2.1. In [1] Austin proved that if S

is discrete then S is topologically isomorphic to
bbS if

and only if S is an inverse semigroup with identity.

Also, he showed that if S is compact and bS
separates the points of S and S is an inverse

semigroup, then S is topologically isomorphic tobbS. A. C. Baker and J. W. Baker [2] showed that if S

is topologically isomorphic to
bbS then S must be an

inverse semigroup.

A bounded net ðe�Þ� in a Banach algebra A is

called a bounded approximate identity for A if it

satisfies ke�a� ak ! 0 for all a 2 A.

Note that if S is a foundation semigroup with

identity, then MaðSÞ has a bounded approximate

identity [5].

A bounded net ðe�Þ� in a Banach algebra A is

called a �-weak bounded approximate identity for

A if ’ðe�Þ ! 1 (equivalently, ’ðe�aÞ ! ’ðaÞ for

every a 2 A) for all ’ 2 �ðAÞ. As is shown in [16], A
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has a �-weak bounded approximate identity if and

only if dMðAÞ � CBSEð�ðAÞÞ.
3. A characterization of the Banach alge-

bra RðSÞ. In this section we first give a charac-

terization of the L1-representation algebra RðSÞ
of a foundation commutative semigroup S with

identity.

Recall that if S is a topological semigroup, thenbS [ f0g is closed under pointwise multiplication and

complex conjugation, the closure A of the linear

span of bS in supremum norm is a C�-subalgebra of

bounded continuous functions on S. The semigroupbS contains the identity so that A is unital. It follows

that the spectrum �S of A is a compact Hausdorff

space. Furthermore, since points of S determine

complex homomorphisms of A, there is a continuous

map � : S ! �S, with dense image, such that f 7!
fo� : Cð �SÞ ! A is an isometric isomorphism of

Cð �SÞ onto A, when � is injective.

The map � is injective if and only if bS separates

the points of S. We shall call �S (together with the

map �) the Bohr compactification of S. For more

details the interested reader can refer to [18].

We start this section with the following The-

orem which characterizes the L1-representation

RðSÞ of a foundation semigroup S.

Theorem 3.1. Let S be a commutative foun-

dation semigroup with identity. Then the following

statements about a continuous function ’ defined on

S, are equivalent:

(a) ’ 2 RðSÞ and k’kR � �.

(b) For every function f on bS of the form

fð�Þ ¼
Xn
i¼1

ci�ðxiÞ ð� 2 bSÞ;
where c1; . . . cn are complex numbers and x1; . . . ;
xn 2 S, we haveXn

i¼1

ci’ðxiÞ
�����

����� � �kfk1:ð2Þ

Proof. Suppose that ’ 2 RðSÞ. Then, by equal-

ity (1), there exists a measure �f 2Mð bSÞ such that

k�’k ¼ k’kR � � and

’ðxÞ ¼
Z
bS �ðxÞd�’ð�Þ:

With fð�Þ ¼
Xn
i¼1

ci�ðxiÞ we have

Xn
i¼1

ci’ðxiÞ
�����

����� ¼ Xn
i¼1

ci

Z
bS �ðxiÞd�’ð�Þ

�����
�����

¼
Z
bS
Xn
i¼1

ci�ðxiÞd�’ð�Þ
�����

�����
¼
Z
bS fð�Þd�’ð�Þ

���� ����
� kfk1k�’k � �kfk1:

That is (a) which implies (b).

To prove the reverse implication, we consider

the Bohr compactification semigroup bS of the

semigroup bS. We then extend each f of the form

fð�Þ ¼
Xn
i¼1

ci�ðxiÞ ðxi 2 S; � 2 bSÞ
to bS by

fð��Þ ¼
Xn
i¼1

ci��ðxiÞ ðxi 2 S; �� 2 bSÞ:
Since bS is dense in bS, the norm kfk1 is not altered

by this extension. Let

A ¼
(
f : bS
�! Cj9x1; . . . ; xn 2 S; 9c1; . . . ; cn 2 C : fð��Þ

¼
Xn
i¼1

ci��ðxiÞ
)
:

Then A is a linear manifold in CðbSÞ. Now define the

linear functional F on A by

Ff ¼
Xn
i¼1

ci’ðxiÞ;

where fð��Þ ¼
Xn
i¼1

ci��ðxiÞ.

By inequality (2), we have

jFf j � �kfk1:

Thus kFk � � and F can be extended to a bounded

linear functional eF on CðbSÞ of the norm not

exceeding �.

By the Riesz representation theorem, there is a

unique measure � 2MðbSÞ such that k�k � � and

eFf ¼Xn
i¼1

ci’ðxiÞ ¼
Z
bS fð��Þd�ð��Þ ðf 2 CðbSÞÞ:

In particular, for fð��Þ ¼ ��ðxÞ ðx 2 SÞ we have
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’ðxÞ ¼
Z
bS ��ðxÞd�ð��Þ:

Putting � ¼ bS, Tx ¼ ��ðxÞ and g ¼ 1, we conclude

that ’ 2 RðSÞ and k’kR ¼ k�k � �. �

Remark 3.2. Note that in the previous

Theorem, (b) implies (a) for an arbitrary commu-

tative topological (not necessarily foundation) sem-

igroup.

4. The BSE-property of semigroup alge-

bras related to foundation semigroups. In

this section, as an application of Theorem 3.1, we

prove that for any reflexive foundation semigroup

S, the Banach algebra MaðSÞ is a BSE algebra.

However, in the case where S is a compact

foundation semigroup, without appealing the

L1-representation algebra RðSÞ, we prove that for

a compact foundation semigroup S, MaðSÞ is a BSE

algebra if and only if it has a �-weak bounded

approximate identity.

Theorem 4.1. Suppose that S is a reflexive

foundation semigroup, then MaðSÞ is a BSE algebra.

Proof. From reflexivity of S, it follows that it

has an identity. Therefore MaðSÞ has a bounded

approximate identity and by Corollary 5 of [16],dMðMaðSÞÞ � CBSEð�ðMaðSÞÞ:
Since S is a foundation semigroup, we infer

that �ðMaðSÞÞ is topologically isomorphic to bS
(see [5] for a proof). Let � 2 CBSEð�ðMaðSÞÞÞ ¼
CBSEðbSÞ. There exists � > 0 such that for every

finite number of �1; . . . ; �n 2 bS and c1; . . . ; cn 2 C,Xn
i¼1

ci�ð�iÞ
�����

����� � � Xn
i¼1

ci�i

�����
�����
1

:

This implies that for every f of the form

fðxÞ ¼
Xn
i¼1

ci�iðxÞ ðx 2 S ¼�
bbSÞ;

we have Xn
i¼1

ci�ð�iÞ
�����

����� � �kfk1:
Applying Theorem 3.1 to bS instead of S, we obtain

� 2 RðbSÞ and k�k � �. Since S is reflexive, from

Remark 2.1 it is an inverse semigroup. Defining ��1

by ��1ðxÞ ¼ �ðx�1Þ ð� 2 bSÞ, bS also defines an in-

verse semigroup. By Theorem 4.3 of [1] and Re-

mark 11.6 of [15] bS is a union of closed groups and

thus bS is a foundation semigroup. Applying Theo-

rem 3 of [12] to bS, we conclude that there exists a

unique measure � 2MððbbSÞÞ ¼MðSÞ such that

�ð�Þ ¼
Z
S

�ðxÞd�ðxÞ ð� 2 bSÞ:
Since MaðSÞ is a closed ideal of MðSÞ, it follows that

MðSÞ is a subalgebra of MðMaðSÞÞ.
This implies that � ¼ b� 2 dMðSÞ � dMðMaðSÞÞ.
So CBSEðbSÞ � dMðMaðSÞÞ and MaðSÞ is a BSE

algebra. �

Note that for k � 1, Nk ¼ fk; kþ 1; . . .g under

addition operation is a foundation semigroup which

is not reflexive and the semigroup algebra l1ðNkÞ is

not BSE [16]. So we can not drop the hypothesis

‘‘reflexive’’ in the statements of Theorem 4.1.

In the following we present examples of semi-

groups which satisfy the hypothesis of the above

Theorem.
Example 4.2. (a) For any discrete inverse

semigroup S with identity, l1ðSÞ is a BSE algebra.

For instance, if S ¼ ðZþ;maxÞ, where Zþ is the

discrete semigroup of non-negative integers, then S

is a reflexive semigroup and so l1ðSÞ is a BSE

algebra.

(b) Let

T ¼ �
1

2n
: n 2 N

� �
[ f0g [

1

2nþ 1
: n 2 N

� �
with the operation

xy ¼ yx ¼ x if jxj � jyj ðx; y 2 T Þ;

and the topology of T coincides with the restriction

of the line topology on T ¼ f� 1
2n : n 2 Ng [ f0g

while its restriction on f 1
2nþ1 : n 2 Ng is discrete.

Then T defines a compact inverse foundation semi-

group with identity (p. 65 of [5]). So by Remark 2.1

and Theorem 4.1, MaðT Þ is BSE.

If we set S :¼ G� T , where G is an abelian

topological group, then S is a reflexive foundation

semigroup and again by Theorem 4.1, MaðSÞ is

BSE.

(c) Let S :¼ f0g [ f1
n : n 2 Ng with the relative

topology of the line and multiplication given by

xy ¼ maxfx; yg. Then S is a compact foundation

semigroup with identity 0 (p. 34 of [5]). For any

abelian locally compact group G, T ¼ S �G is a

reflexive foundation semigroup and by Theorem

4.1, MaðT Þ is BSE.

Before we give a necessary and sufficient

condition for MaðSÞ of a commutative compact
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foundation semigroup S to be a BSE algebra, we

need to quote the following result from Kaniuth and

Ülger [10].

Theorem 4.3. Let A be a semisimple com-

mutative Banach algebra which is an ideal in its

second dual. Then the following statements are

equivalent:

(i) A is a BSE algebra.

(ii) A has a �-weak bounded approximate

identity.

(iii) A has a bounded approximate identity.

Dzinonotyiweyi [5] showed that if S is a

compact foundation semigroup, then MaðSÞ is an

ideal in its second dual. So as an application of the

above Theorem we give the following result.

Theorem 4.4. Let S be a compact founda-

tion semigroup. Then MaðSÞ is a BSE algebra if and

only if MaðSÞ has a �-weak approximate identity.

Proof. Suppose that MaðSÞ is a BSE algebra.

Then by Corollary 5 of [16] it has a �-weak

approximate identity.

Conversely, suppose that MaðSÞ has a �-weak

approximate identity, since S is a compact and

foundation semigroup, MaðSÞ is an ideal in its

second dual and by Theorem 4.3, MaðSÞ is a BSE

algebra. �

Example 4.5. (a) Consider the semigroup

S ¼ ½0; 1	n, n 2 N with ordinary multiplication and

restriction topology of Rn. Since ½0; 1	n is a compact

semigroup and L1ð½0; 1	nÞ has a bounded approx-

imate identity, then L1ð½0; 1	nÞ is a BSE algebra, for

all n 2 N.

(b) Let T be as in part (b) and S be as in part

(c) of Example 4.2. Then by Theorem 4.4, MaðT Þ
and MaðSÞ are BSE algebras.

(c) S ¼ ½0; 1	 with the restriction topology of R

and multiplication defined by xy :¼ minfxþ y; 1g.
Then S is a compact foundation semigroup with

identity (p. 48 of [5]) and MaðSÞ is BSE.
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