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Abstract: The Ramanujan 1 1 summation theorem is studied from the perspective of

Jackson integrals, q-difference equations and connection formulae. This is an approach which has

previously been shown to yield Bailey’s very-well-poised 6 6 summation. Bilateral Jackson

integral generalizations of the Dixon–Anderson and Selberg integrals relating to the type A root

system are identified as natural candidates for multidimensional generalizations of the

Ramanujan 1 1 summation theorem. New results of this type are announced, and furthermore

they are put into context by reviewing from previous literature explicit product formulae for

Jackson integrals relating to other roots systems obtained from the same perspective.
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Ramanujan’s 1 1 summation theorem isX1
�¼�1

ðaÞ�
ðbÞ�

x� ¼ ðaxÞ1ðqÞ1ðb=aÞ1ðq=axÞ1
ðxÞ1ðbÞ1ðq=aÞ1ðb=axÞ1

:ð1Þ

Here ðuÞ1 :¼
Q1

l¼0ð1� uqlÞ and with 0 < q < 1,

ðuÞ� ¼ ðuÞ1=ðuq�Þ1; � 2 Z. For general a, b, (1)

requires jb=aj < jxj < 1 for absolute convergence.

As a part of a feature in the Notices of the AMS

during December 2012, commemorating 125 years

since Ramanujan’s birth, S. O. Warnaar [38] re-

cently reviewed aspects of (1). One of these,

important to us, is that the Ramanujan 1 1

summation can be written as a Jackson integral

(q-series), generalizing that corresponding to the

q-binomial series. Another, also important to us, is

that (1) permits multi-dimensional extensions.

Thus in this article we aim to detail a perspective

on (1) in the setting of Jackson integrals, q-differ-

ence equations and connection formulae. We will

then identify a natural setting, namely that of

q-generalizations of the Dixon–Anderson and

Selberg integrals — both multidimensional general-

izations of the Euler beta integral — as candidates

for permitting analysis from this perspective and as

providing new multi-dimensional extensions of (1).

We announce examples of such extensions, with the

details being deferred to separate publications.

Moreover, we relate these results to a broader class

of multidimensional Jackson integrals permitting

analogous analysis, and relating to root systems.

One of the key features of our viewpoint — that

of establishing a q-difference equation for the left-

hand side of (1) — can be traced back to Mellin

in his study of the Gauss hypergeometric equation

(see [6, §1.5.3]). However, it wasn’t until the early

1990’s in the work of Aomoto and Aomoto–Kato

that a general theory relating solutions of the

q-difference equation with special asymptotic be-

haviour, to a linear combination of a particular

basis of solutions via a connection formula, was

developed. We draw attention to [2–5]; all the

works in this series are cited in [26]. This has the

consequence of providing an explanation for various

special function formulae relating to q-hypergeo-

metric functions such as (1), and moreover of

providing a method to explore the vast field of

multi-dimensional generalizations.

We begin in Section 1 by detailing this method

as it applies to Ramanujan’s 1 1 summation. We

then demonstrate its generality by sketching its

application to the derivation of Bailey’s very-well-

poised 6 6 summation. Moreover, it is also the

case that various transformation formulae between

q-hypergeometric series can be understood as con-
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nection formulae, and this is briefly mentioned.

Section 2 introduces bilateral q-generalizations of

the Dixon–Anderson and Selberg integrals relating

to the type A root system, and the application of

our viewpoint to providing explicit product evalua-

tions is sketched. We put these new results in

context by briefly reviewing explicit product for-

mulae for Jackson integrals relating to other root

systems, previously obtained by application of this

method.

1. Special function formulae for bilateral

q-hypergeometric series.

1.1. Ramanujan’s 1 1 summation theorem.

A textbook treatment of (1) can be found in

[15, p. 138]. As noted in [38], it is originally

recorded (without proof) as Item 17 of Chapter 16

in the second of his three notebooks [9, p. 32], [32]

although the notation is different. For us a notation

which replaces the left-hand side in (1) by a type of

Jackson integral is most fundamental.

For general a 2 C the latter is defined byZ a

0

fðzÞdqz ¼ ð1� qÞ
X1
�¼0

fðaq�Þaq�:ð2Þ

Note that as q! 1�,
R a

0 fðzÞdqz!
R a

0 fðzÞdz. The

Jackson integral (2) is formally extended to a

bilateral series by definingZ a1

0

fðzÞ
dqz

z
¼ ð1� qÞ

X1
�¼�1

fðaq�Þð3Þ

when the right-hand side converges. In terms of the

notation (3), it was noted by Askey [7] that with the

replacement ða; b; xÞ 7! ð�q�; �q; q�Þ (1) reads

Ið�Þ :¼
Z �1

0

z�
ðqzÞ1
ðq�zÞ1

dqz

z
¼ C ���ðq�þ��Þ

�ðq��Þ
ð4Þ

with C :¼ ð1� qÞðqÞ1ðq1��Þ1=ðq�Þ1ðq1����Þ1, and

where �ðzÞ :¼ ðzÞ1ðq=zÞ1ðqÞ1.

The notation (4) separates off the �-dependent

factor. Its explicit form, as given on the right-hand

side of (4), is easy to verify. Thus taking into

account the poles of Ið�Þ, one sees that it can be

expressed as ��fð�Þ=�ðq��Þ where fð�Þ is some

holomorphic function on C�. Since Ið�Þ is invariant

under the shift � ! q�, fð�Þ satisfies the q-difference

equation fðq�Þ ¼ �fð�Þ=q�þ��. The solution of this

equation is uniquely determined up to a constant

(i.e., term independent of �) C as fð�Þ ¼ C�ðq�þ��Þ,
and the right-hand side of (4) follows, but with C

still to be determined.

With the �-dependence of Ið�Þ known, to

calculate C we are free to choose a particular value

of �. A convenient choice is � ¼ 1. Then the defi-

nition (3) shows that all the negative � terms in the

Jackson integral defining Ið�Þ vanish, and we have

Ið1Þ ¼
Z 1

0

z�
ðqzÞ1
ðq�zÞ1

dqz

z
:ð5Þ

In fact (5) is precisely the q-beta integral (see e.g.,

[15, p. 20]), and the standard notation is Ið1Þ ¼
Bqð�; �Þ. We are thus faced with the problem of

evaluating the q-beta integral.

For this purpose we write the Jackson integral

Ið�Þ as Ið�; �Þ to emphasize the �-dependence.

Crucial to the evaluation of the q-beta integral is

that Ið�; �Þ satisfies the �-independent q-difference

equation

Ið�; �Þ ¼
1� q�þ�

1� q�
Ið�þ 1; �Þ:ð6Þ

This q-difference equation can be derived from a

viewpoint developed by Mellin in 1907 (see

[6, p. 268]). Define the integrand in the definition

(4) by �ðzÞ :¼ z�ðqzÞ1=ðq�zÞ1. Then we see that

bðzÞ :¼
�ðqzÞ
�ðzÞ

¼ q�ð1� q�zÞ
ð1� qzÞ

¼ bþðzÞ
b�ðqzÞ

;

where bþðzÞ ¼ q�ð1� q�zÞ and b�ðzÞ ¼ 1� z. Next,

for an arbitrary meromorphic function ’ðzÞ on C�,
we define the symbol h’ðzÞi by

h’ðzÞi :¼
Z �1

0

’ðzÞ�ðzÞ
dqz

z
:

One observes that in this setting, and with the

operator r defined by r’ðzÞ :¼ ’ðzÞ � bðzÞ’ðqzÞ,
hr’ðzÞi ¼ 0ð7Þ

holds true. This is because (7) is equivalent to

the trivial equation h’ðqzÞi ¼ h’ðzÞi, where it is

assumed h’ðzÞi converges. In particular, if we put

’ðzÞ ¼ b�ðzÞ, then r’ðzÞ ¼ b�ðzÞ � bþðzÞ ¼ ð1�
q�þ�Þz� ð1� q�Þ and thus (7) gives

ð1� q�þ�Þhzi � ð1� q�Þh1i ¼ 0:

Noting from the definitions that h1i ¼ Ið�; �Þ
and hzi ¼ Ið�þ 1; �Þ, the q-difference equation (6)

follows.

The q-difference equation (6) is independent

of �. Special to the case � ¼ 1, as follows from (5), is

that one has the explicit �!1 behaviour
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Ið�; 1Þ � ð1� qÞðqÞ1=ðq�Þ1ð8Þ

(i.e., the � ¼ 0 term in the definition (2)). Equiv-

alently with � fixed, Ið�þN; 1Þ has the asymptotic

behaviour given by the right-hand side of (8). By

iterating (6) it thus follows

Ið�; 1Þ ¼ lim
N!1

ðq�þ�ÞN
ðq�ÞN

Ið�þN ; 1Þð9Þ

¼ ð1� qÞ
ðq�þ�Þ1ðqÞ1
ðq�Þ1ðq�Þ1

:

Substituting (9) in (4) with � ¼ 1 gives the value of

C stated below the latter. We remark that (4) can

equivalently be written

Ið�Þ ¼ ��
�ðq�þ��Þ�ðq�Þ
�ðq�þ�Þ�ðq��Þ Ið1Þ:

This emphasizes the viewpoint of the above analysis

as computing Ið�; �Þ via a connection formula with

the special solution Ið�; 1Þ.
On a different front, we note a recent applica-

tion of (1) in mathematical physics, in particular in

the asymptotic analysis of the fluctuation of the

right most particle in the partially asymmetric

exclusion process [33].

1.2. Bailey’s 6 6 summation and some

transformation formulae. In terms of the

notation ða1; . . . ; arÞ� :¼ ða1Þ� � � � ðarÞ� the basic hy-

pergeometric series r r is specified by

r r
a1; . . . ; ar

b1; . . . ; br
; q; x

� �
:¼

X1
�¼�1

ða1; . . . ; arÞ�
ðb1; . . . ; brÞ�

x�:ð10Þ

With 0 < q < 1 and generic parameters faig; fbjg
this requires jb1 � � � br=a1 � � � arj < jxj < 1 for absolute

convergence. In terms of the notation (10) the left-

hand side of (1) is 1 1
a
b

; q; x

� �
. There is also a

summation formula for the so-called very-well-

poised case of 6 6, evaluated at a particular value

of x, due to Bailey (see [15, p. 140]),

6 6
qa

1
2 ;�qa

1
2 ; b; c; d; e

a
1
2 ;�a

1
2 ; aq

b
; aq
c
; aq
d
; aq
e

; q;
a2q

bcde

" #
ð11Þ

¼
ðaq; aq

bc
; aq
bd
; aq
be
; aq
cd
; aq
ce
; aq
de
; q; q

a
Þ1

ðaq
b
; aq
c
; aq
d
; aq
e
; q
b
; q
c
; q
d
; q
e
; a

2q
bcde
Þ1

:

A derivation of (11) using q-difference equations,

which parallels that for Ramanujan’s 1 1 summa-

tion presented above, can be given [22]. The first

point to note is that making the replacements [27]

ffiffiffi
a
p
7! �; ðb; c; d; eÞ 7! ða1�; a2�; a3�; a4�Þð12Þ

the left-hand side of (11) can be written as the

Jackson integral

��1þ�2þ�3þ�4�1

ð1� qÞð1� �2Þ
Y4

i¼1

ðai�Þ1
ðq�=aiÞ1

Jð�Þ:ð13Þ

Here Jð�Þ is defined by

Jð�Þ :¼
Z �1

0

�ðzÞ�ðzÞ
dqz

z
;

where ai ¼ q�i , �ðzÞ :¼ z�1 � z and

�ðzÞ :¼
Y4

i¼1

z
1
2��i
ðqz=aiÞ1
ðzaiÞ1

:

Next, analogous to (4), the dependence on � can be

determined to show [22]

Jð�Þ ¼ ~C
��ð�2ÞQ4

m¼1 �
�m�ðam�Þ

ð14Þ

for some ~C independent of �. According to (14), to

determine ~C it suffices to evaluate Jð�Þ for a

particular value of �. One sees that with � ¼ a1

the negative � terms in the Jackson integral

defining Jð�Þ vanishes and we have

Jða1Þ ¼
Z a1

0

�ðzÞ�ðzÞ
dqz

z
:ð15Þ

In the simultaneous limit

a1 ! a1q
2N; ai ! aiq

�N ði ¼ 2; 3; 4Þ;ð16Þ

where N !1, the asymptotic behaviour of Jða1Þ is

simply given by the � ¼ 0 term in (15). This is

crucial since for general � (see [22, Corollary 6.2

with n ¼ 1] or [24, Theorem 4.1 with s ¼ 1])

TaiJð�Þ ¼ �
Q4

k¼1ð1� aiakÞ
aið1� a2

i Þð1� a1a2a3a4Þ
Jð�Þ;ð17Þ

where Tai denotes the q-shift of the parameter ai
such that Tai : ai ! qai. Thus (17) can, in the case

� ¼ a1, be solved for Jða1Þ. By repeated use of (17)

for the limit (16), Jða1Þ is thus written as Jða1Þ ¼

ð1� qÞ
a1��1��2��3��4

1 ðqÞ1
Q

2�i<j�4ðqa�1
i a�1

j Þ1
ðqa�1

1 a�1
2 a�1

3 a�1
4 Þ1

Q4
k¼2ða1akÞ1

,

which is equivalent to Jackson’s 6�5 summation

formula [15, p. 44 (2.7.1)]. This allows ~C in (14) to

be determined as
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~C ¼ ð1� qÞ
ðqÞ1

Q
1�i<j�4ðqa�1

i a�1
j Þ1

ðqa�1
1 a�1

2 a�1
3 a�1

4 Þ1
:

Thus (13), which is the left-hand side of (11), has

been evaluated in product form which upon recall-

ing (12) is precisely the right-hand side of (11).

Not only can the q-difference equation method

give a unified explanation of the basic hypergeo-

metric summations (1) and (11), we remark that

various transformation formulae — in particular

those due to Sears [34,35] and Slater [36,37] — can

also be understood from the viewpoint [27]. Briefly

the transformation formulae are of the form of a

basic bilateral series expanded as a linear combi-

nation of several specific bilateral series. Now the

underlying difference equation is of rank higher

than 1. The transformation formulae are under-

stood as connection formulae expressing a partic-

ular solution as a linear combination of solutions in

a distinguished basis.

2. Higher dimensional generalizations.

2.1. Selberg and Dixon–Anderson inte-

grals. A clue as to natural candidates for multi-

dimensional generalizations comes from recalling

that a special case of the 1 1 summation is the

q-beta integral (5). In the limit q! 1 this reduces to

the Euler beta integral, while taking q ! 1 in the

recurrence (6) implies the beta integral evaluationZ 1

0

z��1ð1� zÞ��1dz ¼
�ð�Þ�ð�Þ
�ð�þ �Þ :ð18Þ

The significance of this for present purposes is that

there are two multi-dimensional generalizations of

(18): the Selberg and Dixon–Anderson integrals.

The former, discovered by Selberg in 1941

(see [14] for historical aspects) readsZ 1

0

� � �
Z 1

0

Yn
i¼1

z��1
i ð1� ziÞ��1ð19Þ

�
Y

1�j<k�n
jzk � zjj2� dz1 � � � dzn

¼
Yn
j¼1

�ð�jþ 1Þ�ð�þ ðn� jÞ�Þ�ð� þ ðn� jÞ�Þ
�ð� þ 1Þ�ð�þ � þ ðnþ j� 2Þ�Þ ;

while the latter, due independently to Dixon [11]

and Anderson [1] ([11], written in 1905, only became

widely known in recent times; see [14]) readsZ xn

xn�1

� � �
Z x2

x1

Z x1

x0

Yn
i¼1

Yn
j¼0

jzi � xjjsj�1ð20Þ

�
Y

1�k<l�n
ðzl � zkÞ dz1dz2 � � � dzn

¼
�ðs0Þ�ðs1Þ � � ��ðsnÞ
�ðs0 þ s1 þ � � � þ snÞ

Y
0�i<j�n

ðxj � xiÞsiþsj�1:

In the case n ¼ 1 both (19) and (20) reduce to the

Euler beta integral (18).

Building on a number of earlier works [8,12,13,

18,30], the natural multi-dimensional Jackson in-

tegral generalizations of (19) and (20) which con-

tains the Ramanujan 1 1 summation when n ¼ 1,

has recently been identified to be given by [26]

~Ið�Þ :¼
Z �1

0

ðz1 � � � znÞ�
Yn
i¼1

Ym
j¼1

ðqa�1
j ziÞ1
ðbjziÞ1

ð21Þ

�
Y

1�k<l�n
z2��1
k

ðq1�� zl=zkÞ1
ðq�zl=zkÞ1

ðzk � zlÞ

�
dqz1

z1
^ � � � ^

dqzn

zn
:

Here �; � 2 C, a1; . . . ; am; b1; . . . ; bm 2 C�, � ¼
ð�1; . . . ; �nÞ 2 ðC�Þn andZ �1

0

fðzÞ
dqz1

z1
^ � � � ^

dqzn

zn

:¼ ð1� qÞn
X

ð�1;...;�nÞ2Zn

fð�1q
�1 ; . . . ; �nq

�nÞ:

With � a positive integer, m ¼ 1 and � ¼
ð1; q� ; . . . ; qðn�1Þ�Þ, taking the limit q! 1 reclaims

(19). This same setting, but with m ¼ 2 and � ¼ 1

also reclaims (19) in the limit q! 1, although with

a change of variables such that the terminals and

integrand is translated from ½0; 1�n to ½a1; a2�n.

With � ¼ 1=2, m ¼ n, � ¼ ða1; . . . ; anÞ,
ð�; aj; bjÞ 7! ðs0; xj�1; q

j�1=xj�1Þ taking the limit q !
1 reclaims (20) with x0 ¼ 0. The case � ¼ 1=2, m ¼
nþ 1, � ¼ 1 and other parameters as stated reduces

to (20) without the restriction x0 ¼ 0.

2.2. Bilateral q-generalizations of the Sel-

berg and Dixon–Anderson integrals. The

strategy given in Section 1.1 for the derivation of

(1), involving first determining the �-dependence in

(4), deriving a q-difference equation in � for Ið�Þ,
and solving the difference equation for a particular

� by making use of the knowledge of the �!1
asymptotic behaviour of Ið�Þ for this value of �

again hold us in good stead for the evaluation of ~Ið�Þ
in the cases it admits a limit to the Selberg or

Dixon–Anderson integrals.

The m ¼ 1 case of (21) is due to Aomoto [4],
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who obtained the evaluation

~Ið�Þ ¼ c0

Yn
i¼1

�
�þ2ðn�iÞ�
i

�ðq�þðn�1Þ� b1�iÞ
�ðb1�iÞ

ð22Þ

�
Y

1�j<k�n

�ð�k=�jÞ
�ðq��k=�jÞ

;

where c0 is independent of � and is given by

c0 ¼
Yn
j¼1

ð1� qÞðq; q1�j� ; q1�ðj�1Þ�a�1
1 b�1

1 Þ1
ðq1�� ; q�þðj�1Þ� ; q1���ðnþj�2Þ�a�1

1 b�1
1 Þ1

:

The case m ¼ 2 and � ¼ 1, which like the m ¼ 1

case also admits a limit to the Selberg integral (19)

as remarked above, is for general � a great deal

more complicated. A product formula analogous to

the right-hand side of (22) only results by consid-

ering a sum of nþ 1 Jackson integrals (21), each

defined by a different �, given by

� ¼ ðx1; x1q
� ; . . . ; x1q

ði�1Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i

; x2; x2q
� ; . . . ; x2q

ðn�i�1Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�i

Þ

ð0 � i � nÞ, with x1; x2 2 C�, and furthermore

weighted by certain functions of x1; x2 [26]. In the

special case ðx1; x2Þ ¼ ða1; a2Þ and � a positive

integer this is shown in [26] to be equivalent to a

q-generalization of the Selberg integral conjectured

by Askey [8] and subsequently proved by Evans [12].

In relation to bilateral q-generalizations of the

Dixon–Anderson integral, for m ¼ n; � ¼ 1=2, Ið�Þ
can be expressed as the ratio of theta functions

~Ið�Þ ¼ c1ð�1 � � � �nÞ�
�ðq��1 � � � �nb1 � � � bnÞQn

i¼1

Qn
j¼1 �ð�ibjÞ

ð23Þ

�
Y

1�i<j�n
�j�ð�i=�jÞ;

where c1 is independent of � and is given by

c1 ¼
ð1� qÞnðqÞn1

Qn
i¼1

Qn
j¼1ðqa�1

i b�1
j Þ1

ðq�Þ1ðq1��a�1
1 � � � a�1

n b�1
1 � � � b�1

n Þ1
:

We remark that (23) is equivalent to the Milne–

Gustafson summation formula [16,31]. The second

case of (21) permitting a limit to the Dixon–

Anderson integral, namely m ¼ nþ 1; � ¼ 1, as

with the second case of (21) permitting a limit to

the Selberg integral reviewed above, is more com-

plicated in its structure with a product formula

resulting upon summing nþ 1 Jackson integrals

(21), weighted by ð�1Þi�1 and with � given by

� ¼ ðx1; . . . ; xi�1; xiþ1; . . . ; xnþ1Þ 2 ðC�Þn

ð1 � i � nþ 1Þ. In the special case ai ¼ xi ð1 � i �
nþ 1Þ this is shown in [25] to be equivalent to a

q-generalizations of the Dixon–Anderson integral

due to Evans [13].

2.3. Multi-dimensional Jackson integrals

associated with root systems. We have seen

that the 6 6 summation in Bailey’s formula (11) can

be written in terms of the Jackson integral in (13).

As with the Jackson integral in (4), it is possible to

generalize (13) to a bilateral multi-dimensional

Jackson integral which permits analysis along the

lines of the strategy given in Section 1.1. These are

all special cases of the family of Jackson integrals

~Jð�Þ ¼
Z �1

0

~�ðzÞ ~�ðzÞ
dqz1

z1
^ � � � ^

dqzn

zn
;ð24Þ

where

~�ðzÞ :¼
Yn
i¼1

Y2sþ2

m¼1

z
1=2��m
i

ðqa�1
m ziÞ1
ðamziÞ1

�
Y

1�j<k�n
z1�2�
j

ðqt�1zj=zkÞ1
ðtzj=zkÞ1

ðqt�1zjzkÞ1
ðtzjzkÞ1

;

~�ðzÞ :¼
Yn
i¼1

1� z2
i

zi

Y
1�j<k�n

ð1� zj=zkÞð1� zjzkÞ
zj

with am ¼ q�m and t ¼ q� . In particular the case

s ¼ 1 (general n 2 ZþÞ permits a product function

evaluation [22] equivalent to earlier results due to

Gustafson [17] and van Diejen [10]. The case n ¼ 1

(general s 2 Zþ) permits a connection formula [23]

generalizing the Sears–Slater transformation for-

mula as mentioned at the end of Section 1.2.

The symmetries of the summand in (24) con-

trast with those of (21). The latter relate to the

A-type root system, while the former relate to the

BC-type root system. In fact it is similarly true that

bilateral Jackson integrals with summands corre-

sponding to any irreducible reduced root systems,

and which permit product formula evaluations, can

also be formulated [19–21,28,29].
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