Some problems of hypergeometric integrals associated with hypersphere arrangement

By Kazuhiko Aomoto*) and Yoshinori Machida**)
(Communicated by Masaki Kashiwara, M.J.A., May 12, 2015)

Abstract

The n dimensional hypergeometric integrals associated with a hypersphere arrangement S are formulated by the pairing of n dimensional twisted cohomology $H_{\nabla}^{n}(X, \Omega(* S))$ and its dual. Under the condition of general position there are stated some results and conjectures which concern a representation of the standard form by a special basis of the twisted cohomology, the variational formula of the corresponding integral in terms of special invariant 1-forms using Calyley-Menger minor determinants, a connection relation of the unique twisted n-cycle identified with the unbounded chamber to a special basis of twisted n-cycles identified with bounded chambers. General conjectures are presented under a much weaker assumption.

Key words: Hypergeometric integral; hypersphere arrangement; twisted rational de Rham cohomology; Cayley-Menger determinant; contiguity relation; Gauss-Manin connection.

1. Preliminary. Hypersphere arrangements are an interesting subject in analysis and geometry for a long time (see [16] for example). The purpose of this note is to present some problems and results in relation to hypergeometric integrals. The details in case where the dimension $n \leq 3$, the number $m=$ $n+1$ of hyperspheres will be presented in a forthcoming paper.

Let \mathcal{A} be an arrangement of $n-1$ dimensional hyperspheres in the complex n dimensional affine space \mathbf{C}^{n} :

$$
S_{j}: f_{j}(x)=Q(x)+2\left(\alpha_{j}, x\right)+\alpha_{j 0}=0 \quad(1 \leq j \leq m),
$$

where

$$
\begin{aligned}
& Q(x)=\sum_{\nu=1}^{n} x_{\nu}^{2}, \quad\left(\alpha_{j}, x\right)=\sum_{\nu=1}^{n} \alpha_{j \nu} x_{\nu}, \\
& \alpha_{j}=\left(\alpha_{j 1}, \ldots, \alpha_{j n}\right) \in \mathbf{R}^{n}, \alpha_{j 0} \in \mathbf{R} .
\end{aligned}
$$

S_{j} represents the $n-1$ dimensional (complex) hypersphere with center $O_{j}=-\alpha_{j}$ and with radius r_{j} such that $r_{j}^{2}=-\alpha_{j 0}+Q\left(\alpha_{j}\right)$. The distance $\rho_{i j}$ between O_{i} and O_{j} is given by $\rho_{i j}^{2}=Q\left(\alpha_{i}-\alpha_{j}\right)$.

Let X be the complement of the union $S=\bigcup_{j=1}^{m} S_{j} \quad$ in $\quad \mathbf{C}^{n}$. Denote by $\Omega(X, * S)=$

[^0]$\oplus_{p=0}^{n} \Omega^{p}(X, * S)$ the space of rational differential forms on \mathbf{C}^{n} which are holomorphic in X.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbf{C}^{m}$ be a system of m tuple of exponents such that

$$
\Phi(x)=\prod_{j=1}^{m} f_{j}(x)^{\lambda_{j}} \quad\left(\lambda_{j} \in \mathbf{C}\right)
$$

defines a multiplicative meromorphic function on \mathbf{C}^{n}. The covariant differentiation associated with $\Phi(x)$ is defined as follows:

$$
\nabla \psi=d \psi+d \log \Phi \wedge \psi \quad(\psi \in \Omega(X, * S))
$$

$H_{\nabla}^{*}(X, \Omega(* S))$ denotes the corresponding rational de Rham cohomology. \mathcal{L} and \mathcal{L}^{*} denote the local system and its dual on X attached to $\Phi(x)$.

Let ϖ be the standard n-form

$$
\varpi=d x_{1} \wedge \cdots \wedge d x_{n}
$$

Take a twisted cycle $\mathfrak{z} \in H_{n}\left(X, \mathcal{L}^{*}\right)$ and consider the integral of $\varphi \varpi \in H_{\nabla}^{n}\left(X, \Omega^{n}(* S)\right)$,

$$
\langle\varphi, \mathfrak{z}\rangle=\int_{\mathfrak{z}} \Phi(x) \varphi \varpi,
$$

which defines the perfect pairing between $H_{\nabla}^{n}\left(X, \Omega^{n}(* S)\right)$ and $H_{n}\left(X, \mathcal{L}^{*}\right)$. This fact is due to A. Grothendieck and P. Deligne (see [10]).

Differential and difference structures related to $\langle\varphi, \mathfrak{z}\rangle$ can be described in terms of invariants with respect to the isometry group for the arrangement of hyperspheres (see [3-6,9] for general treatment).

Notation. Denote by $\varepsilon_{j}(1 \leq j \leq m)$ the standard basis of \mathbf{C}^{m} so that $\lambda=\sum_{j=1}^{m} \lambda_{j} \varepsilon_{j}$.

Denote by $[1, m]$ the set of indices $1,2, \ldots, m$. For $J=\left\{j_{1}, \ldots, j_{p}\right\} \subset[1, m]$, we denote by $|J|=p$ the size of J, by $\partial_{\nu} J \quad(1 \leq \nu \leq p)$ the subset $\left\{j_{1}, \ldots, j_{\nu-1}, j_{\nu+1}, \ldots, j_{p}\right\} . \quad I^{c}=[1, m]-I$ denotes the complement of I in $[1, m]$. We say $J \subset[1, m]$ to be "admissible" if $1 \leq|J| \leq n+1$. The family of all admissible sets is denoted by \mathcal{B}.

Definition 1. Let $B=\left(b_{i j}\right)_{1 \leq i, j \leq m+2}$ be the symmetric matrix of degree $m+2$ whose components of the i th row and the j th column are

$$
\begin{aligned}
b_{j j} & =0, b_{1 j}=1(2 \leq j \leq m+2) \\
b_{2 j} & =r_{j-2}^{2}(3 \leq j \leq m+2) \\
b_{i j} & =\rho_{i-2 j-2}^{2}(3 \leq i<j \leq m+2)
\end{aligned}
$$

This is called a Cayley-Menger matrix associated with the arrangement \mathcal{A}. Cayley-Menger determinants are defined to be minors including the first row and the first column (see $[11,12]$). Namely for $I=\left\{i_{1}, i_{2}, \ldots, i_{p}\right\}, J=\left\{j_{1}, j_{2}, \ldots, j_{p}\right\} \subset[1, m]$,

$$
\begin{aligned}
& B\left(\begin{array}{ll}
0 & I \\
0 & J
\end{array}\right)=B\left(\begin{array}{cccc}
0 & i_{1} & \cdots i_{p} \\
0 & j_{1} & \cdots j_{p}
\end{array}\right) \\
& =\left|\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & \rho_{i_{1} j_{1}}^{2} & \ldots & \rho_{i_{1} j_{p}}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \rho_{i_{p} j_{1}}^{2} & \ldots & \rho_{i_{p} j_{p}}^{2}
\end{array}\right|, \\
& B\left(\begin{array}{ccc}
0 & \star & \partial_{1} I \\
0 & j_{1} & \partial_{1} J
\end{array}\right)=B\left(\begin{array}{cccc}
0 & \star & i_{2} & \cdots i_{p} \\
0 & j_{1} & j_{2} & \cdots \\
j_{p}
\end{array}\right) \\
& =\left|\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & r_{j_{1}}^{2} & \ldots & r_{j_{p}}^{2} \\
1 & \rho_{i_{2} j_{1}}^{2} & \ldots & \rho_{i_{2} j_{p}}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \rho_{i_{p} j_{1}}^{2} & \ldots & \rho_{i_{p} j_{p}}^{2}
\end{array}\right|, \\
& B\left(\begin{array}{ccc}
0 & \star & \partial_{1} I \\
0 & \star & \partial_{1} J
\end{array}\right)=B\left(\begin{array}{ccccc}
0 & \star & i_{2} & \cdots i_{p} \\
0 & \star & j_{2} & \cdots & j_{p}
\end{array}\right) \\
& =\left|\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & r_{j_{2}}^{2} & \ldots & r_{j_{p}}^{2} \\
1 & r_{i_{2}}^{2} & \rho_{i_{2} j_{2}}^{2} & \ldots & \rho_{i_{2} j_{p}}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & r_{i_{p}}^{2} & \rho_{i_{p} j_{2}}^{2} & \ldots & \rho_{i_{p} j_{p}}^{2}
\end{array}\right| .
\end{aligned}
$$

$B\left(\begin{array}{ll}0 & I \\ 0 & J\end{array}\right)$ will be abbreviated by $B(0 I)$ if $I=J$, in the same way.
$B\left(\begin{array}{lll}0 & \star & \partial_{1} I \\ 0 & \star & \partial_{1} J\end{array}\right)$ will be abbreviated by $B\left(0 \star \partial_{1} I\right)$ if $\partial_{1} I=\partial_{1} J$.
For example we have

$$
\begin{aligned}
& B\left(\begin{array}{ccc}
0 & i & j \\
0 & k & l
\end{array}\right)=\rho_{i l}^{2}+\rho_{j k}^{2}-\rho_{i k}^{2}-\rho_{j l}^{2}, \\
& B\left(\begin{array}{lll}
0 & \star & j \\
0 & k & l
\end{array}\right)=r_{l}^{2}+\rho_{j k}^{2}-r_{k}^{2}-\rho_{j l}^{2}, \\
& B\left(\begin{array}{lll}
0 & \star & j \\
0 & \star & l
\end{array}\right)=r_{j}^{2}+r_{l}^{2}-\rho_{j l}^{2}, \\
& B(0 i j)=2 \rho_{i j}^{2}, B(0 \star j)=2 r_{j}^{2} .
\end{aligned}
$$

We impose the following two conditions
$(\mathcal{H} 1): \quad$ (i) $(-1)^{p} B(0 I)>0$
(for any admissible $I, 1 \leq p \leq n+1$),
(ii) $(-1)^{p-1} B(0 \star I)>0$
(for any admissible $I, 1 \leq p \leq n+1$),
where $I=\left\{i_{1}, \ldots, i_{p}\right\}$.
The singularity defined by the equations $B(0 I)=0$ or $B(0 \star I)=0$ is nothing else than Landau singularity associated with the integral $\langle\varphi, \mathfrak{z}\rangle$ (see [15]).
$(\mathcal{H} 2): \quad \lambda_{j}$ are all positive.
Lemma 2. Suppose that λ satisfies the conditions, for $J=\left\{j_{1}, \ldots, j_{r}\right\} \subset[1, m]$,

$$
\begin{aligned}
\lambda_{j_{1}}+\cdots+\lambda_{j_{r}} \notin \mathbf{Z}, & (1 \leq r \leq n), \\
-2 \lambda_{\infty}+\lambda_{j_{1}}+\cdots+\lambda_{j_{r}} \notin \mathbf{Z}, & (0 \leq r \leq n-1) .
\end{aligned}
$$

Then the following fact holds:
(i) $H_{\nabla}^{p}(X, \Omega(* S)) \cong\{0\} \quad(0 \leq p \leq n-1)$,
(ii) $\operatorname{dim} H_{\nabla}^{n}(X, \Omega(* S))=|E u(X)|$

$$
=\sum_{\nu=1}^{n}\binom{m}{\nu}+\binom{m-1}{n}
$$

where $E u(X)$ represents the Euler number of X. For the proof see $[1,7,8]$.
2. Statement of problems. From now on, we assume that $m=n+1$.

Denote by $K_{j}: \mathbf{R}^{n} \cap\left\{f_{j}(x) \leq 0\right\}$ the closure of the inside of the real part $\Re S_{j}=S_{j} \cap \mathbf{R}^{n}$ in \mathbf{R}^{n}.

Under the condition $(\mathcal{H} 1)$, the number of bounded connected components of $\mathbf{R}^{n}-\bigcup_{j=1}^{m} S_{j}$ is equal to $|E u(X)|=2^{n+1}-1$. It is also equal to $\operatorname{dim} H_{n}\left(X, \mathcal{L}^{*}\right)$. The twisted cycles corresponding
to these bounded chambers constitute a basis of $H_{n}\left(X, \mathcal{L}^{*}\right)$.

More precisely,
Lemma 3. For every admissible set I with $|I|=n$, the intersection $\bigcap_{i \in I} S_{i}$ consists of two different points. Moreover for every admissible $I \in \mathcal{B}$ we see

$$
K_{I}=\text { the closure of }\left\{\bigcap_{i \in I} K_{i}-\bigcup_{j \in I^{c}} K_{j}\right\} \neq \emptyset
$$

has an inner point. Each K_{I} can be identified with a twisted cycle \mathfrak{z}_{I} representing a homology class in $H_{n}\left(X, \mathcal{L}^{*}\right)$. The twisted cycles $\mathfrak{z}_{I}(I \in \mathcal{B})$ form a basis of $H_{n}\left(X, \mathcal{L}^{*}\right)$.
For the proof see $[7,8]$.
On the other hand,
Lemma 4. $H_{\nabla}^{n}(X, \Omega(* S))$ is spanned by

$$
F_{I}:=\frac{\varpi}{f_{i_{1}} \cdots f_{i_{p}}}(1 \leq p \leq n+1) \quad(I \in \mathcal{B})
$$

or equivalently by

$$
\begin{aligned}
W_{0}(I) \varpi:= & -\sum_{\nu=1}^{p} B\left(\begin{array}{ccc}
0 & \star & \partial_{\nu} I \\
0 & i_{\nu} & \partial_{\nu} I
\end{array}\right) F_{\partial_{\nu} I} \\
& +B(0 \star I) F_{I} \quad(I \in \mathcal{B}) .
\end{aligned}
$$

$(\mathcal{H} 1)$ assures that $\left\{F_{I}(I \in \mathcal{B})\right\}$ or $\left\{W_{0}(I) \varpi(I \in \mathcal{B})\right\}$ constitutes a basis of $H_{\nabla}^{n}(X, \Omega(* S))$. The former will be called "of first kind" and the latter will be called "of second kind". Both are related to each other by a triangular matrix. See also $[7,8]$.

Using the basis of the second kind, we give the following conjecture.

Conjecture I. ϖ is represented cohomologically in terms of the basis of second kind
(1) $\left(2 \lambda_{\infty}+n\right) \varpi \sim$

$$
\sum_{p=1}^{n+1} \sum_{I \in \mathcal{B},|I|=p}(-1)^{p} \frac{\prod_{j \in I} \lambda_{j}}{\prod_{\nu=1}^{p-1}\left(\lambda_{\infty}+n-\nu\right)} W_{0}(I) \varpi
$$

in $H_{\nabla}^{n}(X, \Omega \cdot(* S))(\sim$ means "cohomologous").
$\langle\varphi, \mathfrak{z}\rangle$ is an analytic function of the parameters $\alpha_{j \nu}$. The total differentiation d_{B} of $\langle\varphi, \mathfrak{z}\rangle$ with respect to the parameters $\alpha_{j \nu}$ has the expression

$$
d_{B}\langle\varphi, \mathfrak{z}\rangle=\int_{\mathfrak{z}} \Phi(x) \nabla_{B}(\varphi \varpi)
$$

where

$$
\begin{equation*}
\nabla_{B}(\varphi \varpi)=\left(d_{B} \varphi+d_{B} \log \Phi \varphi\right) \varpi \tag{2}
\end{equation*}
$$

In order to express the RHS of (2), we
introduce the following differential 1-forms θ_{J} $(J \in \mathcal{B})$:

Definition 5.

$$
\left.\begin{array}{rl}
\theta_{j} & =-\frac{1}{2} d \log \left(r_{j}^{2}\right), \\
\theta_{j k} & =\frac{1}{2} d \log \rho_{j k}^{2}, \\
\theta_{j k l} & = \\
& -\frac{1}{2}\left\{\frac{B\left(\begin{array}{llll}
0 & j & k & l \\
0 & \star & k & l
\end{array}\right)}{B(0 j k l)} d \log \rho_{k l}^{2}\right. \\
& +\frac{B\left(\begin{array}{llll}
0 & k & j & l \\
0 & \star & j & l
\end{array}\right)}{B(0 j k l)} \\
& d \log \rho_{j l}^{2}+\frac{B\left(\begin{array}{lll}
0 & l & j \\
0 & \star & j
\end{array}\right.}{B(0 j k l)} d \log \rho_{j k}^{2}
\end{array}\right\} .
$$

More generally for $J=\left\{j_{1}, \ldots, j_{p}\right\} \in \mathcal{B} \quad(2 \leq p \leq$ $n+1$),

$$
\begin{aligned}
& \theta_{J}:=\frac{(-1)^{p}}{2} \sum_{\{L\}=\{J\} ; l_{1}<l_{2}} d \log \rho_{l_{1} l_{2}}^{2} . \\
& \frac{B\left(\begin{array}{cccc}
0 & \star & l_{1} & l_{2} \\
0 & l_{3} & l_{1} & l_{2}
\end{array}\right) B\left(\begin{array}{ccccc}
0 & \star & l_{1} & l_{2} & l_{3} \\
0 & l_{4} & l_{1} & l_{2} & l_{3}
\end{array}\right)}{\prod_{\nu=3}^{p} B\left(0 l_{1} l_{2} l_{3} \cdots l_{\nu}\right)} \\
& \cdots B\left(\begin{array}{ccccccc}
0 & \star & l_{1} & l_{2} & l_{3} & \cdots & l_{p-1} \\
0 & l_{p} & l_{1} & l_{2} & l_{3} & \cdots & l_{p-1}
\end{array}\right),
\end{aligned}
$$

where $L=\left\{l_{1}, l_{2}, \ldots, l_{p}\right\}$ run over the set of sequences such that L coincides with J as a set in $[1, m]$ and satisfies $l_{1}<l_{2}<l_{3}<l_{4}<\ldots<l_{p}$.

The second conjecture can be stated in the following form (Gauss-Manin connection):

Conjecture II.

(3) $\nabla_{B} \varpi \sim \sum_{p=1}^{n+1} V_{p} \varpi$,

$$
V_{p}=\sum_{J \in \mathcal{B},|J|=p} \frac{\prod_{j \in J} \lambda_{j}}{\prod_{\nu=1}^{p-1}\left(\lambda_{\infty}+n-\nu\right)} \theta_{J} W_{0}(J)
$$

It seems remarkable that in the RHS of (3) the expression of θ_{J} is independent of n and depends only on J for any fixed admissible J.

Finally we state a conjecture concerning the connection formula among twisted cycles.

For $J=\left\{j_{1}, \ldots, j_{p}\right\} \subset[1, m] \quad(1 \leq p \leq m), \quad \mathfrak{z}_{J}$ $(J \in \mathcal{B})$ forms a basis $H_{n}\left(X, \mathcal{L}^{*}\right)$. The complement $K^{[1, m]}=\mathbf{R}^{n}-\bigcup_{j \in[1, m]} K_{j}$ can also be regarded as a twisted n-cycle denoted by \mathfrak{z}_{∞}. We put further $J^{c}=[1, m]-J, \lambda_{J}=\sum_{j \in J} \lambda_{j}$, (In case $J=\emptyset$, we put $\left.\lambda_{J}=1\right), \lambda_{\infty}=\sum_{j \in[1, m]} \lambda_{j}$.

We can now state:
Conjecture III. The following connection formula holds (\sim means "homologous"):
(i) Case where n even,

$$
\mathfrak{z}_{\infty} \sim-\sum_{J \in \mathcal{B}, n \geq|J|} \frac{\sin \pi \lambda_{J^{c}}}{\sin \pi \lambda_{\infty}} \mathfrak{z}_{J}
$$

(ii) Case where n odd,

$$
\mathfrak{z}_{\infty} \sim-\sum_{J \in \mathcal{B}} \frac{\cos \pi \lambda_{J^{c}}}{\cos \pi \lambda_{\infty}} \mathfrak{z}_{J}
$$

For example, in case $n=1$,

$$
\mathfrak{z}_{\infty} \sim-\frac{1}{\cos \lambda_{\infty}} \mathfrak{z}_{12}-\frac{\cos \lambda_{2}}{\cos \lambda_{\infty}} \mathfrak{z}_{1}-\frac{\cos \lambda_{1}}{\cos \lambda_{\infty}} \mathfrak{z}_{2} .
$$

In case $n=2$,

$$
\begin{aligned}
\mathfrak{z}_{\infty} \sim & -\frac{\sin \pi \lambda_{1}}{\sin \pi \lambda_{\infty}} \mathfrak{z}_{23}-\frac{\sin \pi \lambda_{2}}{\sin \pi \lambda_{\infty}} \mathfrak{z}_{13}-\frac{\sin \pi \lambda_{3}}{\sin \pi \lambda_{\infty}} \mathfrak{z}_{12} \\
& -\frac{\sin \pi\left(\lambda_{2}+\lambda_{3}\right)}{\sin \pi \lambda_{\infty}} \mathfrak{z}_{1}-\frac{\sin \pi\left(\lambda_{1}+\lambda_{3}\right)}{\sin \pi \lambda_{\infty}} \mathfrak{z}_{2} \\
& -\frac{\sin \pi\left(\lambda_{1}+\lambda_{2}\right)}{\sin \pi \lambda_{\infty}} \mathfrak{z}_{3} .
\end{aligned}
$$

We can prove the following
Theorem 6. In case where $n=1,2,3$, Conjectures I, II, and III affirmatively hold.

The proof can be done by using contiguity relations involved in $\langle\varphi, \mathfrak{z}\rangle$ relative to the shifts $\lambda \rightarrow \lambda \pm \varepsilon_{j}$.

The formula (3) can be regarded as an extension of the classical variation formula due to L . Schläfli concerning the volume of a geodesic simplex in the unit hypersphere (see $[2,17,18]$). In fact, by taking the limit of (3) for $\lambda \rightarrow 0$, we can derive the variation formula of the volume of a real domain bounded by hyperspheres.
3. Generalization. In this section we assume $m(m \geq n+2)$ is arbitrary. Denote by $e_{J}(J=$ $\left.\left\{j_{1}, \ldots, j_{p}\right\} \subset[1, m], p \leq n\right)$ the logarithmic p-form $d \log f_{i_{1}} \wedge \cdots \wedge d \log f_{i_{p}}$.

Fix an arbitrary subset $J=\left\{j_{1}, j_{2}, \ldots, j_{n+1}\right\} \subset$ $[1, m]$. Then under the condition $(\mathcal{H} 1)$, we have
(4) $\sum_{\nu=1}^{n+1}(-1)^{\nu-1} e_{\partial_{\nu} J}=\frac{2^{\frac{n}{2}}}{\sqrt{(-1)^{n+1} B(0 J)}} W_{0}(J) \varpi$.

Fix a subset $I=\left\{i_{1}, i_{2}, \ldots, i_{n+2}\right\} \subset[1, m]$. Then as a consequence of (4) the following fundamental equality holds among $F_{J}(J \in \mathcal{B})$:

$$
\begin{equation*}
\sum_{\nu=1}^{n+2} \pm \frac{W_{0}\left(\partial_{\nu} I\right) \varpi}{\sqrt{(-1)^{n+1} B\left(0 \partial_{\nu} I\right)}}=0 . \tag{5}
\end{equation*}
$$

Moreover the following partial fraction decomposition holds (note that $B(0 I)=0$, $(-1)^{n+1} B\left(0 \partial_{\nu} I\right)>0$ and $\left.(-1)^{n} B(0 \star I) \geq 0\right)$:

$$
\begin{equation*}
F_{I}=\sum_{\nu=1}^{n+2} \pm\left(-\frac{B\left(0 \partial_{\nu} I\right)}{B(0 \star I)}\right)^{1 / 2} F_{\partial_{\nu} I}, \tag{6}
\end{equation*}
$$

so that F_{I} can be expressed as a linear combination of $F_{J}(J \in \mathcal{B})$ provided $B(0 \star I) \neq 0$. Here the signs \pm in the RHS of (5), (6) can be taken such that the equalities hold
(7) $\pm \sqrt{B\left(0 \partial_{\mu} I\right) B\left(0 \partial_{\nu} I\right)}=B\left(\begin{array}{ccc}0 & i_{\mu} & \partial_{\mu} \partial_{\nu} I \\ 0 & i_{\nu} & \partial_{\mu} \partial_{\nu} I\end{array}\right)$.

Note that owing to Jacobi identity and the above assumption the square of the LHS equals the square of the RHS in (7).

For $Q(x)=\sum_{\nu=1}^{n} x_{\nu}^{2}$, let

$$
\begin{aligned}
* d Q= & \sum_{\nu=1}^{n}(-1)^{\nu-1} x_{\nu} d x_{1} \wedge \cdots \wedge d x_{\nu-1} \\
& \wedge d x_{\nu+1} \wedge \cdots \wedge d x_{n} .
\end{aligned}
$$

In addition to the above identities, there are cohomologous relations like
(8) $\nabla\left(e_{J}\right) \sim 0, \quad|J|=n-1$,
(9) $\nabla\left(\frac{* d Q}{f_{j_{1}} \cdots f_{j_{r}}}\right) \sim 0$,

$$
J=\left\{j_{1}, \ldots, j_{r}\right\} \subset[1, m], \quad 0 \leq r \leq n+1
$$

These identities (4)-(9) seem sufficient to prove the above Conjectures I, II, and III.

In view of the results obtained in $[13,14]$ in case of hyperplane arrangement, it seems natural to make the following conjecture in case of hypersphere arrangement.

Conjecture IV. Let $\mathcal{A}=\left\{S_{1}, \ldots, S_{m}\right\}$ be an arbitrary arrangement of hyperspheres i.e., $\alpha_{j}, \alpha_{j 0}$ be arbitrary.

In addition to $(\mathcal{H} 2)$, assume further that
$(\mathcal{H} 3)$: For any choice of $I \subset[1, m]$ such that $|I| \leq n, \bigcap_{j \in I} \Re S_{j} \neq \emptyset$.

Then
(i) If λ is generic, $H_{\nabla}^{n}(X, \Omega(* S))$ is spanned by $F_{I}(I \in \mathcal{B})$. However these are no more necessarily linearly independent. Under the condition $(\mathcal{H} 1),(5)$ are the fundamental relations satisfied by them.
(ii) $|E u(X)|$ which equals $\operatorname{dim} H_{n}\left(X, \mathcal{L}^{*}\right)$ also equals the number of bounded connected chambers of $\mathbf{R}^{n}-S$.

Remark 7. It seems interesting to extend the above formulae stated in Conjectures I and II to arbitrary m by using the differential forms F_{I} or $W_{0}(I) \varpi(I \in \mathcal{B})$ under $(\mathcal{H} 1)$ or even without $(\mathcal{H} 1)$.

References

[1] K. Aomoto, On vanishing of cohomology attached to certain many valued meromorphic functions, J. Math. Soc. Japan 27 (1975), 248-255.
[2] K. Aomoto, Analytic structure of Schläfli function, Nagoya Math J. 68 (1977), 1-16.
[3] K. Aomoto, Configurations and invariant GaussManin connections of integrals. I, Tokyo J. Math. 5 (1982), no. 2, 249-287.
[4] K. Aomoto, Configurations and invariant GaussManin connections for integrals. II, Tokyo J. Math. 6 (1983), no. 1, 1-24.
[5] K. Aomoto, Errata to: "Configurations and invariant Gauss-Manin connections of integrals. I" [Tokyo J. Math. 5 (1982), no. 2, 249-287], Tokyo J. Math. 22 (1999), no. 2, 511-512.
[6] K. Aomoto, Vanishing of certain 1-form attached to a configuration, Tokyo J. Math. 9 (1986), no. 2, 453-455.
[7] K. Aomoto, Gauss-Manin connections of Schläfli type for hypersphere arrangements, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 4, 977-995.
[8] K. Aomoto, Hypersphere arrangement and imag-
inary cycles for hypergeometric integrals, in Arrangements of hyperplanes(Sapporo, 2009), $1-26$, Adv. Stud. Pure Math., 62, Math. Soc. Japan, Tokyo, 2012.
[9] K. Aomoto and P. J. Forrester, On a Jacobian identity associated with real hyperplane arrangements, Compositio Math. 121 (2000), no. 3, 263-295.
[10] K. Aomoto and M. Kita, Theory of hypergeometric functions, translated from the Japanese by Kenji Iohara, Springer Monographs in Mathematics, Springer, Tokyo, 2011.
[11] J. L. Coolidge, A treatise on the circle and the sphere, reprint of the 1916 edition, Chelsea, Bronx, NY, 1971.
[12] H. Maehara, Geometry of Circles and Spheres (in Japanese), Asakura, Tokyo, 1998.
[13] P. Orlik and H. Terao, Commutative algebras for arrangements, Nagoya Math. J. 134 (1994), 65-73.
[14] P. Orlik and H. Terao, Arrangements and hypergeometric integrals, MSJ Memoirs, 9, Math. Soc. Japan, Tokyo, 2001.
[15] F. Pham, Introduction à l'étude topologique des singularités de Landau, Mémorial des Sciences Mathématiques, Fasc. 164, Gauthier-Villars Éditeur, Paris, 1967.
[16] C. A. Rogers, Packing and covering, Cambridge Tracts in Mathematics and Mathematical Physics, No. 54, Cambridge Univ. Press, New York, 1964.
[17] L. Schlăflei, Theorie der vielfache Kontinuität, in Gessammelte Mathematischen Abhandlungen, Band I, Birkhäuser, Basel, 1950, pp. 167-302.
[18] L. Schläfli, On the multiple integral $\int^{n} d x d y \cdots d z$ whose limits are $p_{1}=a_{1} x+b_{1} y+\cdots+h_{1} z>$ $0, p_{2}>0, \ldots, p_{n}>0$ and $x^{2}+y^{2}+\cdots+z^{2}<1$, in Gessammelte Mathematischen Abhandlungen, Band II, Birkhäuser, Basel, 1953, pp. 219-270.

[^0]: 2010 Mathematics Subject Classification. Primary 14F40, 33C70; Secondary 14H70.
 *) 5-1307 Hara, Tenpaku-ku, Nagoya-shi, Aichi 468-0015, Japan.
 ${ }^{* *)}$ Numazu College of Technology, 3600 Ooka, Numazu-shi, Shizuoka 410-8501, Japan.

