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Abstract: We prove the Kodaira vanishing theorem for log-canonical and semi-log-

canonical pairs. We also give a relative vanishing theorem of Reid–Fukuda type for semi-log-

canonical pairs.
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1. Introduction. The main purpose of this

short paper is to establish:

Theorem 1.1 (Kodaira vanishing theorem for

semi-log-canonical pairs). Let ðX;�Þ be a projec-

tive semi-log-canonical pair and let L be an ample

Cartier divisor on X. Then HiðX;OXðKX þ LÞÞ ¼ 0
for every i > 0.

Theorem 1.1 is a naive generalization of the

Kodaira vanishing theorem for semi-log-canonical

pairs. As a special case of Theorem 1.1, we have:

Theorem 1.2 (Kodaira vanishing theorem for

log-canonical pairs). Let ðX;�Þ be a projective

log-canonical pair and let L be an ample Cartier

divisor on X. Then HiðX;OXðKX þ LÞÞ ¼ 0 for

every i > 0.

Precisely speaking, we prove the following

theorem in this paper. Theorem 1.3 is a relative

version of Theorem 1.1 and obviously contains

Theorem 1.1 as a special case.

Theorem 1.3 (Main theorem). Let ðX;�Þ
be a semi-log-canonical pair and let f : X ! Y be

a projective morphism between quasi-projective

varieties. Let L be an f-ample Cartier divisor on

X. Then Rif�OXðKX þ LÞ ¼ 0 for every i > 0.

Although Theorem 1.3 has not been stated

explicitly in the literature, it easily follows from

[7], [8], [12], and so on. In our framework, Theorem

1.1 can be seen as a generalization of Kollár’s

vanishing theorem by the theory of mixed Hodge

structures. The statement of Theorem 1.1 is a naive

generalization of the Kodaira vanishing theorem.

However, Theorem 1.1 is not a simple generaliza-

tion of the Kodaira vanishing theorem from the

Hodge-theoretic viewpoint.

We note the dual form of the Kodaira vanish-

ing theorem for Cohen–Macaulay projective semi-

log-canonical pairs.

Corollary 1.4 (cf. [17, Corollary 6.6]). Let

ðX;�Þ be a projective semi-log-canonical pair and

let L be an ample Cartier divisor on X. Assume that

X is Cohen–Macaulay. Then HiðX;OXð�LÞÞ ¼ 0
for every i < dimX.

Remark 1.5. The dual form of the Kodaira

vanishing theorem, that is, HiðX;OXð�LÞÞ ¼ 0 for

every ample Cartier divisor L and every i < dimX,

implies that X is Cohen–Macaulay (see, for exam-

ple, [16, Corollary 5.72]). Therefore, the assumption

that X is Cohen–Macaulay in Corollary 1.4 is

indispensable.

Remark 1.6. In [17, Corollary 6.6], Corol-

lary 1.4 was obtained for weakly semi-log-canonical

pairs (see [17, Definition 4.6]). Therefore, [17, Cor-

ollary 6.6] is stronger than Corollary 1.4. The argu-

ments in [17] depend on the theory of Du Bois

singularities. Our approach (see [3], [5], [7], [8], [9],

[11], [12], and so on) to various vanishing theorems

for reducible varieties uses the theory of mixed

Hodge structures for cohomology with compact

support and is different from [17].

Finally, we note that we can easily generalize

Theorem 1.3 as follows:

Theorem 1.7 (Main theorem II). Let ðX;�Þ
be a semi-log-canonical pair and let f : X ! Y be a

projective morphism between quasi-projective vari-

eties. Let L be a Cartier divisor on X such that L is

nef and log big over Y with respect to ðX;�Þ. Then

Rif�OXðKX þ LÞ ¼ 0 for every i > 0.

For the definition of nef and log big divisors

on semi-log-canonical pairs, see Definition 2.3.
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Theorem 1.7 is a relative vanishing theorem of

Reid–Fukuda type for semi-log-canonical pairs. It is

obvious that Theorem 1.1, Theorem 1.2, and Cor-

ollary 1.4 hold true under the weaker assumption

that L is nef and log big with respect to ðX;�Þ by

Theorem 1.7.

Throughout this paper, we will work over C,

the field of complex numbers. We will use the basic

definitions and the standard notation of the mini-

mal model program and semi-log-canonical pairs in

[6], [7], [12], and so on.

2. Preliminaries. In this section, we quick-

ly recall some basic definitions and results for semi-

log-canonical pairs for the reader’s convenience.

Throughout this paper, a variety means a reduced

separated scheme of finite type over C.

2.1 (R-divisors). Let D be an R-divisor on an

equidimensional variety X, that is, D is a finite

formal R-linear combination

D ¼
X
i

diDi

of irreducible reduced subschemes Di of codimen-

sion one. Note that Di 6¼ Dj for i 6¼ j and that di 2
R for every i. For every real number x, dxe is the

integer defined by x � dxe < xþ 1. We put dDe ¼P
iddieDi, D

<1 ¼
P

di<1 diDi, and D¼1 ¼
P

di¼1 Di.

We call D a boundary (resp. subboundary) R-divi-

sor if 0 � di � 1 (resp. di � 1) for every i.

Let us recall the definition of semi-log-canon-

ical pairs.

Definition 2.2 (Semi-log-canonical pairs).

Let X be an equidimensional variety that satisfies

Serre’s S2 condition and is normal crossing in

codimension one. Let � be an effective R-divisor

such that no irreducible components of � are

contained in the singular locus of X. The pair

ðX;�Þ is called a semi-log-canonical pair if

(1) KX þ� is R-Cartier, and

(2) ðX�;�Þ is log-canonical, where � : X� ! X is

the normalization and KX� þ� ¼ ��ðKX þ�Þ.
A subvariety W of X is called an slc stratum with

respect to ðX;�Þ if there exist a resolution of

singularities � : Z ! X� and a prime divisor E on Z

such that aðE;X�;�Þ ¼ �1 and � � �ðEÞ ¼W or if

W is an irreducible component of X.

For the basic definitions and properties of log-

canonical pairs, see [6]. For the details of semi-log-

canonical pairs, see [7]. We need the notion of nef

and log big divisors on semi-log-canonical pairs for

Theorem 1.7.

Definition 2.3 (Nef and log big divisors on

semi-log-canonical pairs). Let ðX;�Þ be a semi-

log-canonical pair and let f : X ! Y be a projective

morphism between quasi-projective varieties. Let L

be a Cartier divisor on X. Then L is nef and log big

over Y with respect to ðX;�Þ if L is f-nef and

OXðLÞjW is big over Y for every slc stratum W of

ðX;�Þ. We simply say that L is nef and log big with

respect to ðX;�Þ when Y ¼ Spec C.

Roughly speaking, in [7], we proved the follow-

ing theorem.

Theorem 2.4 (see [7, Theorem 1.2 and Re-

mark 1.5]). Let ðX;�Þ be a quasi-projective semi-

log-canonical pair. Then we can construct a smooth

quasi-projective variety M with dimM ¼ dimX þ 1,

a simple normal crossing divisor Z on M, a

subboundary R-divisor B on M, and a projective

surjective morphism h : Z ! X with the following

properties.

(1) B and Z have no common irreducible compo-

nents.

(2) SuppðZ þ BÞ is a simple normal crossing

divisor on M.

(3) KZ þ�Z �R h�ðKX þ�Þ such that �Z ¼ BjZ.

(4) h�OZðd��<1
Z eÞ ’ OX.

By the properties (1), (2), (3), and (4), ½X;KX þ��
has a quasi-log structure with only qlc singularities.

Furthermore, if the irreducible components of X

have no self-intersection in codimension one, then

we can make h : Z ! X birational.

For the details of Theorem 2.4, see [7]. In this

paper, we do not discuss quasi-log schemes. For

the theory of quasi-log schemes, see [5], [10], [12],

and so on.

Remark 2.5. The morphism h : ðZ;�ZÞ !
X in Theorem 2.4 is called a quasi-log resolution.

Note that the quasi-log structure of ½X;KX þ��
obtained in Theorem 2.4 is compatible with the

original semi-log-canonical structure of ðX;�Þ. For

the details, see [7]. We also note that we have to

know how to construct h : Z ! X in [7, Section 4]

for the proof of Theorem 1.3.

We note the notion of simple normal crossing

pairs. It is useful for our purposes in this paper.

Definition 2.6 (Simple normal crossing

pairs). Let Z be a simple normal crossing divisor

on a smooth variety M and let B be an R-divisor

on M such that SuppðBþ ZÞ is a simple normal

crossing divisor and that B and Z have no common
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irreducible components. We put �Z ¼ BjZ and

consider the pair ðZ;�ZÞ. We call ðZ;�ZÞ a globally

embedded simple normal crossing pair. A pair

ðY ;�Y Þ is called a simple normal crossing pair if

it is Zariski locally isomorphic to a globally

embedded simple normal crossing pair.

If ðX; 0Þ is a simple normal crossing pair, then

X is called a simple normal crossing variety. Let X

be a simple normal crossing variety and let D be a

Cartier divisor on X. If ðX;DÞ is a simple normal

crossing pair and D is reduced, then D is called a

simple normal crossing divisor on X.

Remark 2.7. Let X be a simple normal

crossing variety and let D be a simple normal

crossing divisor on X. Let D0 be a Weil divisor on X

such that 0 � D0 � D. Then D0 is not necessarily a

simple normal crossing divisor on X. However, if

we further assume that D0 is the support of some

Cartier divisor, then D0 is a simple normal crossing

divisor on X.

For the details of simple normal crossing pairs,

see [7, Definition 2.8], [8, Definition 2.6], [9, Def-

inition 2.6], [10, Definition 2.4], [12, 5.2. Simple nor-

mal crossing pairs], and so on. We note that a

simple normal crossing pair is called semi-snc in

[15, Definition 1.10] (see also [1, Definition 1.1])

and that a globally embedded simple normal cross-

ing pair is called an embedded semi-snc pair in

[15, Definition 1.10].

3. Proof of Theorem 1.3. In this section,

we prove Theorem 1.3 and discuss some related

results.

Let us start with an easy lemma. The following

lemma is more or less well-known to the experts.

Lemma 3.1 ([17, Lemma 3.15]). Let X be a

normal irreducible variety and let � be an effective

R-divisor on X such that ðX;�Þ is log-canonical.

Let � : Z ! X be a proper birational morphism from

a smooth variety Z such that E ¼ Excð�Þ and

Excð�Þ [ Supp f�1
� � are simple normal crossing

divisors on Z. Let S be an integral divisor on X

such that 0 � S � � and let T be the strict trans-

form of S. Then we have ��OZðKZ þ T þ EÞ ’
OXðKX þ SÞ.

We give a proof of Lemma 3.1 here for the

reader’s convenience. The following proof is in [17].

Proof. We choose KZ and KX satisfying

��KZ ¼ KX. It is obvious that ��OZðKZ þ T þ
EÞ � OXðKX þ SÞ since E is �-exceptional and

OXðKX þ SÞ satisfies Serre’s S2 condition. There-

fore, it is sufficient to prove that OXðKX þ SÞ �
��OZðKZ þ T þ EÞ. Note that we may assume that

� is an effective Q-divisor by perturbing the

coefficients of � slightly. Let U be any nonempty

Zariski open set of X. We will see that

�ðU;OXðKX þ SÞÞ � �ðU; ��OZðKZ þ T þ EÞÞ. We

take a nonzero rational function g of U such that

ððgÞ þKX þ SÞjU 	 0, that is, g 2 �ðU;OXðKX þ
SÞÞ, where ðgÞ is the principal divisor associated

to g. We assume that U ¼ X by shrinking X for

simplicity. Let a be a positive integer such that

aðKX þ�Þ is Cartier. We have ��ðaðKX þ�ÞÞ ¼
aKZ þ a�0 þ �, where �0 is the strict transform of

� and � is a �-exceptional integral divisor on Z.

By assumption, we have 0 � ðgÞ þKX þ S � ðgÞ þ
KX þ�. Then we obtain that

0 � ð��gaÞ þ ��ðaKX þ a�Þ
� a ð��gÞ þKZ þ�0 þ Eð Þ

since � � aE. Thus we obtain ð��gÞ þKZ þ �0 þ
E 	 0.

Claim. ð��gÞ þKZ þ T þ E 	 0.

Proof of Claim. By construction,

ð��gÞ þKZ þ T þ E ¼ ��1
� ðgÞ þKX þ Sð Þ þ F þ E;

where every irreducible component of F þ E is

�-exceptional. We also have

ð��gÞ þKZ þ T þ E
¼ ð��gÞ þKZ þ�0 þ E � ð�0 � T Þ;

where �0 � T is effective and no irreducible compo-

nents of �0 � T are �-exceptional. Note that

��1
� ððgÞ þKX þ SÞ 	 0 and ð��gÞ þKZ þ�0 þ E 	

0. Therefore, we have ð��gÞ þKZ þ T þ E 	 0. �

This means that �ðU;OXðKX þ SÞÞ �
�ðU; ��OZðKZ þ T þ EÞÞ for any nonempty Zariski

open set U . Thus, we have OXðKX þ SÞ ¼
��OZðKZ þ T þ EÞ. �

We need the following remark for the proof of

Theorem 1.7 in Section 4.

Remark 3.2. In Lemma 3.1, we put E0 ¼P
Ei where Ei’s are the �-exceptional divisors with

aðEi;X;�Þ ¼ �1. Then we see that ��OZðKZ þ T þ
E0Þ ’ OXðKX þ SÞ by the proof of Lemma 3.1.

Although Theorem 1.2 is a special case of

Theorem 1.1 and Theorem 1.3, we give a simple

proof of Theorem 1.2 for the reader’s convenience.

For this purpose, let us recall an easy generalization

of Kollár’s vanishing theorem.

Theorem 3.3 ([2, Theorem 2.6]). Let f :
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V !W be a morphism from a smooth projective

variety V onto a projective variety W . Let D be a

simple normal crossing divisor on V . Let H be an

ample Cartier divisor on W . Then HiðW;OW ðHÞ 

Rjf�OV ðKV þDÞÞ ¼ 0 for i > 0 and j 	 0.

For the proof, see [2, Theorem 2.6] (see also [4],

[6, Sections 5 and 6], and so on). If D ¼ 0 in

Theorem 3.3, then Theorem 3.3 is nothing but

Kollár’s vanishing theorem. For more general

results, see [4], [6], and so on (see also Theorem 3.7

below, [8], [12, Chapter 5], and so on, for vanishing

theorems for reducible varieties).

Let us start the proof of Theorem 1.2 (see

[5, Corollary 2.9] when � ¼ 0).

Proof of Theorem 1.2. We take a projective

birational morphism � : Z ! X from a smooth

projective variety Z such that E ¼ Excð�Þ and

Excð�Þ [ Supp��1
� � are simple normal crossing

divisors on Z. By Theorem 3.3, we obtain that

HiðX;OXðLÞ 
 ��OZðKZ þ EÞÞ ¼ 0 for every i > 0.

By Lemma 3.1, ��OZðKZ þ EÞ ’ OXðKXÞ. There-

fore, we have HiðX;OXðKX þ LÞÞ ¼ 0 for every

i > 0. �

The following key proposition for the proof of

Theorem 1.3 is a generalization of Lemma 3.1.

Proposition 3.4. Let ðX;�Þ be a quasi-pro-

jective semi-log-canonical pair such that the irredu-

cible components of X have no self-intersection in

codimension one. Then there exist a birational

quasi-log resolution h : ðZ;�ZÞ ! X from a globally

embedded simple normal crossing pair ðZ;�ZÞ and

a simple normal crossing divisor E on Z such that

h�OZðKZ þ EÞ ’ OXðKXÞ.
Proof. Since X is quasi-projective and the

irreducible components of X have no self-intersec-

tion in codimension one, we can construct a bira-

tional quasi-log resolution h : ðZ;�ZÞ ! X by

[7, Theorem 1.2 and Remark 1.5] (see Theorem

2.4), where ðZ;�ZÞ is a globally embedded simple

normal crossing pair and the ambient space M of

ðZ;�ZÞ is a smooth quasi-projective variety. By the

construction of h : Z ! X in [7, Section 4], SingZ,

the singular locus of Z, maps birationally onto the

closure of SingXsnc2, where Xsnc2 is the open subset

of X which has only smooth points and simple

normal crossing points of multiplicity � 2. We put

E ¼ ExcðhÞ. Note that E contains no irreducible

components of SingZ by construction. If necessary,

by taking a blow-up of Z along E and a suitable

birational modification (see [1, Theorem 1.4]), we

may assume that E is the support of some Cartier

divisor, which is pure codimension one in Z. By

taking a suitable birational modification again

(see [1, Theorem 1.4]), we finally may assume that

E [ Supph�1
� � and E are simple normal crossing

divisors on Z (see Remark 2.7). In particular,

ðZ;EÞ is a simple normal crossing pair (see Defi-

nition 2.6). Note that [10, Section 8] may help us

understand how to make ðZ;�ZÞ a globally embed-

ded simple normal crossing pair. We may assume

that the support of KZ does not contain any

irreducible components of SingZ since Z is quasi-

projective. We may also assume that h�KZ ¼ KX.

Then we have h�OZðKZ þ EÞ � OXðKXÞ since

OXðKXÞ satisfies Serre’s S2 condition and E is

h-exceptional. We fix an embedding OZðKZ þ EÞ �
KZ, where KZ is the sheaf of total quotient rings of

OZ . Note that h : Z n E ! X n hðEÞ is an isomor-

phism. We put U ¼ X n hðEÞ and consider the

natural open immersion � : U ,! X. Then we have

an embedding OXðKXÞ � KX, where KX is the sheaf

of total quotient rings of OX, by OXðKXÞ ¼
��ðh�OZðKZ þ EÞjUÞ � ��KU ¼ KXð¼ h�KZÞ. Let

�X : X� ! X be the normalization and let CX� be

the divisor on X� defined by the conductor ideal

condX of X (see, for example, [7, Definition 2.1]).

Then we have OXðKXÞ � ð�XÞ�OX� ðKX� þ CX� Þ. We

put KX� þ� ¼ ��XðKX þ�Þ. Then 0 � CX� � �
and ðX�;�Þ is log-canonical by definition. Let

�Z : Z� ! Z be the normalization. Thus we have

KZ� þ CZ� ¼ ��ZKZ, where CZ� is the simple normal

crossing divisor on Z� defined by the conductor

ideal condZ of Z. Now we have the following

commutative diagram.

Xν

νX

Zν

νZ

hν

ϕ

X Z
h

By Lemma 3.1 and its proof, we see that

OX� ðKX� þ CX� Þ ¼ h��OZ� ðKZ� þ CZ� þ ��ZEÞ. There-

fore, we obtain

OXðKXÞ � ’�OZ� ðKZ� þ CZ� þ ��ZEÞ(€)

¼ ’�OZ� ð��ZðKZ þ EÞÞ:

We pick s 2 �ðV ;OXðKXÞÞ, where V is a Zariski

open set of X. We can see h�s as an element of

�ðh�1ðV Þ;KZÞ. It is obvious that

h�sjh�1ðV ÞnE 2 �ðh�1ðV Þ n E;OZðKZ þ EÞÞ:
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Note that h : Z n E ! X n hðEÞ is an isomorphism.

We also note that �Z is an isomorphism over the

generic point of any irreducible component of E.

Therefore, by the inclusion (€), we see that h�s is

contained in �ðh�1ðV Þ;OZðKZ þ EÞÞ. This implies

that OXðKXÞ � h�OZðKZ þ EÞ. Thus, we obtain

OXðKXÞ ¼ h�OZðKZ þ EÞ since h�OZðKZ þ EÞ �
OXðKXÞ. �

Remark 3.5. For the details of KZ and KX,

we recommend the reader to see the paper-back

edition of [18, Section 7.1] published in 2006 (see

also [14]). Note that the sheaf of total quotient rings

is called the sheaf of stalks of meromorphic func-

tions in [18].

Remark 3.6. As in Remark 3.2, in Proposi-

tion 3.4, we put E0 ¼
P
Ei where Ei’s are the

h-exceptional divisors with the discrepancy coeffi-

cient aðEi;X;�Þð¼ aðEi;X
�;�ÞÞ ¼ �1. By the usu-

al perturbation technique, we may assume that

KX þ� is Q-Cartier. Then �Z is also Q-Cartier.

Thus, we see that �¼1
Z is a simple normal crossing

divisor on Z. If necessary, by taking some blow-ups

of Z, we may assume that h�1
� �¼1 is disjoint from

SingZ. In this case, E0 ¼ �¼1
Z � h�1

� �¼1 is a simple

normal crossing divisor on Z. Moreover, we have

h�OZðKZ þ E0Þ ’ OXðKXÞ in Proposition 3.4. This

easily follows from Remark 3.2 and the proof of

Proposition 3.4.

For the proof of Theorem 1.3, we use the

following vanishing theorem, which is obviously a

generalization of Theorem 3.3. For the proof, see

[8, Theorem 1.1] (see also [12, Chapter 5]).

Theorem 3.7 ([3], [8, Theorem 1.1], [12], and

so on). Let ðZ;CÞ be a simple normal crossing pair

such that C is a boundary R-divisor on Z. Let h :

Z ! X be a proper morphism to a variety X and let

f : X ! Y be a projective morphism to a variety Y .

Let D be a Cartier divisor on Z such that D�
ðKZ þ CÞ �R h�H for some f-ample R-divisor H on

X. Then we have Rif�R
jh�OZðDÞ ¼ 0 for every i > 0

and j 	 0.

Let us start the proof of Theorem 1.3.

Proof of Theorem 1.3. We take a natural fi-

nite double cover p : eX ! X due to Kollár (see

[7, Lemma 5.1]), which is étale in codimension one.

Since KeX þ e� ¼ p�ðKX þ�Þ is semi-log-canonical

and OXðKXÞ is a direct summand of p�OeXðKeXÞ, we

may assume that the irreducible components of X

have no self-intersection in codimension one by

replacing ðX;�Þ with ð eX; e�Þ. By Proposition 3.4,

we can take a birational quasi-log resolution h :

ðZ;�ZÞ ! X from a globally embedded simple

normal crossing pair ðZ;�ZÞ such that there exists

a simple normal crossing divisor E on Z satisfying

h�OZðKZ þ EÞ ’ OXðKXÞ. Note that KZ þ E þ
h�L� ðKZ þ EÞ ¼ h�L. Therefore, we obtain that

Rif�OXðKX þ LÞ
’ Rif� h�OZðKZ þ EÞ 
OXðLÞð Þ ¼ 0

for every i > 0 by Theorem 3.7. �

Remark 3.8. If � ¼ 0 in Theorem 1.3, then

Theorem 1.3 follows from [7, Theorem 1.7]. Note

that the formulation of [7, Theorem 1.7] seems to be

more useful for some applications than the formu-

lation of Theorem 1.3.

Let ðX;�Þ be a semi-log-canonical Fano vari-

ety, that is, ðX;�Þ is a projective semi-log-canon-

ical pair such that �ðKX þ�Þ is ample (see

[10, Section 6]). Then HiðX;OXÞ ¼ 0 for every i >

0 by [7, Theorem 1.7]. Unfortunately, this vanishing

result for semi-log-canonical Fano varieties does not

follow from Theorem 1.1. See also Remark 3.10

below.

Let us prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Theorem 1.1 is a special

case of Theorem 1.3. By putting Y ¼ Spec C in

Theorem 1.3, we obtain Theorem 1.1. �

Proof of Theorem 1.2. If ðX;�Þ is log-canon-

ical, then ðX;�Þ is semi-log-canonical. Therefore,

Theorem 1.2 is contained in Theorem 1.1. �

As a direct easy application of Theorem 1.1, we

have:

Corollary 3.9. Let X be a stable variety,

that is, X is a projective semi-log-canonical variety

such that KX is ample. Then HiðX;OXðð1þ
maÞKXÞÞ ¼ 0 for every i > 0 and every positive

integer m, where a is a positive integer such that

aKX is Cartier.

Remark 3.10. Let X be a stable variety as

in Corollary 3.9. By [7, Corollary 1.9], we have

already known that HiðX;OXðmKXÞÞ ¼ 0 for every

i > 0 and every positive integer m 	 2. This is an

easy consequence of [7, Theorem 1.7].

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4. Since X is Cohen–

Macaulay, we see that the vector space

HiðX;OXð�LÞÞ is dual to HdimX�iðX;OXðKX þ
LÞÞ by Serre duality. Therefore, we have

HiðX;OXð�LÞÞ ¼ 0 for every i < dimX by Theo-

rem 1.1. �
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Remark 3.11. The approach to the Kodaira

vanishing theorem explained in [17, Section 6] can

not be directly applied to non-Cohen–Macaulay

varieties. The above proof of Corollary 1.4 is differ-

ent from the strategy in [17, Section 6].

4. Proof of Theorem 1.7. In this final

section, we just explain how to modify the proof

of Theorem 1.3 in order to obtain Theorem 1.7. We

do not explain a generalization of Theorem 3.7 for

nef and log big divisors (see [12, Theorem 5.7.3]),

which is a main ingredient of the proof of Theo-

rem 1.7 below.

Let us start the proof of Theorem 1.7.

Proof of Theorem 1.7. Let p : eX ! X be a

natural finite double cover as in the proof of

Theorem 1.3. Note that p�L is nef and log big over

Y with respect to ð eX; e�Þ. Therefore, we may assume

that the irreducible components of X have no self-

intersection in codimension one by replacing ðX;�Þ
with ð eX; e�Þ. We take a birational quasi-log reso-

lution h : ðZ;�ZÞ ! X as in Proposition 3.4. Let E0

be the divisor defined in Remark 3.5. In this case,

L is nef and log big over Y with respect to h :

ðZ;E0Þ ! X (see [12, Definition 5.7.1]). Then we

obtain that

Rif�OXðKX þ LÞ
’ Rif� h�OZðKZ þ E0Þ 
OXðLÞð Þ ¼ 0

for every i > 0 by [12, Theorem 5.7.3] (see also

[3, Theorem 2.47 (ii)] and [13, Theorem 6.3 (ii)]).

Note that KZ þ E0 þ h�L� ðKZ þ E0Þ ¼ h�L and

that the h-image of any stratum of ðZ;E0Þ is an

slc stratum of ðX;�Þ by construction (see Defini-

tion 2.2). �

Remark 4.1. For the details of the vanish-

ing theorem for nef and log big divisors and some

related topics, see [12, 5.7. Vanishing theorems of

Reid–Fukuda type]. Note that [12] is a completely

revised and expanded version of the author’s

unpublished manuscript [3].

Remark 4.2. We strongly recommend the

reader to see Theorem 1.10, Theorem 1.11, and

Theorem 1.12 in [7]. They are useful and powerful

vanishing theorems for semi-log-canonical pairs

related to Theorem 1.7.
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