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Abstract: In this paper, we establish some differential Harnack inequalities for positive

solutions to the nonlinear heat equations with potentials evolving by the Bernhard List’s flow.

Our theorems generalize Cao and Zhang’s results [1].
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1. Introduction. The differential Harnack

estimates for parabolic equations have become one

of important tools in the study of geometric analysis.

The work in the aspect originated in Li and Yau’s

paper [6], in which they proved a differential

Harnack inequality for positive solutions to the heat

equation on Riemannian manifolds with a fixed

metric. Later, Yau [9] generalized this result to

Harnack inequalities for some nonlinear heat-type

equation. Since then, Harnack estimates for positive

solutions to the heat equation coupled with geo-

metric flows have been widely studied (see

[2, 3, 5, 8]). Recently, Cao and Zhang [1] proved an

interesting differential Harnack inequality for posi-

tive solutions to the forward nonlinear heat equation

@f

@t
¼ 4f � flnf þ Rfð1:1Þ

coupled with the Ricci flow. They got the following

result.

Theorem 1.1 (Cao and Zhang [1]). Let

ðM; gðtÞÞ; t 2 ½0; T Þ, be a solution to the Ricci flow

on a closed manifold, and suppose that gð0Þ has

weakly positive curvature operator. Let f be a

positive solution to the heat equation (1.1), u ¼
�lnf and

H ¼ 24u� jruj2 � 3R�
2n

t
:

Then for 8t 2 ð0; T Þ,

H �
n

4
;

here ð0; T Þ means some time interval.

If the equation (1.1) is changed into

@f

@t
¼ 4f �

flnf

1þ t
2

þ Rf;ð1:2Þ

under the same assumption as Theorem 1.1, the

authors [1] obtained

H � 0:

Very recently, Fang [4] studied the linear heat

equations with potentials on closed Riemannian

manifolds evolving by the Bernhard List’s flow

@gij

@t
¼ �2Rij þ 2�nd � d ;

@ 

@t
¼ 4gðtÞ ;

8>><
>>:

where  : M ! R is a smooth function and

�n ¼ n�1
n�2. Let f be a positive solution of the time-

dependent nonlinear heat equation with potential,

i.e.,

@f

@t
¼ 4f þ cðR� �njr j2Þf;ð1:3Þ

where c is any constant. Under the Bernhard List’s

flow, we have d
dt

R
M fdv ¼ 0. The flow was first

introduced by Bernhard List [7] and Fang [4]

proved some differential Harnack estimate for posi-

tive solutions to the linear heat equations with

potentials under this flow. The author in [4] intro-

duced a symmetric two-tensor on ðM; gðtÞÞ with

components Sij ¼ Rij � �nri rj and its trace

S ¼ gijSij ¼ R� �njr j2, moreover, he defined a

differential Harnack type quantity

HðS; XÞ ¼
@S

@t
þ 2hrS;Xi þ 2SðX;XÞ þ

S

t
:
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Under these symbols, the author [4] gave the

following result.

Theorem 1.2 (Fang [4]). Let ðgðtÞ;  ðtÞÞ; t 2
½0; T Þ, be a solution to the Bernhard List’s flow on

a closed manifold M, and suppose that HðS; XÞ is

nonnegative for 8X 2 �ðTMÞ and all times t 2
½0; T Þ. Let f be a positive solution to the heat

equation (1.3), u ¼ �lnf, and

P ¼ 24u� jruj2 � 3S �
2n

t
:

Then for 8t 2 ð0; T Þ
P � 0:

In this paper, we will consider the nonlinear

heat equation

@f

@t
¼ 4f � flnf þ ðR� �njr j2Þfð1:4Þ

coupled with Bernhard List’s flow. Now, we give our

first main result.

Theorem 1.3. Let ðgðtÞ;  ðtÞÞ; t 2 ½0; T Þ, be a

solution to the Bernhard List’s flow on a closed

manifold M. Suppose HðS; XÞ is nonnegative for

8X 2 �ðTMÞ and all times t 2 ½0; T Þ. Let f be a

positive solution to the heat equation (1.4), u ¼
�lnf, and

H ¼ 24u� jruj2 � 3S �
2n

t
:

Then for 8t 2 ð0; T Þ

H �
n

4
:

Secondly, we will also consider the positive

solutions to the nonlinear heat equation

@f

@t
¼ 4f �

flnf

1þ t
2

þ ðR� �njr j2Þf:ð1:5Þ

We can get our second main result.

Theorem 1.4. Let ðgðtÞ;  ðtÞÞ; t 2 ½0; T Þ, be a

solution to the Bernhard List’s flow on a closed

manifold M. Suppose HðS; XÞ is nonnegative for

8X 2 �ðTMÞ and all times t 2 ½0; T Þ. Let f be a

positive solution to the heat equation (1.5), u ¼
�lnf, and

P ¼ 24u� jruj2 � 3S �
2n

t
:

Then for 8t 2 ð0; T Þ

P � 0:

2. Proof of Theorem 1.2. Let us consider

positive solutions to equation (1.4), assume f ¼
e�u, then we have

@u

@t
¼ 4u� jruj2 � u� S:ð2:1Þ

Proof. From the definition of H in Theorem

1.2 and comparing with [4, Lemma 2.2], we have

@

@t
ð4uÞ ¼ 4ð4uÞ � 4ðjruj2Þ � 4S þ 2Sijuij

� 2�n4 r � ru�4u;

and

@

@t
ðjruj2Þ ¼ 2rð4uÞ � ru� 2rðjruj2Þ � ru

� 2jruj2 � 2ru � rS þ 2Sijuiuj

¼ 4ðjruj2Þ � 2jrruj2 � 2rðjruj2Þ � ru
� 2jruj2 � 2ru � rS � 2�nðr � ruÞ2:

Let

H ¼ 24u� jruj2 � 3S �
2n

t
:

Comparing with [4, Corollary 2.1], we have

@H

@t
¼ 4H � 2rH � ru� 2 uij � Sij �

1

t
gij

����
����
2

�
2

t
H � 2�nð4 þr � ruÞ2

�
2

t
jruj2 � 2HðS;ruÞ � 24uþ 2jruj2;

where the last terms of the right hand side coming

from the extra term �u in (2.1). Since

�24uþ 2jruj2 ¼ �H þ jruj2 � 3S �
2n

t
;

we have

@H

@t
¼ 4H � 2rH � ru� 2 uij � Sij �

1

t
gij

����
����
2

�
2

t
þ 1

� �
H þ 1� 2

t

� �
jruj2 � 3S

�
2n

t
� 2�nð4 þr � ruÞ2

�
2

t
jruj2 � 2HðS;ruÞ:

From the definition of H, we know
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jruj2 ¼ 2 4u� S �
t

n

� �
�H � S:

Now we can compute the evolution equation of

H as follows:

@H

@t
� 4H � 2rH � ru� 2 uij � Sij �

1

t
gij

����
����
2

þ 2 4u� S �
n

t

� �
� 2

t
þ 1

� �
H

�
2

t
jruj2 � 4S �H �

2n

t

� 2�nð4 þr � ruÞ2 �
2

t
jruj2

� 2HðS;ruÞ

� 4H � 2rH � ru�
2

n
4u� S �

n

t

� �2

þ 2 4u� S �
n

t

� �
� 2

t
þ 1

� �
H

�
2

t
jruj2 � 4S �H �

2n

t

� 2�nð4 þr � ruÞ2 � 2HðS;ruÞ

¼ 4H � 2rH � ru�
2

t
þ 2

� �
H � 2

t
jruj2

� 4S �
2n

t
�

2

n
4u� S �

n

t
�
n

2

� �2

� 2�nð4 þr � ruÞ2 þ
n

2
;

where in the above second inequality, we used the

elementary inequality

uij � Sij �
1

t
gij

����
����
2

�
1

n
4u� S � n

t

� �2

:

Note that the evolution equation of S under

Bernhard List’s flow is

@

@t
S ¼ 4S þ 2jSijj2 þ 2�nð4 Þ2 � 4S þ

2

n
S2:

Applying the maximum principle to this inequality

yields

S � � n

2t
:ð2:2Þ

Adding � n
4 to H, we have

@ðH � n
4
Þ

@t
� 4 H �

n

4

� �
� 2r H � n

4

� �
� ru

�
2

t
þ 2

� �
H �

n

4

� �
�

2

t
jruj2

�
2

n
4u� S � n

t
� n

2

� �2

� 2�nð4 þr � ruÞ2 �
n

2t
:

It is easy to see that for t is small enough,

H � n
4 < 0, then by the maximum principle, we

obtain

H �
n

4
:

We complete the proof. �

As a consequence of Theorem 1.2, we have the

following integral Harnack inequality. We refer the

reader to [1] for analogous details of proof.

Corollary 2.1. Let ðgðtÞ;  ðtÞÞ; t 2 ½0; T Þ, be

a solution to the Bernhard List’s flow on a closed

manifold M and f be positive solutions to nonlinear

equation (1.3). Suppose that HðS; XÞ is nonnegative

for 8X 2 �ðTMÞ and all times t 2 ½0; T Þ. Let ðx1; t2Þ
and ðx2; t2Þ, 0 < t1 < t2, be two points in M � ð0; T Þ,
and � ¼ inf

�

R t2
t1
etðj _��j2 þ S þ 2n

t þ n
4Þdt, where � is

any space time path joining ðx1; t2Þ and ðx2; t2Þ.
Then we have

�et2 lnfðx2; t2Þ þ et1 lnfðx1; t1Þ �
1

2
�:

3. Proof of Theorem 1.3. In this section

we study u satisfying the equation (1.5) coupled

with Bernhard flow, we investigate the same

quantity

H ¼ 24u� jruj2 � 3S �
2n

t
:

Proof. Direct computation gives the following

evolution equation.

@H

@t
¼ 4H � 2rH � ru� 2 uij � Sij �

1

t
gij

����
����
2

�
2

t
H � 2�nð4 þr � ruÞ2

�
2

t
jruj2 � 2HðS;ruÞ

þ
2

tþ 2
ð�24uþ 2jruj2Þ;

where the last terms of the right hand side coming

from the extra term �u
1þ t

2
in (2.1). Since
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�24uþ 2jruj2 ¼ �H þ jruj2 � 3S �
2n

t
;

we have

@H

@t
¼ 4H � 2rH � ru� 2 uij � Sij �

1

t
gij

����
����
2

�
2

t
þ

2

tþ 2

� �
H þ

2

tþ 2
�

2

t

� �
jruj2

�
4n

t2 þ 2t
� 2�nð4 þr � ruÞ2

�
6

tþ 2
S � 2HðS;ruÞ:

By the inequality (2.2), we have

@H

@t
� 4H � 2rH � ru� 2 uij � Sij �

1

t
gij

����
����
2

�
2

t
þ

2

tþ 2

� �
H þ

2

tþ 2
�

2

t

� �
jruj2

�
n

t2 þ 2t
� 2�nð4 þr � ruÞ2

� 2HðS;ruÞ:
It is easy to see that for t is small enough,

H < 0, then by the maximum principle, we obtain

H � 0:

�
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