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Abstract: Given a set E ¼ ð0;1Þ, the spherical maximal operator M associated to the

parameter set E is defined as the supremum of the spherical means of a function when the radii of

the spheres are in E. The aim of this paper is to study the following inequalityZ
Rn
ðMfðxÞÞp�ðxÞdx � Bp

Z
Rn
jfðxÞjp �ðxÞdx;ð0:1Þ

holds for p > 2n
n�1

with the continuous spherical maximal operatorM and where the nonnegative

function � is in some weights obtained from the Ap classes. As an application, we will get the

boundedness of vector-valued extension of the spherical means.

Key words: Spherical maximal operator; oscillatory integrals; Ap weights.

1. Introduction. The aim of this paper is to

study the boundedness of spherical maximal oper-

ator corresponding to E ¼ ð0;1Þ from Lpð�Þ to

Lpð�Þ, where the nonnegative function � is in some

weights obtained from the Ap classes. Given a

function f , continuous and compactly supported,

we consider for each x 2 Rn and t > 0, the operator

StfðxÞ ¼
R

Sn�1 fðx� tyÞd�ðyÞ, where d� is the nor-

malized Lebesgue measure over the unit sphere

Sn�1. Then StfðxÞ is the mean value of f over the

sphere of radius t centered at x and it defines a

bounded operator in LpðRnÞ for 1 � p � 1. Con-

sider now the spherical maximal operator given by

MfðxÞ ¼ sup
t>0
jStfðxÞj:

Then M defines a bounded operator in LpðRnÞ if

and only if p > n
n�1 with n > 1. This result was first

proved by Stein [3,10], for n � 3 and later Bourgain

showed that the same is true for n ¼ 2, (see [2]).

Other proof for n ¼ 2 is due to Mockenhaupt,

Seeger and Sogge [4]. In [1], Javier Duoandikoetxea

and Luis Vega, they have studied the weighted

inequalities of the typeZ
Rn
ðMfðxÞÞp �ðxÞdx � B

Z
Rn
jfðxÞjp �ðxÞdx;

with B depending only on p and � and where the

weight � is a locally integrable nonnegative func-

tion. They proved that there are no weighted

inequalities for p � n
n�1, and have proven the most

interesting result: M is bounded in Lpðjxj�Þ if

1� n < � < ðn� 1Þðp� 1Þ � 1. We shall use c as a

constant independent of j in several spaces without

mentioning it. In this paper, we shall consider the

weights � with the property

W ¼ f� :M�ðxÞ � c �ðxÞ a:e:g;ð1:1Þ

where M is the spherical maximal operator. For

example, �ðxÞ ¼ jxj� ð1� n < � � 0Þ 2W . Under

the above assumption (1.1) on the weights, we shall

study the following weighted inequalitiesZ
Rn
ðMfðxÞÞp �ðxÞ dxð1:2Þ

� Bp

Z
Rn
jfðxÞjpN�ðxÞ dx;

where the operator N is defined by

N�ðxÞ ¼ sup
1�t�2

Z
jyj¼1

�ðxþ tyÞjd�ðyÞj;ð1:3Þ

where jd�j is the total variation measure on the

sphere jyj ¼ 1. In fact, in [1], they have studied the

following weighted inequalities,Z
Rn
ðMfðxÞÞp �ðxÞ dx � Bp

Z
Rn
jfðxÞjpN�ðxÞ dx;

with some operator N . They have suggested that

the operator N is in some sense similar toM and at

least one expects to have
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Nu � c u for us 2W with s > 1:

Notice that, in our case, using Hölder inequality, we

have,

N� � c � for �s 2W with s > 1:ð1:4Þ

Here, one could now replace N� with � at the

right hand side of (1.2), reducing the result of (1.2)

to a one-weight inequality i.e., the boundedness of

M from Lpð�Þ to Lpð�Þ. The main application was

exactly the vector-valued extension of the classical

Hardy-Littlewood maximal theorem as in [5] to

spherical means.

1.1. The dyadic maximal operator. The

proof of our main result, as well as many other

arguments that involve explicitly (or implicitly) the

Fourier transform, makes use of the division of the

dual (frequency) space into dyadic spherical shells.

Dyadic decomposition, whose ideas originated in

the work of Littlewood and Paley, and others, will

now be described in the form most suitable for us.

Let  be a nonnegative radial function in C1c ðRnÞ
supported in f1

2 � j�j � 1g such that
P1

j¼1  ð2�j�Þ ¼
1 for j�j � 1. Define  jð�Þ ¼  ð2�j�Þ for j > 0, and

�0ð�Þ ¼ 1�
P1

j¼1  jð�Þ. Denote by �j; � the C1

functions given bydð�jÞð�Þ ¼ dðd�Þð�Þ jð�Þ and b�ð�Þ ¼ dðd�Þð�Þ�0ð�Þ:
Let Sjt and Bt be the operators defined by

Sjt fðxÞ ¼
Z

Rn
fðx� tyÞ�jðyÞ dy and

BtfðxÞ ¼
Z

Rn
fðx� tyÞ�ðyÞ dy:

Notice that Bt is pointwise majorized by a

constant times the Hardy-Littlewood maximal

operator M. Then,

MfðxÞ �
X1
j¼0

sup
t
jSjt fðxÞj þ cMfðxÞ:

1.2. Angular decomposition. We now dis-

cuss the second dyadic decomposition of the fre-

quency-space that is needed for each dyadic oper-

ators Sjt in Rn. To do this, for fixed j, we first choose

unit vectors ��j , � ¼ 1; . . . ; NðjÞ such that

j��j � ��
0

j j � C02�
j
2 ; � 6¼ �0;

for some positive constant C0 and such that balls of

radius 2�
j
2 centered at ��j cover S

n�1

. Note that

NðjÞ � 2j
ðn�1Þ

2 :

They give an essentially uniform grid on the unit

sphere, with separation 2�
j
2 . Let ��j denote the

corresponding cone in the �� space whose central

direction is ��j ; i.e.,

��j ¼ � :
�

j�j
� ��j

���� ���� � c 2�
j
2

� �
:

Now, we introduce an associated partitions of unity

Rnnf0g that depend on scale j. Specifically, we

choose C1 functions

��; � ¼ 1; . . . ; NðjÞ � 2j
n�1

2 ;

satisfying
P
�
�� ¼ 1 and having the additional

properties,

(1) ��’s are to be homogeneous of degree zero and

satisfy the uniform estimates,

jD���ð�Þj � c� 2
jj�j

2 for every � if j�j ¼ 1:ð1:5Þ
(2) ��ð��j Þ 6¼ 0 and �� ’s are to have the natural

support properties

i.e.; ��ð�Þ ¼ 0 if j�j ¼ 1 and j� � ��j j � c 2�
j
2 :ð1:6Þ

Using the homogeneous partitions of unity ��,

we make an angular decomposition of the operators

by setting dð�j�Þð�Þ ¼ dðd�Þð�Þ jð�Þ��ð�Þ;
and define the corresponding operators

Sj:�t fðxÞ ¼
Z

Rn
fðx� tyÞ�j�ðyÞdy:

1.3. Ap weights. In this section, we introduce

weight class Ap ð1 < p <1Þ consisting of weights

� for which the Hardy-Littlewood maximal oper-

ator M is bounded in Lpð�Þ (see Garc��a-Cuerva

and Rubio de Francia, ch.4 [7]). The weights �

in Ap ð1 < p <1Þ were characterized by

Mockenhoupt as

sup
Q

1

jQj

Z
Q

� dx

� �
1

jQj

Z
Q

�
� 1
p�1 dx

� �p�1

� c;ð1:7Þ

where the supremum is taken over all cubes (or

balls) Q in Rn. For the case p ¼ 1, we refer to

the weights which satisfy M�ðxÞ � c �ðxÞ a:e: x 2
Rn, as A1 weights. Now, we shall state the weighted

versions of the Littlewood-Paley inequalities. Recall

that Lp� ð1 < p <1Þ denotes the Lp space on Rn

with measure �ðxÞdx. The following result (Theo-
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rem 1.1) for � 2 Ap is basically known. This was

first proved by Kurtz ([6]) for  supported in an

annulus. Here, we shall state the result for � 2 Ap.

Theorem 1.1. Let 1 < p <1 and � 2 Ap.

Let  o 2 C1c , have nonzero integral, and  ¼  0 �
2�n 0ð :2Þ. Consider the square function operator S

given by

SðfÞðxÞ ¼
X
j

j j � fðxÞj2
 !1

2

ðf 2 S ; x 2 Rn;  ̂j ¼  ̂ð2�j :ÞÞ:

Then,

kSðfÞkLp
�
� kfkLp

�
; 8f 2 S :ð1:8Þ

Here, � means the bilateral estimate with

positive constants independent of f .

Remark 1.2. In fact, the condition �s 2W ,

s > 1 implies that �s 2 A1. This is because point-

wise M�ðxÞ �M�ðxÞ, where M is the Hardy-

Littlewood maximal operator.

Next, we will state our main result of this paper

in (§, 2).

2. Main results.

Theorem 2.1. Let M be a spherical max-

imal operator. Then, for p > 2n
n�1, the inequalityZ

Rn
ðMfðxÞÞp �ðxÞ dxð2:1Þ

� Bp

Z
Rn
jfðxÞjpN�ðxÞ dx;

holds for f 2 S and the operator N and the weights

� satisfy the condition as in (1.4), with constant Bp

depending only on p.

Theorem (2.1) has the following consequence

on unweighted spherical means.

Corollary 2.2. Let f be a bounded measur-

able function on Rn, n > 1. Then the inequality

kMfkLpðRnÞ � Bp kfkLpðRnÞ

holds whenever p > 2n
n�1.

The proof of the Corollary follows immediately

by taking � � 1 in (2.1) of the above theorem (2.1).

Proof of Theorem 2.1. We shall prove that, for

p > 2n
n�1, Z

Rn
sup
t>0
jStfðxÞjp �ðxÞ dxð2:2Þ

� Bp

Z
Rn
jfðxÞjpN�ðxÞ dx:

Our proof will consist of three main steps. First

we will decompose each St into dyadic operator Sjt .

Then we will use the method of Littlewood-Paley

square function to deduce the general result for t >

0 from the inequality where the supremum is only

taken over t 2 ½1; 2�: We will then use the method of

stationary phase to expose the behavior of our

operator Sj;�t .

We now turn to the details. To obtain the

inequality (2.2) by summing a geometric series, it is

enough to prove the following: There exists a

constant 	ðpÞ > 0 such that for p > 2n
n�1,Z

Rn
sup

1�t�2
jSjt fðxÞj

p �ðxÞdxð2:3Þ

� c 2�j 	ðpÞ
Z

Rn
jfðxÞjpN�ðxÞ dx:

By rescaling, the inequality (2.3) will be true

for sup
2k�t�2kþ1

with the same constant.

To see that (2.3) is enough, we need to use

Littlewood-Paley operators Lk, which are defined

by dðLkfÞð�Þ ¼  ð2�kj�jÞ f̂ð�Þ, where  ’s are defined

in (§, 1). It then must follow that there is an

absolute constant C0 such that, when t 2 ½1; 2�, we

have

Sjt fðxÞ ¼ S
j
t

X
jj�kj�C0

Lkf

0@ 1AðxÞ:
Thus, if (2.3) held, then a scaling argument will

give,Z
sup
t>0
jSjt fðxÞj

p �ðxÞ dx

�
X1
l¼�1

Z
sup

t2½2l ;2lþ1�
Sjt

X
jkþl�jj�C0

Lkf

0@ 1AðxÞ
������

������
p

�ðxÞdx

� cp C0 2�j	ðpÞ p
Z X1

k¼�1
jLkfðxÞjpN�ðxÞ dx

� cp C0 2�j	ðpÞ p
Z X1

k¼�1
jLkf j2

 !ðp2Þ
N�ðxÞ dx:

In the last step we have used the fact that

p > 2n
n�1 > 2. Now using the weighted inequalities

(1.8) for the Littlewood-Paley decomposition [6], we

finish our proof.

Next we claim that the inequality (2.3) in turn

would follow from the estimates
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Z
Rn

sup
1�t�2

jSj;�t fðxÞjp�ðxÞdxð2:4Þ

� 2�j½p
n�1

2 þ	ðpÞ�
Z

Rn
jfðxÞjpN�ðxÞ dx:

To show that (2.4) implies (2.3), using Hölder

inequality for sums, we get,Z
Rn

sup
1�t�2

jSjt fðxÞj
p �ðxÞ dxð2:5Þ

� 2
jðn�1Þðp�1Þ

2

X
�

Z
Rn

sup
1�t�2

jSj;�t fðxÞjp �ðxÞ dx
� �

� 2
jðn�1Þðp�1Þ

2

X
�

2�j½p
n�1

2 þ	ðpÞ�
Z

Rn
jfðxÞjpN�ðxÞ dx

¼ c 2�j 	ðpÞ
Z

Rn
jfðxÞjpN�ðxÞ dx;

where we use (2.4) in the second inequality. To

prove (2.4), we shall use a Sobolev embedding to

replace sup
1�t�2

jSj;�t fðxÞjp withZ 2

1

jD

t S

j;�
t fðxÞjpdt; 
 >

1

p
:

Compute the norm for 
 ¼ 0 and 
 ¼ 1 and then

interpolate. Using Hölder inequality, for 
 ¼ 0 and

p > 2n
n�1, we haveZ

x2Rn

Z 2

1

jSj;�t fðxÞjp �ðxÞ dx dtð2:6Þ

¼
Z
x2Rn

Z 2

1

Z
y2Rn

fðx� tyÞ�j�ðyÞ dy
���� ����p

	 �ðxÞ dx dt

�
Z 2

1

Z
y

�j�
y

t

� ����� ����dy� �p�1

	
Z
x

Z
y

t�n jfðx� yÞjp �j�
y

t

� ����� ���� dy
	 �ðxÞ dx dt

¼
Z 2

1

Z
y

�j�
y

t

� ����� ����dy� �p�1Z
y

jfðyÞjp

	
Z
x

�ðyþ txÞ j�j�ðxÞj dx
� �

dy dt

�
Z 2

1

Z
y

�j�
y

t

� ����� ����dy� �p�1

dt

	
Z
y

jfðyÞjpN�ðyÞ dy:

In the last step we have used the fact that

jd�ðxÞj � j�j�ðxÞj, where j�j�ðxÞj is the total variation

norm. Therefore, we have,
R
x �ðyþ txÞ j�j�ðxÞj dx �

N�ðyÞ.
Now our aim is to estimate the following

integral
R
y j�j�ð

y
tÞj dy. Using the property of Bessel’s

function, let us consider the following estimatedðd�Þð�Þ ¼ eij�j að�Þðj�jÞ�n�1
2 , for j�j 2 ½2j�1; 2j�, where

a is C1ðRn n f0gÞ, homogeneous of degree zero

(see [8,9]). We have,

�j�
y

t

� �
¼
Z
�

eih�;yi tn dðd�Þðt�Þ jðt�Þ��ð�Þ d�
¼
Z
�

eih�;yi tn eitj�j að�Þ ðtj�jÞ�
n�1

2  jðt�Þ��ð�Þ d�

¼ 2�
jðn�1Þ

2 t
nþ1

2 F ðy; tÞ;

where, F ðy; tÞ ¼
R 2j

j�j¼2j�1 e
ih�;yi eitj�j a0ð�Þ ðtj�j2�jÞ

��ð�Þ d�, where a0 is homogeneous of degree zero.

Since  ð0Þ ¼ 0, we have

F ðy; tÞ ¼
Z t

0

@F

@s
ds

¼
Z t

0

Z
�

eih�;yi eisj�j a0ð�Þ ð2�jj�jÞ 0ðsj�j2�jÞ

	 ��ð�Þ d�ds

þ
Z t

0

Z 2j

j�j¼2j�1

eih�;yi ðij�jÞ eisj�j a0ð�Þ

	  ðsj�j2�jÞ��ð�Þ d�ds:
Hence we have,Z
y

�j�
y

t

� ����� ����dy ¼ Z
y

2�
jðn�1Þ

2 t
ðnþ1Þ

2 jF ðy; tÞj dy

� 2�
jðn�1Þ

2 t
ðnþ1Þ

2 ðI1 þ I2Þ:
Using integration by parts and change of

variable formula to the following integral we get,

I1 ¼
Z
y

���� Z t

0

Z
�

eih�;yi eisj�j a0ð�Þ ð2�jj�jÞð2:7Þ

	  0ðsj�j2�jÞ��ð�Þ d�ds
����dy

¼
Z
y

2
ðnþ1Þj

2

Z
�

ei2
jh�;yi a0ð�Þ��ð�Þ

����
	

Z tj�j

s¼0

eis2
j

 0ðsÞ
ds

j�j

 !
d�

�����dy
� c 2

ðnþ1Þj
2

Z
y

1

ð1þ j2jyj2ÞN

�����
�����dy
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¼ c 2
ðnþ1Þj

2 2�nj
Z
y

1

ð1þ jyj2ÞN

�����
�����dy

� c 2�
ðn�1Þj

2 if N >
ðnþ 1Þ

2
;

where a0ð�Þ is homogeneous function of degree zero

in �.

To simplify the writing of the estimates for I2,

we set �� ¼ ��j , and the corresponding partitions of

unity ��ð�Þ ¼ ��ð�Þ. Now choose axes in the �� space

so that �1 is in the direction of �� and �0 ¼ ð�2; . . . ; �nÞ
is perpendicular to ��. With this, let, L ¼ I �
22jð @@�1

Þ2 � 2jr�0
2 and y ¼ ðy1; y

0Þ and � ¼ ð�1; �
0Þ.

Next with the help of integration by parts formula

(see, Stein, ch.9, [9]) and change of variable formula

to the following integral we get,

I2 ¼
Z
y

���� Z t

0

Z
�

eih�;yi ðij�jÞ eisj�j a0ð�Þð2:8Þ

	  ðsj�j2�jÞ ��ð�Þ d�ds
����dy

¼ 2j
Z
y

���� Z t

0

Z
�

ei½h�;yiþs�1� ½eis½j�j��1� a0ð�Þ

	  ðsj�j2�jÞ ��ð�Þ� d�ds
����dy

¼
Z
y

���� Z t

0

Z
�

2j ei½hy;�iþsj�j�

f1þ 2jjy1 þ sj þ 2
j
2 jy0jg2N

	 LN ½a0ð�Þ ðsj�j2�jÞ ��ð�Þ�d�ds
����dy

� c 2j 2�
ðnþ1Þj

2

Z
y

1

f1þ jy1j þ jy0jg2N

�����
�����dy

� c 2�
ðn�1Þj

2 ; if N >
nþ 1

2
:

Therefore, using (2.7) and (2.8), we haveZ 2

1

Z
y

�j�
y

t

� ����� ����dy� �p�1

dt � c 2�jðp�1Þðn�1Þ:ð2:9Þ

Hence, using (2.9) in (2.6) we get,Z
Rn

Z 2

1

jSj;�t fðxÞjp �ðxÞ dxdt

� c 2�jðp�1Þðn�1Þ
Z

Rn
jfðxÞjpN�ðxÞ dx:

For 
 ¼ 1, we have D1
t S

j;�
t which is essentially

2j times an operator similar to Sj;�t so that the above

estimate appears multiplied by 2jp. By interpola-

tion, we finally getZ
Rn

Z 2

1

jD

t S

j;�
t fðxÞjp �ðxÞ dx

� c 2jð�ðp�1Þðn�1Þþp
Þ
Z

Rn
jfðxÞjpN�ðxÞ dx:

Inequality (2.4) follows by taking 
 such that

�ðp� 1Þðn� 1Þ þ p n�1
2 þ p 
 < �	ðpÞ, since p >

2n
n�1. Hence the theorem. �

3. Application to some maximal inequal-

ities. Inequality of this type (2.1) are important,

since among other things, they can be used to derive

the boundedness of vector-valued maximal opera-

tors. In this section, we extend the spherical

maximal inequalities to the case of lp� valued

functions.

Theorem 3.1. Let f ¼ ðf1; f2; . . .Þ be a se-

quence of functions on Rn. From the sequence

MfðxÞ ¼ fMf1ðxÞ;Mf2ðxÞ . . .g which k-th term is

the spherical maximal function of fk, we have, for
2n
n�1 < r; p <1,

X1
k¼1

jMfkðxÞjr
 !1

r

						
						
Lp

� Ar;p

X1
k¼1

jfkjr
 !1

r

						
						
Lp

:ð3:1Þ

Proof. We look separately at the cases p ¼ r,
p < r and p > r. For the case p ¼ r, inequality (3.1)

follows immediately from the usual spherical max-

imal theorem, sinceZ
Rn

X1
k¼1

jMfkðxÞjrdx ¼
X1
k¼1

Z
Rn
jMfkðxÞjrdx

� Ar

X1
k¼1

Z
Rn
jfkjrdx ¼ Ar

Z
Rn

X1
k¼1

jfkjrdx:

For p < r, we need some preliminary observa-

tion.

Definition. An operator T defined in LpðRnÞ
is called linearizable if there exists a linear operator

U defined in LpðRnÞ whose values are B� valued

functions (for some Banach space B) and such that

jTfðxÞj ¼ kUfðxÞkB, ðf 2 LpðRnÞÞ.
In our case,MfðxÞ ¼ sup

t
jStfðxÞj, we take B ¼

L1, where ðStÞt2R�0
is a sequence of linear operator.

For the case p < r will then follow from the

following corollary (see [7], ch.5, corollary 1.23,

pp. 482).

Corollary 3.2. Let T be a linearizable oper-

ator which is bounded in LpðRnÞ for some 1 � p <
1. If T is positive (in the sense that: jfðxÞj � gðxÞ
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a.e., implies jTfðxÞj � TgðxÞ a.e.,) then, the follow-

ing inequalities hold:

X
j

jTfjjr
 !1

r

						
						
Lp

� C
X
j

jfjjr
 !1

r

						
						
Lp

;

ðp � r � 1Þ:
To prove the remaining parts p > r of our

vector valued spherical maximal theorem, we are

going to use duality. That is, we shall control the

size of kð
P1

k¼1 jMfkðxÞjrÞ
1
rkLp by estimating the

integral Z
Rn

X1
k¼1

jMfkðxÞjr
 !

�ðxÞ dx;

for all � belonging to a suitable space of test

functions.

Remark 3.3. We shall use the following

observation to prove the remaining part of the

proof. In fact the inequality (2.1) of our main

theorem, holds for weighted simple function. Here,

we consider � ¼
Pm
i¼0

�i �Ei with each jEij <1,

disjoint and �i 2 R. Therefore, we have if x =2 Ei,

8i ¼ 0; . . . ;m, then (2.1) holds automatically as

LHS ¼ 0, otherwise if x 2 Ei for some i, then

�s 2 W , s > 1, since M�s � c �s holds, and also

N� � c � holds, which gives the inequality (2.1).

Now using the weighted inequalities (2.1) for

r > 2n
n�1 and with the help of duality arguments, we

have for positive functions � and f1; f2; . . . ; fk; . . .Z
x2Rn

X1
k¼1

jMfkðxÞjr
 !

�ðxÞ dxð3:2Þ

¼
X1
k¼1

Z
x2Rn

jMfkðxÞjrð Þ�ðxÞ dx

� Br

Z
x2Rn

X1
k¼1

jfkðxÞjr
 !

N�ðxÞ dx:

If in (3.2), we let � run over the space � of

simple functions that vanish outside a set of finite

measure (as in remark (3.3)), with k�kLq � 1,
2n
n�1 < q � 1, we obtain,X1

k¼1

jMfkðxÞjr
					

					
Lq
0

� Br;p

X1
k¼1

jfkðxÞjr
					

					
Lq
0

ð3:3Þ

where 1
q þ 1

q0 ¼ 1. Using interpolation and above

estimate ð3:3Þ, we get

X1
k¼1

jMfkðxÞjr
 !1

r

						
						
Lp

� Br;p

X1
k¼1

jfkðxÞjr
 !1

r

						
						
Lp

for r � p <1, which is the case p > r in (3.1).

Hence the theorem. �

Remark 3.4. It would be interesting to

know, whether the Theorem (2.1) holds for p >
n
n�1. If yes, this will give the boundedness of the

vector-valued extension of the spherical maximal

operators for n
n�1 < r; p <1.
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