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Abstract: In the paper, we take up a new method to prove the following result. Let f be a

meromorphic function in the complex plane, all of whose zeros have multiplicity at least kþ 1

(k � 2) and all of whose poles are multiple. If T ðr; sin zÞ ¼ ofT ðr; fðzÞÞg as n!1, then

f ðkÞðzÞ � sin z has infinitely many zeros.
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1. Introduction. In his excellent paper [1],

W. K. Hayman proved the following result.

Theorem A. Let f be a transcendental mer-

omorphic function with finitely many zeros in C.

Then f ðkÞ assumes every finite non-zero value in-

finitely often.

A natural problem arises: what can we say if

‘‘finite non-zero value’’ in Theorem A is replaced by

a small function �ðzÞ with respect to fðzÞ?
In 2008, Theorem A was generalized by the

following theorem of Pang, Nevo and Zalcman [2].

Theorem B. Let f be a transcendental mer-

omorphic function in C, all but finitely many of

whose zeros are multiple, and let �ð6� 0Þ be a

rational function. Then f 0 � � has infinitely many

zeros.

In 2008, Liu, Nevo and Pang proved the

following result [3].

Theorem C. Let fðzÞ be a transcendental

meromorphic function of finite order in C, and

�ðzÞ ¼ P ðzÞ expQðzÞ 6� 0, where P and Q are poly-

nomials. Let also k � 2 be an integer. Suppose that

(a) all zeros of f have multiplicity at least kþ 1,

except possibly finitely many, and

(b) lim
r!1
ðT ðr;�ÞT ðr;fÞ þ

T ðr;fÞ
T ðr;�ÞÞ ¼ 1.

Then the function f ðkÞðzÞ � �ðzÞ has infinitely many

zeros. Moreover, in the case that �ðfÞ 62 N, then the

result holds with condition (b) only.

Clearly, �ðzÞ has only finitely many zeros and

poles in Theorem B and Theorem C. Chen, Pang

and Yang considered the case that �ðzÞ has in-

finitely many zeros and poles. In fact, the following

result [4] was proved in 2015.

Theorem D. Let f be a nonconstant mer-

omorphic function in C, all of whose zeros have

multiplicity at least kþ 1 ðk � 2Þ, except possibly

finitely many. Let � be a nonconstant elliptic

function such that T ðr; �Þ ¼ ofT ðr; fÞg as r!1.

Then f ðkÞ ¼ � has infinitely many solutions (includ-

ing the possibility of infinitely many common poles

of f and �).

Noting that �ðzÞ is a certain class of double-

periodic function in Theorem D, it is a very

interesting work to consider the case �ðzÞ is a

certain class of single-periodic function. In this

direction, we prove the following results with some

new ideas.

Theorem 1.1. Let f be a meromorphic func-

tion of infinite order in C. Suppose that

(a) all zeros of f have multiplicity at least kþ 1

ðk � 2Þ, except possibly finite many, and

(b) all poles of f are multiple, except possibly finite

many.

Then f ðkÞðzÞ � sin z has infinitely many zeros.

Theorem 1.2. Let f be a meromorphic func-

tion of finite order in C. Suppose that

(a) all zeros of f have multiplicity at least kþ 1

ðk � 2Þ, except possibly finite many, and

(b) T ðr; sin zÞ ¼ ofT ðr; fðzÞÞg as n!1 outside of

a possible exceptional set of finite linear

measure.

Then f ðkÞðzÞ � sin z has infinitely many zeros.

Remark. Theorem 1.1 and Theorem 1.2 still

hold if sin z is replaced by cos z.
Notation. Let C be the complex plane and

D be a domain in C. For z0 2 C and r > 0, we

write �ðz0; rÞ :¼ fzj jz� z0j < rg, � :¼ �ð0; 1Þ and

�0ðz0; rÞ :¼ fzj0 < jz� z0j < rg. Let V ðz0; �0; AÞ :¼
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fzj jargðz� z0Þ � �0j < Ag, V ðz0; �0; AÞ :¼
fzj jargðz� z0Þ � �0j � Ag and �ðz0; rÞ :¼ fzj jz�
z0j ¼ rg. Let nðr; fÞ denote the number of poles

of fðzÞ in �ð0; rÞ (counting multiplicity). We write

fn )
�
f in D to indicate that the sequence ffng

converges to f in the spherical metric uniformly on

compact subsets of D and fn ) f in D if the

convergence is in the Euclidean metric.

For f meromorphic in D, set

f#ðzÞ :¼
jf 0ðzÞj

1þ jfðzÞj2
and

SðD; fÞ :¼ 1

�

ZZ
D

½f#ðzÞ�2 dxdy:

The Ahlfors–Shimizu characteristic is defined by

T0ðr; fÞ ¼
R r

0
Sðt;fÞ
t dt. Let T ðr; fÞ denote the usual

Nevanlinna characteristic function. Since T ðr; fÞ �
T0ðr; fÞ is bounded as a function of r, we can replace

T0ðr; fÞ with T ðr; fÞ in the paper.

The order �ðfÞ of the meromorphic function f

is defined as

�ðfÞ :¼ lim
r!1

logT ðr; fÞ
log r

or �ðfÞ :¼ lim
r!1

logT0ðr; fÞ
log r

:

2. Auxiliary results for the proof of The-

orem 1.1.

Lemma 2.1. Let F be a family of functions

meromorphic in D, all of whose zeros have multi-

plicity at least k, and suppose that there exists A � 1

such that jf ðkÞðzÞj � A whenever fðzÞ ¼ 0. Then if F
is not normal at z0 2 D, there exist, for each

0 � � � k,

(a) points zn 2 D, zn ! z0;

(b) functions fn 2 F ; and

(c) positive numbers �n ! 0

such that ���n fnðzn þ �n�Þ ¼ gnð�Þ )
�
gð�Þ in C,

where g is a nonconstant meromorphic function in

C such that g#ð�Þ � g#ð0Þ ¼ kAþ 1. In particular, g

has order at most 2.

This is the local version of [5, Lemma 2] (cf. [6,

Lemma 1]; [7, pp. 216–217]). The proof consists of a

simple change of variable in the result cited from [5];

cf. [8, pp. 299–300].

Lemma 2.2 ([9, p. 12]). Let fðzÞ be a mer-

omorphic function of infinite order in C. Then there

exist points an !1 and positive numbers �n ! 0
such that f#ðanÞ ! 1 and Sð�ðan; �nÞ; fÞ ! 1.

Lemma 2.3 ([10, Theorem 10 on p. 67]). Let

k � 2 be an integer and let ffng be a family of

meromorphic functions in D, all of whose poles are

multiple and whose zeros all have multiplicity at

least kþ 1. Let fhng be a sequence of holomorphic

functions in D such that hn ) h in D, where h 6� 0

in D. Suppose that for each n, h and hn have the

same zeros with the same multiplicity and f
ðkÞ
n ðzÞ 6¼

hnðzÞ for z 2 D. Then ffng is normal in D.

Lemma 2.4 ([11, Theorem 1]). Let f be a

meromorphic function in �, and let a1, a2, a3 be

three distinct complex numbers. Assume that the

number of zeros of
Q3

i¼1ðfðzÞ � aiÞ in � is � n,

where multiple zeros are counted only once. Then

Sðr; fÞ � nþ A

1� r
; 0 � r < 1;

where A > 0 is a constant, which depends on a1, a2,

a3 only.

Lemma 2.5. Let ffng be a family of mero-

morphic functions in �ðz0; rÞ. Suppose that

(a) fn )
�
f in �0ðz0; rÞ, where fð6� 0Þ may be 1

identically, and

(b) there exists M0 > 0 such that nð�ðz0; rÞ; 1
fn
Þ �

M0 for sufficiently large n.

Then there exists M > 0 such that

Sð�ðz0; r=4Þ; fnÞ < M for sufficiently large n.

Proof. Without loss of generality, we may

assume that r ¼ 2 and z0 ¼ 0.

We consider the following two cases.

Case 1. f 6� 1 and f 6� 2 in �0ð0; 2Þ.
Obviously, 1

fn
� 1)

�
1
f � 1 in �0ð0; 2Þ and 1

f �
1 6� 0;1 in �0ð0; 2Þ. Thus there exists s 2 ð1; 2Þ such

that 1
f � 1 has no poles and zeros on �ð0; sÞ. For

sufficiently large n, we have

n s;
1

fn � 1

� �
� n s;

1

fn

� �
¼ n s;

1
1
fn
� 1

 !
� n s;

1

fn
� 1

� �

¼ 1

2�i

Z
�ð0;sÞ

ð 1
fn
� 1Þ0

1
fn
� 1

dz!
1

2�i

Z
�ð0;sÞ

ð1
f
� 1Þ0

1
f
� 1

dz:

Observing that 1
2�i

R
�ð0;sÞ

ð 1
fn
�1Þ0

1
fn
�1

dz is an integer, we

have for sufficiently large n,

1

2�i

Z
�ð0;sÞ

ð 1
fn
� 1Þ0

1
fn
� 1

dz ¼
1

2�i

Z
�ð0;sÞ

ð1
f
� 1Þ0

1
f
� 1

dz:

Set M1 :¼ 1
2�i

R
�ð0;sÞ

ð1f�1Þ0
1
f�1

dzþM0. We have for suffi-

ciently large n

1;
1

fn � 1

� �
� n s;

1

fn � 1

� �
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¼
1

2�i

Z
�ð0;sÞ

ð1
f
� 1Þ0

1
f
� 1

dzþ n s;
1

fn

� �
< M1:

Obviously, 1
fn
� 1

2 )
�

1
f � 1

2 in �0ð0; 2Þ and 1
f �

1
2 6� 0;1 in �0ð0; 2Þ. Thus there exists t 2 ð1; 2Þ such

that 1
f � 1

2 has no poles and zeros on �ð0; tÞ. For

sufficiently large n, we have

n t;
1

fn � 2

� �
� n t;

1

fn

� �
¼ n t;

1
1
fn
� 1

2

 !
� n t;

1

fn
�

1

2

� �

¼ 1

2�i

Z
�ð0;tÞ

ð 1
fn
� 1

2Þ
0

1
fn
� 1

2

dz!
1

2�i

Z
�ð0;tÞ

ð1
f
� 1

2Þ
0

1
f
� 1

2

dz:

Similarly to the previous paragraph, there exists

M2 > 0 such that for sufficiently large n,

nð1; 1
fn�2Þ < M2. By Lemma 2.4, there exists A > 0

depending on 0; 1; 2 only such that for sufficiently

large n,

S
1

2
; fn

� �
� n 1;

1

fn

� �
þ n 1;

1

fn � 1

� �
þ n 1;

1

fn � 2

� �
þ 2A < M3;

where M3 ¼M0 þM1 þM2 þ 2A.

Case 2. f � 1 or f � 2 in �0ð0; 2Þ.
Clearly, f 6� 3 and f 6� 4 in �0ð0; 2Þ. Then as

shown in Case 1, there exists M4 > 0 such that

Sð12 ; fnÞ �M4 for sufficiently large n.

Set M :¼ maxfM3;M4g. Clearly, Sð12 ; fnÞ �M
for sufficiently large n. �

3. Proof of Theorem 1.1. We argue by

contradiction. Suppose that f ðkÞðzÞ � sin z has at

most finitely many zeros.

Set gðzÞ :¼ fðzÞ
sin z. Clearly, fðzÞ and sin z have

finitely many common zeros (otherwise, by the

assumptions, f ðkÞðzÞ � sin z has infinitely many

zeros), and thus all zeros of gðzÞ have multiplicity

at least kþ 1, except possibly finite many. Since the

order of f is infinite, the order of g is also infinite.

By Lemma 2.2, there exist points an !1 and

positive numbers "n ! 0 such that

g#ðanÞ ! 1 and Sð�ðan; "nÞ; gÞ ! 1:ð3:1Þ
We write an ¼ xn þ iyn. Taking a subsequence and

renumbering, we may assume that yn ! y�.
We consider the following two cases.

Case 1. y� 6¼ �1.

Set bn :¼ xn þ iy� and 	n :¼ jbn � anj þ "n.

Clearly, �ðan; "nÞ 	 �ðbn; 	nÞ, bn !1 and 	n ! 0.

By (3.1), we have

Sð�ðbn; 	nÞ; gÞ ! 1 as n!1:ð3:2Þ

There exist integers jn and points bxn 2 ð��; �� such

that bxn ¼ xn � 2�jn. Taking a subsequence and

renumbering, we may assume that bxn ! bx�. Clear-

ly, bx� 2 ½��; ��. Set

fnðzÞ :¼ fðzþ bn � bxnÞ andð3:3Þ
gnðzÞ :¼ gðzþ bn � bxnÞ

for z 2 E, where

E :¼ fzjRe z 2 ð�2�; 2�Þ and Im z 2 ð�2�; 2�Þg:

By (3.2) and (3.3), we have

Sð�ðbxn; 	nÞ; gnÞ ! 1 as n!1:ð3:4Þ

Set 	�n :¼ 	n þ jbxn � bx�j. Clearly, �ðbxn; 	nÞ 	
�ðbx�; 	�nÞ and 	�n ! 0. By (3.4),

Sð�ðbx�; 	�nÞ; gnÞ ! 1 as n!1:ð3:5Þ

Now, we have for sufficiently large n,

(a1) all zeros of fn have multiplicity at least kþ 1

and all poles of fn are multiple in E,

(a2) f
ðkÞ
n ðzÞ 6¼ sinðzþ iy�Þ in E.

In fact, by (a), (b) and (3.3), (a1) holds for

sufficiently large n. Since f ðkÞðzÞ � sin z has at most

finitely many zeros, (a2) holds for sufficiently large

n by (3.3).

By Lemma 2.3, ffng is normal in E. Taking a

subsequence and renumbering, we may assume that

fn )
�
f� in E.

Subcase 1.1. f� 6� 0.

Clearly, there exists M0 > 0 such that

nð�ðbx�; 2Þ; 1=f�Þ < M0. By Hurwitz’ Theorem,

nð�ðbx�; 1Þ; 1=fnÞ < M0 for sufficiently large n.

Thus, nð�ðbx�; 1Þ; 1=gnÞ < M0 for sufficiently large

n. Let � 2 ð0; 1Þ such that sinðzþ iy�Þ 6¼ 0 in

�0ðbx�; �Þ. Thus, gn )
� f�

sinðzþiy�Þ in �0ðbx�; �Þ. By

Lemma 2.5, there exists M > 0 such that

Sð�ðbx�; �=4Þ; gnÞ < M for sufficiently large n. This

contradicts (3.5).

Subcase 1.2. f� � 0.

We see that for sufficiently large n,

0 6¼ f ðkÞn ðzÞ � sinðzþ iy�Þ ) � sinðzþ iy�Þ in E:

By Hurwitz’ Theorem, sinðzþ iy�Þ 6¼ 0 in E. Thus,

gnðzÞ ¼
fnðzÞ

sinðzþ iy�Þ )
f�ðzÞ

sinðzþ iy�Þ ¼ 0 in E:
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Clearly, g#
n ðzÞ ) 0 in E, and hence

Sð�ðbx�; 1Þ; gnÞ ¼ 1

�

ZZ
�ðbx�;1Þ½g

#
n ðzÞ�

2dxdy! 0:

This contradicts (3.5)

Case 2. y� ¼ �1.

We claim that there exists points tn such that

Im tn !1;
fðtnÞ
sin tn

! 0 and
f ðkÞðtnÞ
sin tn

!1:ð3:6Þ

Set

gnðzÞ :¼ gðzþ anÞ for z 2 �:ð3:7Þ

Since all zeros of gðzÞ have multiplicity at least

kþ 1 (except possibly finite many), we have for

sufficiently large n, all zeros of gn have multiplicity

at least kþ 1 in �. By (3.1), we have

g#
n ð0Þ ! 1 as n!1:ð3:8Þ

Thus, no subsequence of fgng is normal at 0. Using

Lemma 2.1 for � ¼ k� ð1=2Þ, there exist points

zn ! 0, positive numbers �n ! 0, and a subse-

quence of fgng (still denoted by fgng) such that

Gnð�Þ ¼
gnðzn þ �n�Þ
�
k�ð1=2Þ
n

)
�
Gð�Þ in C;

where G is a nonconstant meromorphic function in

C, all of whose zeros have multiplicity at least

kþ 1.

We claim that GðkÞð�Þ 6� 0. Otherwise, Gð�Þ ¼
ck�1�

k�1 þ ck�2�
k�2 þ 
 
 
 þ c0, where c0; c1; 
 
 
 ; ck�1

are constants. Thus, either G � 0, or all zeros of G

have multiplicity at most k� 1. A contradiction.

Let �0 be not a zero or pole of GðkÞð�Þ, and set

tn :¼ an þ zn þ �n�0. Noting that G
ðiÞ
n ð�0Þ ! GðkÞð�0Þ

as n!1, we see that

gðiÞðtnÞ ¼ gðiÞn ðzn þ �n�0Þ ¼ �k�i�ð1=2Þ
n GðiÞn ð�0Þ

! 0 for i ¼ 0; 1; 
 
 
 ; k� 1.

1 for i ¼ k.

�
Clearly, fðtnÞ

sin tn
¼ gðtnÞ ! 0. Since yn !1 and

jtn � anj ! 0, we have Im tn !1, and hence 1=2 <

j sinðk�iÞðtnÞ
sin tn

j < 2 for sufficiently large n. Thus we have

f ðkÞðtnÞ
sin tn

¼
ðgðzÞ sin zÞðkÞ

sin tn

����
z¼tn

¼

Xi¼k
i¼0

Ci
kg
ðiÞðzÞ sinðk�iÞðzÞ

sin tn

��������
z¼tn

¼
Xi¼k
i¼0

Ci
kg
ðiÞðtnÞ

sinðk�iÞ tn

sin tn
!1:

Without loss of generality, we may assume that

Im tn ! þ1. Set FnðzÞ :¼ fðzþtnÞ
sin tn

for z 2 �. Now, we

have for sufficiently large n,

(b1) all zeros of Fn have multiplicity at least kþ 1

and all poles of Fn are multiple in �,

(b2) F
ðkÞ
n ðzÞ 6¼ sinðzþtnÞ

sin tn
) cos z� i sin z in �.

In fact, (b1) holds by (a) and (b). Since f ðkÞðzÞ �
sin z has at most finitely many zeros, (b2) holds for

sufficiently large n.

By Lemma 2.3, fFng is normal in �. However

by (3.6), we have

Fnð0Þ ¼
fðtnÞ
sin tn

! 0 and F ðkÞn ð0Þ ¼
f ðkÞðtnÞ
sin tn

!1:

Hence, no subsequence of fFng is normal at z ¼ 0.

This is a contradiction.

4. Auxiliary results for the proof of The-

orem 1.2.

Lemma 4.1 ([12, Theorem 1.2]). Let k � 2
be an integer and f be a meromorphic function of

finite order in C. If f has infinitely many poles, then

fðkÞ has infinitely many zeros.

Lemma 4.2. Let f be a meromorphic func-

tion in C, let Rð6� 0Þ be a rational function, and let

QðzÞ ¼ �zm þ cm�1z
m�1 þ 
 
 
 þ c0, where m � 2 is

an integer and c0; c1; 
 
 
 ; cm�1 are constants. Sup-

pose that fðkÞðzÞ ¼ RðzÞ expðQðzÞÞ, where k � 2 be

an integer. Then for any given constant � 2 ð0; 3�
2mÞ

f ðk�1ÞðzÞ ¼ ð1þ rðzÞÞ
RðzÞ expðQðzÞÞ

Q0ðzÞ þ d0;

f ðk�2ÞðzÞ ¼ ð1þ sðzÞÞ
RðzÞ expðQðzÞÞ
½Q0ðzÞ�2

þ d1zþ d2

in V ð0; 0; 3�
2m � �Þ, where rðzÞ and sðzÞ are meromor-

phic in V ð0; 0; 3�
2m � �Þ and converge uniformly to 0

as z!1, d0, d1 and d2 are constants.

Remark. Lemma 4.2 is stated explicitly in

[3, pp. 523–528], so we omit the proof.

5. Proof of Theorem 1.2. We consider the

following two cases.

Case 1. f has infinitely many poles.

Clearly, fðzÞ � sinðz� k�=2Þ has infinitely

many poles. Thus by Lemma 4.1, f ðkÞðzÞ � sin z ¼
ðfðzÞ � sinðz� k�=2ÞÞðkÞ has infinitely many zeros.

Case 2. f has finitely many poles.

Suppose that, to the contrary, fðkÞðzÞ � sin z
has only finitely many zeros. Clearly, f ðkÞðzÞ � sin z

132 P. YANG, X. LIU and X. PANG [Vol. 91(A),



has finitely many poles, so we have

ðfðzÞ � sinðz� k�=2ÞÞðkÞ ¼ fðkÞðzÞ � sin zð5:1Þ
¼ T ðzÞeP ðzÞ;

where T ðzÞð6� 0Þ is a rational function and P ðzÞ is a

polynomial. By the condition (b) of Theorem 1.2,

P ðzÞ is a polynomial of degree � 2.

We claim that f has infinitely many zeros.

Otherwise, suppose that f has finitely many

zeros. Then fðzÞ ¼ T0ðzÞeP1ðzÞ and hence f ðkÞðzÞ ¼
T1ðzÞeP1ðzÞ, where T0ðzÞð6� 0Þ and T1ðzÞð6� 0Þ are

rational functions, P1ðzÞ is a polynomial. By (5.1),

T ðzÞeP ðzÞ þ sin z ¼ T1ðzÞeP1ðzÞ:ð5:2Þ

Since P ðzÞ is a polynomial of degree � 2, by (5.2),

P1ðzÞ must have the same degree and the leading

coefficient as P ðzÞ. We write (5.2) in the form

T ðzÞ þ sin z e�P ðzÞ ¼ T1ðzÞeP1ðzÞ�P ðzÞ:ð5:3Þ

By standard results in Nevanlinna theory and (5.3),

we have

�ðT ðzÞ þ sin z e�P ðzÞÞ ¼ �ðe�P ðzÞÞ ¼ degP ðzÞ
> degðP1ðzÞ � P ðzÞÞ ¼ �

�
T1ðzÞeP1ðzÞ�P ðzÞÞ:

This is a contradiction.

Set 
 :¼
ffiffiffiffiffi
�1
am

m

q
, where am is the leading coeffi-

cient of P ðzÞ. Substituting z ¼ 
� into (5.1), we

obtain that

ðgð�Þ � sinð
� � k�=2ÞÞðkÞð5:4Þ
¼ gðkÞð�Þ � 
k sin
� ¼ Rð�ÞeQð�Þ;

where gð�Þ ¼ fð
�Þ, Qð�Þ ¼ P ð
�Þ and Rð�Þ ¼

kT ð
�Þ. Thus Qð�Þ has the following form

Qð�Þ ¼ ��m þ cm�1�
m�1 þ 
 
 
 þ c0;

where m � 2 is an integer and c0; c1; 
 
 
 ; cm�1 are

constants.

Since f has infinitely many zeros, we can

assume that g has infinitely many zeros f�ng, and

all of them are of multiplicity at least kþ 1. Thus

we get

gð�nÞ ¼ g0ð�nÞ ¼ 
 
 
 ¼ gðkÞð�nÞ ¼ 0:ð5:5Þ

Let S be a subsequence of f�ng (denote it also by

f�ng) such that argð�nÞ converges to �. By (5.4) and

(5.5), we have for all n

gðkÞð�nÞ ¼ Rð�nÞ expðQð�nÞÞ þ 
k sin
�n ¼ 0:ð5:6Þ

If � 62
Sj¼m�1
j¼0 ½2�jm � �

2m ;
2�j
m þ �

2m�, then Rð�nÞeQð�nÞ þ

k sin
�n !1, which contradicts (5.6). Without

loss of generality, we may assume that � 2
½� �

2m ;
�

2m�.
By (5.4) and Lemma 4.2,

gðk�1Þð�nÞ ¼ ð1þ rð�nÞÞ
Rð�nÞ expðQð�nÞÞ

Q0ð�nÞ
ð5:7Þ

þ d1 � 
k�1 cos 
�n ¼ 0;

gðk�2Þð�nÞ ¼ ð1þ sð�nÞÞ
Rð�nÞ expðQð�nÞÞ

Q02ð�nÞ
ð5:8Þ

þ d2�n þ d3 � 
k�2 sin
�n ¼ 0;

where rð�Þ and sð�Þ are meromorphic in V ð0; 0; �mÞ
and converge uniformly to 0 as � !1, d1, d2 and d3

are constants. Eliminating sin
zn from (5.6) and

(5.8), we have for all n

Rð�nÞ expðQð�nÞÞ ¼ �

2ðd2�n þ d3ÞQ02ð�nÞ
Q02ð�nÞ þ 
2 þ tð�nÞ

;ð5:9Þ

where tð�Þ ¼ 
2sð�Þ. Clearly, tð�Þ are meromorphic

in V ð0; 0; �mÞ and converge uniformly to 0 as �!1.

Noting sin2 
�n þ cos2 
�n ¼ 1, we have by (5.6) and

(5.7),


2 ð1þ rð�nÞÞ
Rð�nÞ expðQð�nÞÞ

Q0ðznÞ
þ d1

� 	2

ð5:10Þ

þ ½Rð�nÞ expðQð�nÞÞ�2 ¼ 
2k

for all n. Eliminating Rð�nÞ expðQð�nÞÞ from (5.9)

and (5.10), we have for all n

½
ðd2�n þ d3ÞQ02ð�nÞ�2ð5:11Þ
þ ½
2ð1þ rð�nÞÞðd2�n þ d3ÞQ0ð�nÞ
� d1ðQ02ð�nÞ þ 
2 þ tð�nÞÞ�2

� 
2k�2½Q02ð�nÞ þ 
2 þ tð�nÞ�2 ¼ 0:

The coefficient of the highest power of �n in (5.11) is


2d2
2m

4, so we have d2 ¼ 0. Thus (5.11) has been

reduced into the following form

½
d3Q
02ð�nÞ�2 þ ½
2d3ð1þ rð�nÞÞQ0ð�nÞð5:12Þ

� d1ðQ02ð�nÞ þ 
2 þ tð�nÞÞ�2

� 
2k�2½Q02ð�nÞ þ 
2 þ tð�nÞ�2 ¼ 0:

The coefficient of the highest power of �n in (5.12) is

ðd2
1 þ 
2d2

3 � 
2k�2Þm4, so we have

d2
1 þ 
2d2

3 � 
2k�2 ¼ 0:ð5:13Þ

Thus we have for all n

� 2
2d1d3ð1þ rð�nÞÞQ03ð�nÞð5:14Þ
þ ½
4d2

3ð1þ rð�nÞÞ
2 þ 2d2

1ð
2 þ tð�nÞÞ

No. 9] Derivatives of meromorphic functions and sine function 133



� 2
2k�2ð
2 þ tð�nÞÞ�Q02ð�nÞ
� 2
2d1d3ð1þ rð�nÞÞð
2 þ tð�nÞÞQ0ð�nÞ
þ ðd2

1 � 
2k�2Þð
2 þ tð�nÞÞ2 ¼ 0:

The coefficient of the highest power of �n in (5.14) is

�2
2d1d3ð1þ rð�nÞÞ, so we have

d1d3ð1þ rð�nÞÞ ¼ 0 for all n:ð5:15Þ

Noting that d2 ¼ 0 and Rð�nÞ expðQð�nÞÞ 6¼ 0 for

sufficiently large n, we have d3 6¼ 0 by (5.9). Since

1þ rð�nÞ ! 1 as n! 0, we get d1 ¼ 0 by (5.15).

Thus (5.14) has been reduced into the following

form

½
4d2
3ð1þ rð�nÞÞ

2 � 2
2k�2ð
2 þ tð�nÞÞ�Q02ð�nÞð5:16Þ
� 
2k�2ð
2 þ tð�nÞÞ2 ¼ 0:

Clearly, we must have


4d2
3ð1þ rð�nÞÞ

2 � 2
2k�2ð
2 þ tð�nÞÞð5:17Þ
! 
4d2

3 � 2
2k ¼ 0:

Thus d2
3 ¼ 2
2k�4 and then d2

1 þ 
2d2
3 � 
2k�2 ¼


2k�2 6¼ 0, which contradicts (5.13).
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