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Limit theorems for random walks under irregular conductance
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Abstract:

For a general one-dimensional random walk with state-dependent transition

probabilities, we present weak limits of the empirical moments of conductance along the path of
the random walk. In particular we obtain remarkably simple quenched convergences under

random conductance model.
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1. Introduction. Let X ={X,}~, be a
Markov chain with state space Z and transition
probabilities

pi ifj=i+1
0 otherwise,

where {p;},cz C (0,1). The sequence {p;} admits a
parametrization
¢
b= Cj—1 1 ¢j
with another sequence ¢; > 0, j € Z. The value ¢; is
interpreted as conductance of the bond connecting
the states j and j+ 1. See [2] for some relations
between random walks and electric networks. This
is also related to the scale function and speed
measure of X, which are used in [5] to show a
generalized arc-sine law under conditions on the
asymptotic behavior of
max{0,j} 1 max{0,j}
—, Z (cio1 +¢)
i=min{0,j} Ci i=min{0,5}
as |j| — oo. Random conductance model assumes
{Cj}jez to be a realization of an exogeneous positive
stationary ergodic random variables {Cj},c5. If
E[C)] < o0 and E[C;!] < oo, then by the above
mentioned result of [5], we have a quenched arc-sine
law, that is, for almost every realization of Cj,
1 N1

(1) N > lixse— A
n=0

in law as N — oo, where A is a random variable
with distribution function
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Arc-sine law; empirical moment; random conductance; weak convergence.

0 a<0
2
(2) Fy(a) =< “arcsinya 0<a<1
7
1 1 <a.

See [1,4] for other results in the study of the ran-
dom conductance model. The random conductance
model is an example of random walks in random
environments, for which see [6].

In this study, we are mainly interested in the
limits of the empirical moments

1 .
k k
F§V> :N;C(XnaX'rH»l) ) ke Z

as N — oo, where
.. G
COJ)={

ifj=i+1,

—Ci—1 lfj:Z—l

The value c(i, ) is the signed conductance of the
bond connecting the states ¢ and j with |[i — j| = 1.
We show their weak convergence under conditions
on the asymptotic behavior of

max{0,j}

Cf, kel

i=min{0,j}
as |j| — co. As an application to the random
conductance model, we obtain unexpectedly simple
limits
0 if kis odd
E[C;*]

E[C)]

(k)
(3) Iy — if k is even

in probability for almost every realization of
{Cj}jcz- The quenched arc-sine law (1) is also
obtained as a corollary.

2. Mainresults. Let s(0) =0 and for j € N,
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] -1 1 in law as N — oo, and
s(j) = Zc_’ s(—j) =— o (¢) wunder the both Blk, 4],
i=0 “i i=—j

We introduce the following conditions for k € Z.
Alk,+]:

1+k
i=o ()
A[ka _}
1+k
i==00 5(j)

Blk, +]: There exists u € (0,00) such that
lim R zj: et =t
=00 5(3) i=1 ' g
B[k, —]: There exists u;; € (0,00) such that
1 71
lim — c}”“ = ;.
j——o0 5(J) ; ' k

We consider the limits of the following sequence.
N-1

k 1

F§V>+ = N nE:(] C(Xn, Xn+1)k1{XnZO}’
- 1 N—-1 i

FN = N C(Xn; X’n+1) ]‘{Xn<0}

and T = TPF 47

Theorem 1. Let k be odd and assume
A[—-2,4£] and B[0,x]. Then,
(a) under Alk,+],

' —o

in probability as N — oo, and
(b) under Alk,—],

1—‘51\;)_ —0

in probability as N — oo.

Theorem 2. Let k be even and assume
A[—2,4] and B0, ] with uj = pg . Let A be a ran-
dom variable with distribution function (2). Then,
(a) wunder Blk,+],

k H+
I‘gV'H — —iA
Ho

i law as N — oo,
(b) wunder Blk,—],

r -2 a
Ho

+ —
(r%”}r%*)_a(ﬁgfxﬁé(1—fn)

Ho Ho
in law as N — oo.

Remark 1. In fact we can prove the weak
convergence of the joint distribution
(F%ﬁﬁ" FE’\?)—, F%Cz)-*-’ . 71’\5’\;71)_)
under A[—2, 4], B[0, ], B[k1, %], -+, Blkn, £].

Remark 2. Consider the random conduct-
ance model. Here we assume that {c;} is determined
by a stationary sequence {Cj},.; which is mnot
necessarily ergodic. Let Z be the set of invariant
events. Then by Birkhoff’s ergodic theorem, al-
most every realization satisfies A[—2, ] and B[k, £]
with

. _  E[CiMI]
S ool
as soon as
(4) E[Cy'] < 0o and E[C}] < oo.

Since B[k, £] implies A[k,£] under A[-2,+], we
obtain (3) under (4) plus E[Cy] < oo in the case Z is
trivial. We may have similar results under ergo-
dicity instead of stationarity.

3. Proofs. Let G ={s(j)};cz C R. Consider
a deformed Markov chain X, = s(X,) with state
space G. Since for all j € Z,

% % % . C;
PLX,1 — X, = /)X, = s(j)] = —2—,
Cj—1 + Cj
' % S . Cj—
P[X71,+1 - Xn = _1/Cj—1|X'rL = 5(])] = Jil’
Cji-1+¢

the Markov chain )A(n is a martingale. Next we
embed X ={X,} to a Brownian motion W as
follows. Let € >0, 75 =0, W, = X, and define a
sequence of stopping times 7, as

T = inf{t > 75 Wy € G\ {W}},
G = {es(j)}jez-
Put Wy = ¢ 'W for brevity. Then by the optional
sampling theorem, {X,} and {W;} have an identi-
cal law for any ¢ > 0. Moreover, by definition,
N . 1

X1 —Xpy=—m———.
T (X X 1)

So FEI\;H and 1"<Nk)7 have the same distributions as
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R 1 N-1 B

oY = NZ(WSH W) ™M sy,
n=0

(k) — 1 = € e\—k

1—‘N ::N (Wn+1 Wn) 1{I/Vﬁ,<0}
n=0

respectively for any e > 0. Notice that s(j) — +oo
as j — oo under B[0,+]. Therefore G° does not
have accumulation points and so, we have 7/, — oo
a.s. as n — oo. From this we conclude that X is
recurrent since so is the Brownian motion. By the
recurrence property we assume without loss of
generality that W, = Xy =0. Let

N, =max{n > 0; 75 < 1}.

Lemma 1. Letk be odd. Then,
(a) under A[-2,%£], B|0,£] and Alk,+],

¢ max |3 (Wi = W) "Ly | = 0
== n=0
in probability as e — 0, and
(b) under A[-2,4], B[0,4] and Ak, —],
m . . 7,{;
€ ogln%(v Z(Wn+l -Wp) Liwecor| — 0
== n=0

in probability as € — 0.
Lemma 2. Letk be even. Then,
(a) under A[-2, :l:] B[O, £] and B[k, +],

2
n+1

1
— / Liw,s0pdt
0

in probability as e — 0, and
(b) under A[-2, :l:] B0, ] and B[k, —],

2
n+1

nO

1
—WLZ/U Liw,<opdt

in probability as € — 0.

1{Wf>o}

1{Wr<o}

The proofs of these lemmas follow the same lines as
in [3]. We therefore give only a sketch of them in
Appendix.

Proof of Theorem 1. Let vy = min{yug, ug }
and vy = max{y, uy }. By Lemma 2 with k=0,
we have for any 6 € (0,v1) and § > 0, there exists
€0 > 0 such that for any € € (0, ¢),

P[Q]>1-68, Q :={v—6<EN <wvy+6).
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Let ei(N)=+/(rn —6)/N and e(N) =
(v + (5 /N Then for N with e(N) < ¢, we have

PlOy] > 18, Qy:={Nyw <N < Ny}
Notice that on QM

0§ < sup  [mIW*.

Ney(n) 0<m<N, )

Since

61(N)2 sup

0<m<N (v

[mI | — 0
in probability as N — oo by Lemma 1 and

1/1—6 +
V2+5(Mo

Aty (1 - A)
in probability as N — co by Lemma 2, where

1
A= / Liw,>0pdt,
0

we conclude F — 0 in probability, which implies
I‘(k — 0 in probablhty since they have a common
dlstrlbutlon We obtain I‘< )"~ 0in probability by
the same argument. ([

Proof of Theorem 2. Put yu=pl = p;. By
Lemma 2, we have

€N, — 1

in probability as € — 0. By the same argument as
above, we have that for all 6 € (0,u) and & >0,
there exists € >0 such that for all N with
e2(N) < €,

POy >1-6, Qn:={Nomw <N <N},
where  &(N)=+/(p—98)/N and e(N)=
/(u+8)/N. On Qy, we have

1 Ny
(Wi = W)™ We>0
NEI(N) n=0 o { '
= (k)+
<1y
1 Naw
< Wi = W) Loy
&(N) n=0
and
N,
R p—5)
Wrr = W) Liwizo £ ,
NCI(N> n=0 o =0 u(,u + 6)
Nﬂ
1 i (p+6)
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in probability as N — oco. Since 6§ can be arbitrarily
small, we conclude

in probability as N — oo. It is well-known that the
dlstrlbutlon function of A is given by (2). Since
f‘( and F( " have a common distribution, we ob-
tain the result The convergence of F( )~ is obtained
in the same manner. O

4. Appendix. Here we give a sketch of the
proofs for Lemmas 1 and 2. See [3] for the detailed
estimates. First we recall a simple consequence from
the Lenglart inequality:

Lemma 3. Let {F{},°, be a filtration and
{US},2, be an adapted sequence for each € > 0. If

ZE| cAlPlF) =

in probability as e — 0, then,
m
sup Z(UZH E[U, 4 |F.D| —
0<m<oo n=0
in probability as e — 0.
From this lemma, it suffices to treat

m

€Y Gk, ),
n=0

where
G (k, +) = B(Wy,, — W)™

G (k, =) = (W = W) 1 F 1w <o)

and {F,;} is a filtration to which W is adapted.
Further, using again the same lemma, we conclude
that if there exist sequences {HS} and {KS}
adapted to {F ..} such that

|FT,‘L]1{VV§20}a

(5) G (k,+) = E[H, | |Fr] + K],
N.

(6) ¢y E[H;,1F] =0,
n=0

(7) 6 02?35\7 ZHnJrl

in probability as € — 0, then
m

ZG; ko)=Y K
n=0

in probability as € — 0. Of course we have the same
conclusion for G¢(k,—) as well as G¢(k,+). For
Gt (k,+) with odd k, we take Kt =0 and

6 max
0<m<N,
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Hy o= (U(Wyy) — (W) Liwesoy,

where

wio) =2 [ [ nle)dady,

(8) wnlz) = (gli +1) gk@)){:&% - 1}

s(i+1)—
+gi(@), foraxzels(i),s(i+1)), i€Z
and gx(i), i € Z is defined as
—k—2
Z ( (l + 1) ( ))m( (’L N 1) o S(/[:))*k‘*Q*'ln
m=0
if k< -2 and
k
- Z(s(z +1) - s(i))’l’m(s(i —1)— S(i))fkfler
m=0

otherwise. Here g_(7) is understood as 0. We have
constructed these functions so that

Gk, +) = (s (W) G (=2 Lw o)

s(i+1)
/( (s(i+1) — 2)(¥r(2) — gr(d))dz

s(i+1)
- /( (2 — s(0))(a(2) — guli + 1))dz

s(7)
=0.
Then by the It6-Tanaka formula, we have
G (k,+) = E[H} | F]],

which implies (5). Further, a direct calculation

gives

s(i+1)
2 / Pr(2)dz
st

i)
= (s(i + 1) = (D) (gn(i + 1) + e(0))
= _(S(Z) - S(Z + 1))_k_1 + (S(Z + 1) _ S(i))_k_l
—k=3
2 (s

=0
x (s(d) = s(i+ 1)) 7"

Z+2 78 Z+1))m+1

—k—3
+ Z ’L-'— 1 ))"H-l
=0
X (s(i—1) = s(2)) 2"

when k < —2. We have a similar expression for non-
negative k as well. Notice that the first two terms
cancel if k is odd and the last two terms form a
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telescopic sum in 4. This implies U} (z) = o(z) as
x — oo for odd k under A[—2,+] and A[k, +]. This
gives (6) and

2
€ max |[Wu(Wy,.) -0

in probability. Noting that

m

§ : 7L+1

m
= Ui(s(~1)) Z 1{1/1/',‘,20,W;+1<0} + ‘I’k(m/y;+1)7
n=0
we conclude (7) with the aid of Lévy’s downcrossing
theorem. The same argument remains valid for

G¢ (k,—) with odd k by using
K, =0, H, = (U(Wiy) -

T

Ue(Wi)) Liwe<oy-

Thus we obtain Lemma 1.
For even k, we replace g, in (9) with

91(1) = gr(@) — i Lm0y — g Lii<oy

to define 9, and ¥y. Then we get, for example,
G (K, +)
= (E[0(W;.,) -

X Liwezoy-

U (Wl Fr] + i Gy, (—2))

Therefore we take
He o= (T(WE,y) = Te(WE) 1wy,
K, = 1 Gy, (=2)1gwe>0)

to get (5). To see (6) and (7), observe that

s(i+1)
2 / Y(z)dz

= (s(i+1) = s(1))(9 (Z+ 1)+ gi(2))
=2(s(i+ 1) — s(i)) " = 2] (s(i + 1) — 5(i))
—ig (i +2) — s(i + 1))
x Z;(S) —s(i 1))
+_kij( (i+1) = (i)™
x &z —1) —s(@))

when k£ < —2. We have a similar expression for non-
negative k as well. Notice that the first two terms
become negligible after summing up in ¢ by B[k, +]
since
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1
s(i+1)—s(i)
The last two terms form a telescopic sum in ¢ as
before. Thus we obtain ¥'(z) =o(z) as z — oo
under Af[k,+], which follows from B[k,+] and
A[—2,4]. This is enough to conclude (6) and (7).
Under A[-2, 4],

sup |t 4 ALl —75 A1 =0
n>0

and so by Lemma 3,

Ne
e Z K, = e Z G (
n=0

—2)Lgwes0)

Mz

= ,u 1{”5>0}E[ 1 — TalF ]

Il
o

n

1
— / Liw,>0ydt
0

in probability. The same argument remains valid

for G¢ (k,—) by taking
Hn+1 (lIIk(WrEH-l) \IIk(W ))1{PV5<0}3
K, = /‘LI;Gn(_Q)l{VV;<O}'

Thus we prove Lemma 2.
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